不完全信息博弈

合集下载

不完全信息下的博弈论研究

不完全信息下的博弈论研究

不完全信息下的博弈论研究博弈论是研究博弈策略和操作的一门学科,在经济学、社会学、政治学等领域中都有广泛应用。

不完全信息博弈是博弈论研究中的一种重要形式,它强调在博弈过程中参与者没有完全信息,即某些信息是隐匿的或者是不确定的。

在这种情况下,参与者需要借助策略、推理、信息获取等方式来预测对手的动作,以达到最优的结果。

不完全信息博弈的典型例子是扑克游戏。

每个玩家手中的牌都是隐匿的,他们无法得知对手的牌面,而只能通过自己的牌和对手的表现来猜测对手手中的牌。

这种情况下,每个玩家需要制定最优的策略,包括加注、跟注、弃牌等操作,以获得尽量高的胜率。

在不完全信息博弈中,玩家需要根据对手的表现和自己手中的信息来猜测对手的策略。

如果对手的表现不符合自己的预期,就需要调整自己的思路和策略。

例如,在扑克游戏中,如果对手加注的次数比较频繁,那么他可能手中的牌比较好,这时候自己就需要加强对手的猜测和评估,调整自己的策略。

在博弈论研究中,不完全信息博弈的分析需要考虑如下因素:1.信息的不完全性:参与者无法获得完整的信息,需要根据已有的信息和对手的表现来猜测对手的意图。

2.策略的制定:参与者需要制定最优的策略,同时预测对手的策略,以获得最高的胜率。

3.信息获取:参与者需要通过各种手段获取对手的信息,包括观察行为、分析表现、推理对手的策略等。

4.均衡点:在不完全信息博弈中,均衡点是指参与者遵循一定的策略后所达到的状态,该状态对各方来说都是最优解,没有任何一方能够通过改变自己的策略来获得更好的结果。

不完全信息博弈的研究成果在实际应用中具有广泛的价值。

例如,在金融市场中,交易员需要通过对市场信息的收集和分析,来制定交易策略和风险控制方案;在竞拍市场中,竞拍者需要通过对对手出价的猜测和分析,来制定最优的出价策略。

此外,不完全信息博弈还被广泛应用于人工智能领域。

例如,在计算机博弈领域中,通过对不完全信息博弈的研究,可以开发出更加智能和自适应的游戏程序;在机器人与人类进行交互的情境中,即使双方都有不完全信息,机器人如果能够学习并推测人类的行为,就有望更好地实现人机交互。

不完全信息博弈

不完全信息博弈

• 这个博弈的一个纯策略ai(ci) 是从﹝c’, c’’﹞到﹛0,1﹜的一个函数,其中0表示不 提供,1表示提供。参与人的支付函数为: • Ui(ai,a j, ci)=max(a1, a2)-aici • 如果j提供,i不提供, Ui(0,1, ci)=max(0, 1)-0ci=1;如果i提供, j不提供, Ui(1,0, ci)=max(1, 0)-1ci=1-ci • 贝叶斯均衡是一个策略组合,便得对于每 个i和每个可能的ci,策略ai﹡ (ci) 最大化参 与人i的期望效用。
因为z j≡Prob﹙ c’ ≤c j ≤c j ﹡﹚= P﹙ c j ﹡﹚ ,均衡分割点ci﹡必须满足ci﹡=1P﹙ c j ﹡﹚。因此ci﹡ 和c j ﹡都必须满足 方程c﹡=1- P(1-P﹙ c ﹡﹚)。假定存在 唯一的一个c﹡,解这个方程,那么下列条 件一定成立: ci﹡ = c﹡= 1- P﹙ c ﹡﹚。 比如说,如果P(· )是定义在﹝0,2﹞上 均匀分布( P(c)≡c/2 ),那么c﹡是唯 一的,等于2/3。为了检查c﹡=2/3确实是个 均衡点,如果参与人i不提供,他的期望支 付是P(c﹡)=1/3;如果成本为c﹡时提供, 他的期望支付为1- c﹡,提供是最优的。
• 那么q2L =1/2(5/4-q1); q2H =1/2(3/4-q1) • 企业1不知道企业2的真实成本从而不知道企 业2的最优反应是q2L还是q2H ,因此企业1选 择q1最大化下列期望利润函数: • E u1 =1/2 q1 (1- q1- q2L )+ 1/2 q1 (1- q1q2H ) 解一阶条件可得企业1的反应函数: • q1﹡= 1/2 (1- q1H- q2L )=1/2(1-Eq2) • 解反应函数可得贝叶斯均衡为: • q1﹡=1/3; q2L﹡=11/24; q2H﹡=5/24

第三章 不完全信息静态博弈

第三章 不完全信息静态博弈

二、例子
1、抓钱博弈 这个博弈有两个非对 称纯战略均衡:一个 参与人抓,另一个参 与人不抓;一个对称 混合战略均衡:每个 参与人以0.5的概率 选择抓。 (1)完全信息
参与人2 抓 参与人1 不抓 抓 -1,-1 1,0
不抓 0,1
0,0
(2)不完全信息 每个参与人有相同 参与人2 的支付结构,但若 抓 不抓 他赢了,其利润是 抓 -1,-1 1+θ1,0 (1+θi)。 θi是参 参与人1 与人的类型,参与 不抓 0 , 1+θ 0,0 人i自己知道θi,但 另一参与人不知道。 假定θ 在[-ε,+ε]区间上均匀分 i 布。
博弈方的类型 原来的静态博弈,即各 中选择行动方案 a1 , , a n 个实际博弈方
u i u i ( a 1 , , a n , i ), i 1, , n
根据海萨尼公理,假定分布函数P(θ1,…,θn)是所有 参与人的共同知识,用θ-i =(θ1,…, θi-1 ,θi+1,…,θn)表示 除i之外的所有参与人的类型组合。这样, θ= (θ1,…, θn)= (θi,θ- i)。称pi(θ-i | θi)为参与人i的条 件概率,即给定参与人i属于类型θi的条件下,他有 关其他参与人属于θ- i的概率。根据条件概率规则, p i , i p i , i p i i | i p i p i , i 这里, p (θi)是边缘概率。如果类型的分布是独立的, pi(θ-i | θi)= p (θ-i)。
2

均衡意味着两个反应函数同时成立。解两个反应函数 得贝叶斯均衡为:
q1
*
1 3
; q2
L*

讲义6不完全信息动态博弈

讲义6不完全信息动态博弈
模型假设的限制
不完全信息动态博弈的模型假设可能受到现实世界的限制。例如,玩家可能不完全了解其他玩家的类型 或策略,而这些类型和策略可能随着时间的推移而改变。这需要进一步研究和改进模型假设。
应用挑战
01 02 03
实际应用中的信息不对称
在不完全信息动态博弈中,信息不对称是一个常见的问题 。例如,在金融市场中,投资者可能不完全了解公司的财 务状况或未来的市场趋势。这使得应用不完全信息动态博 弈更加困难,需要更多的数据和信息来建立准确的模型。
不完全信息博弈的未来研究方向
目前,不完全信息博弈的研究已经涉及许多复杂的问题和挑战,未来的研究需要进一步 拓展和完善该领域的基础理论和方法,以更好地解释和解决现实世界中的问题。
02
不完全信息动态博弈模型
静态博弈与动态博弈的区别
静态博弈
参与人在同时进行决策,且决策 前都不知道其他参与人的类型和 策略。
政策制定
公共资源分配
政策制定者可以利用不完全信息动态 博弈来分析公共资源的分配问题,如 教育、医疗、环保等领域的资源分配 。
税收政策
反垄断政策
不完全信息动态博弈可以用于分析企 业的垄断行为,为政策制定者提供制 定反垄断政策的依据。
政策制定者可以通过分析企业和个人 的博弈行为,来制定合理的税收政策 ,以达到社会福利最大化的目的。
讲义6不完全信息动态博弈
汇报人: 2023-12-15
目录
• 不完全信息博弈概述 • 不完全信息动态博弈模型 • 不完全信息动态博弈的求解方
法 • 不完全信息动态博弈的应用 • 不完全信息动态博弈的挑战与
未来发展 • 不完全信息动态博弈案例研究
01
不完全信息博弈概述
定义与特点

完全信息博弈和不完全信息博弈例子

完全信息博弈和不完全信息博弈例子

完全信息博弈和不完全信息博弈例子完全信息博弈和不完全信息博弈是博弈论中常见的两种博弈模型。

在完全信息博弈中,参与者对对手的策略和利益有完全了解,而在不完全信息博弈中,参与者对对手的策略和利益了解不完全。

下面将给出10个例子来说明这两种博弈模型。

1. 完全信息博弈:象棋对局象棋是一种典型的完全信息博弈。

在游戏开始之前,双方玩家对对手的棋子摆放和可能的走法有全面的了解。

每一个棋子的能力和走法都是公开的,玩家可以根据对手的走法进行推理和决策。

双方都可以清楚地看到棋盘上的所有信息,这使得象棋成为一个完全信息博弈的范例。

2. 完全信息博弈:扑克牌游戏扑克牌游戏是另一个典型的完全信息博弈。

在游戏开始之前,玩家可以看到自己的牌和公共牌,可以推断其他玩家手中可能的牌型。

玩家可以根据对手的表情、下注行为和牌型推断对手的策略,并做出相应的决策。

3. 完全信息博弈:国际象棋比赛国际象棋比赛是另一个典型的完全信息博弈。

在比赛开始之前,双方选手可以看到对手的棋子摆放和可能的走法,可以根据对手的走法进行推理和决策。

选手可以通过分析对手的行为和棋局的发展,制定出相应的策略。

4. 完全信息博弈:囚徒困境囚徒困境是博弈论中著名的例子。

在这个博弈中,两个囚犯被关押在不同的牢房中,检察官给每个囚犯提供了一个交代罪行的机会。

如果两个囚犯都选择交代,那么他们都会被判刑。

如果两个囚犯都选择保持沉默,那么他们都会被判轻刑。

如果一个囚犯交代而另一个保持沉默,那么前者将获得豁免,后者将被判重刑。

这个博弈的特点是,双方玩家知道对方的利益和策略,并可以根据对方的策略做出自己的决策。

5. 完全信息博弈:足球比赛足球比赛是一种典型的完全信息博弈。

在比赛开始之前,双方球队都可以看到对方的阵容和战术,可以根据对手的策略进行相应的调整。

球队可以根据比赛的进展和对手的表现,调整自己的战术和策略。

6. 不完全信息博弈:扑克牌对局尽管扑克牌游戏可以被看作是完全信息博弈的例子,但在某些情况下,扑克牌对局也可以被看作是不完全信息博弈。

不完全信息静态博弈

不完全信息静态博弈

练习
自然”以均等的概率决定得益是下述得益矩阵1的 (1)若“自然”以均等的概率决定得益是下述得益矩阵 的 ) 情况还是得益矩阵2的情况 并让博弈方1知道而不让博弈方 的情况, 情况还是得益矩阵 的情况,并让博弈方 知道而不让博弈方 2知道;( )博弈方 在T和B中选择,同时博弈方 在L和R 知道;( 中选择, 知道;(2)博弈方1在 和 中选择 同时博弈方2在 和 中进行选择。找出贝叶斯纳什均衡。 中进行选择。找出贝叶斯纳什均衡。 L T B 1,1 0,0 1 R 0,0 0,0 T B L 0,0 0,0 2 R 0,0 2,2
如果在位者是高成本的,则均衡是进入者进入, 如果在位者是高成本的,则均衡是进入者进入,在 位者默许;如果在位者是低成本的, 位者默许;如果在位者是低成本的,均衡是进入者 不进入,在位者打击。 不进入,在位者打击。 因此,如果在完全信息情况下, 因此,如果在完全信息情况下,知道在位者是高成 则进入者进入;知道在位者是低成本, 本,则进入者进入;知道在位者是低成本,则进入 者不进入。 者不进入。 但现在进入者并不知道在位者究竟是高成本还是低 成本,因此很难进行选择。 成本,因此很难进行选择。
暗标拍卖
拍卖和招投标是经济活动中普遍采用的重要交易工具, 拍卖和招投标是经济活动中普遍采用的重要交易工具,有许 多不同的方式。暗标拍卖是典型的不完全信息静态博弈。 多不同的方式。暗标拍卖是典型的不完全信息静态博弈。 暗标拍卖的基本特征:密封递交标书;统一时间公证开标; 暗标拍卖的基本特征:密封递交标书;统一时间公证开标; 标价最高者以所报标价中标。 标价最高者以所报标价中标。 这种博弈的博弈方就是所有投标人; 这种博弈的博弈方就是所有投标人;各个博弈方的策略就是 他们各自提出的标价;中标博弈方的得益是其对拍卖标的的 他们各自提出的标价; 估价与成交价格之差,未中标博弈方的得益为0.由于各博弈 估价与成交价格之差,未中标博弈方的得益为 由于各博弈 方的标书是密封递交和同时开标的, 方的标书是密封递交和同时开标的,各博弈方在选择自己的 策略之前都无法知道其他博弈方的策略, 策略之前都无法知道其他博弈方的策略,而且这是一个一次 性选择问题,所以是静态博弈问题。 性选择问题,所以是静态博弈问题。

完全信息博弈和不完全信息博弈例子

完全信息博弈和不完全信息博弈例子

完全信息博弈和不完全信息博弈例子一、完全信息博弈的例子:1. 战争博弈:两个国家之间的战争可以被看作是一个完全信息博弈。

在这种情况下,每个国家都知道对方的军事力量、资源和战略,因此可以做出相应的决策,例如增加军事投入、调整战略等。

2. 棋类游戏:例如国际象棋、围棋等,这些游戏中,双方玩家都知道对方的棋子位置和规则,因此可以通过计算和预测对方的行动来做出最佳决策。

3. 拍卖:拍卖是一个经典的完全信息博弈。

在拍卖中,卖家和买家都了解物品的属性、市场需求和竞争对手的出价,因此可以根据这些信息来制定自己的出价策略。

4. 投标竞争:在企业之间的投标竞争中,每个企业都知道自己的成本、竞争对手的能力和市场需求,因此可以根据这些信息来制定自己的投标价格和竞争策略。

5. 股票交易:在股票市场上,投资者可以根据公司的财务报表、行业趋势和市场预期来做出投资决策。

这些信息都是公开的,每个投资者都可以获得相同的信息。

6. 价格竞争:在一个完全竞争的市场中,所有的卖方都知道其他卖方的价格和产品质量,因此可以根据市场需求和成本来制定自己的价格策略。

7. 职业博弈:在职业生涯中,每个人都可以根据自己的技能、经验和市场需求来选择自己的职业方向和工作机会。

8. 选举竞争:在政治选举中,候选人可以根据选民的偏好、政策议程和竞争对手的策略来制定自己的竞选策略。

9. 赛车比赛:在赛车比赛中,每个车手都知道自己和其他车手的技术水平、赛车性能和赛道条件,因此可以根据这些信息来制定自己的赛车策略。

10. 模拟游戏:在模拟游戏中,玩家可以根据游戏中的规则、目标和对手的行动来制定自己的游戏策略,例如《模拟城市》、《模拟经营》等。

二、不完全信息博弈的例子:1. 扑克牌游戏:扑克牌是一个典型的不完全信息博弈。

每个玩家只能看到自己的手牌和公共牌,对手的手牌是未知的。

因此,玩家需要通过对对手的行动、下注和表情的观察来推测对手的手牌和策略,并做出相应的决策。

不完全信息博弈求解方法

不完全信息博弈求解方法

不完全信息博弈求解方法1. 嘿,大家想想看,贝叶斯法则不就是个超级厉害的办法嘛!就好像你去猜一个盒子里有啥,先根据经验猜一下,然后随着新信息的出现不断调整猜测,这多妙啊!比如玩猜数字游戏,一开始你可能瞎猜个 50,然后别人说大了,你不就赶紧调整范围往小了猜嘛!贝叶斯法则就是这样帮我们在不完全信息下越来越接近真相。

2. 还有呢,最大期望策略也是超有用的呀!这不就像你在走路,会选择那条看起来最有可能带你到目的地的路嘛!比如说你在商场找一家店,你会根据之前的经验和现在看到的指示牌,选择那个最有可能找到店的方向走,这就是最大期望策略在起作用呢!3. 哎呀呀,精炼贝叶斯均衡也是很关键的哦!就好像两个人跳舞,要配合得特别好才行!比如在谈判的时候,双方都要根据对方的表现和可能的反应来调整自己的策略,达到一种平衡,这就是精炼贝叶斯均衡的魔力呀!4. 大家别忘了信号传递呀!这就如同黑夜中的灯塔,给你指引方向呢!举个例子,公司面试时,候选人展示各种证书和经历,就是在给公司传递信号,让公司更好地了解自己呀!5. 那逆向归纳法也是不能小瞧的呢!就像是你倒着推理一个事情的过程。

好比下棋,你会想如果我走这一步,对方可能怎么回应,然后依次往前推,这不就是逆向归纳法嘛!6. 重复博弈也很有意思呀!是不是像和老朋友一次又一次的互动呀?就像你和邻居经常打交道,慢慢就知道对方的脾气和习惯了,然后根据这些来调整自己的行为,多有意思呀!7. 动态规划也得重视起来呀!这就好像你在规划一个漫长的旅程,一步一步地安排。

比如说在项目管理中,根据不同阶段的情况,合理安排资源和时间,不就是动态规划嘛!8. 信息甄别也超重要的啦!这就像在一堆石头里找宝石,得有方法去分辨呀!像在招聘中设置不同的考核环节,就是为了甄别出真正适合的人才呢!9. 最后呀,策略性行动可不能忽略哦!这就如同下棋时的布局,要有长远眼光呢!比如企业在市场上做出一些行动来影响竞争对手的判断,这就是策略性行动的威力呀!总之,这些不完全信息博弈求解方法都很有用,大家要好好掌握呀!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(0.6)
不建厂
2,1
3 ,0
不完全信息静态下市场进入的博弈树
进入E 高建厂成本 [0.4] 建 (0,-1)
不进入D (2,0) E (2,1)
N○
[0.6]
1
低建厂成本
不建
建 不建
2
D
E
(3,0) (1,-1) (4,0) (1)
D E
D
(3,0)
不完全信息静态市场进入模型 --求解思路
不妨假设:
企业1的单位成本c1是共同信息,企业2的单位成本
c2 是其私人信息,它有高成本 c2H 和低成本 c2L两种情 形,设低成本的概率为p,它是双方的共同知识。
• 给定企业 2 知道企业 1 的成本时,企业 2 将最大化其利
润函数:
π2=q2(a-c2-q1-q2),
其中c2=c2H或c2L依赖于企业2的实际成本。 由此可得企业2的反应函数为: q2*(q1, c2)=(a-c2-q1)/2 它不但依赖于企业1的产量q1,而且依赖于自己的成本 c2。分别记q2L、q2H为企业2在低成本和高成本下的最 优反应产量,分别为:
不完全信息静态市场进入模型 --期望收益
• 在位者有两个信息集:高成本类型和低成本类型, 因而有4种纯策略;潜在进入者只有进入不进入两 种纯策略。 • 海萨尼转换后,支付矩阵变为: 潜在进入者 进入 不进入 0.6,-1 3.2,0 1.2,0.2 2.6,0 1.4,-0.2 3.6,0 2,1 3,0
图示——完全信息情形
q2
q1*(q2) 1/2 1/6 1/4 5/12
在完全信息情形下,满足以上条件时, 若企业2为低成本时,纳什均衡产量为 q1*=1/4,q2L*=1/2。 若企业2为高成本时,则企业1和2的纳 什均衡产量分别为5/12和1/6。 完全信息时的纳什均衡
q2
H
q2L q1
不完全信息时的期望反应
不完全信息博弈情形
• 由于不完全信息情形可归结为对支付函数 的不完全信息: (1)参与人的支付函数依赖于自然的选择 在房地产商开发博弈中,自然确定的市 场需求是不确定的:高需求还是低需求 (2)某一参与人的支付函数是其他参与人 私人信息(类型)的函数 市场进入博弈模型:在位者是高成本 还是低成本
(1)房地产开发
pi ( i
p( i , i ) | i ) p( i )
i i
p( i , i ) p( i , i )
例:联合概率分布
• 两企业在产品市场上的竞争模型:双方均有两种类 型,即强类型和弱类型,其联合概率分布如下表: 企业2
企业1
强 弱
强 0.3 0.1
弱 0.2 0.4
联合概率分布的条件概率推断
联合概率 企业1 企业1的条件推断 强 弱 企业2
强 0.3 0.1
弱 0.2 0.4
企业1
强 弱
对企业2类型的推断 强 弱 0.6 0.4 0.2 0.8
企业2的条件推断 对企业1的 推断 强 弱
强 0.75 0.25
企业2
弱 0.33 0.67
3、海萨尼转换
均衡意味着两个反应函数同时成立,由此得贝叶斯 均衡为: q1*=[a-2c1+pc2L+(1-p)c2H]/3 q2L* = (a+c1-2c2L)/3-(1-p)(c2H-c2L)/6
q2H* = (a+c1-2c2H)/3+p(c2H-c2L)/6
• 特别地,当a=2,c1=1,c2L=3/4,c2H=5/4,p=1/2 时,有q1*=1/3,q2L*=11/24,q2H*=5/24。
2、概率模型
• 假定P(1,…,n)为所有参与人类型集 =1×2×· · · ×n上的联合概率分布函数,它是 所有参与人的共同知识。记-i=(1,…i-1, i+1,…,n)表示除参与人i之外所有参与人的类
型组合,记pi(-i|i)表示参与人i的类型为 i时参与
人i关于其他参与人类型-i的条件概率,它满足:
q2*(q1, c2L)=(a-c2L-q1)/2
q2*(q1, c2H)=(a-c2H-q1)/2
• 企业1将最大化自己的期望利润函数: Eπ1=q1· (a-c1-q1-q2L) · p+q1· (a-c1-q1-q2H) · (1-p) 由此可求得企业1的最优反应函数为:
q1*=[a-c1-pq2L-(1-p)q2H]/2=(a-c1-Eq2)/2
高成本 在位 者 低成本
建厂 不建厂 建厂 不建厂
高成本 在位者 低成本
建厂 不建厂 建厂 不建厂
潜在进入者 进入 不进入 0,-1 2,0 2,1 3,0 1,-1 4,0 2,1 3,0
• 在完全信息条件下,在位者知道进入者的成本函数。 若在位者是高成本,惟一的纯策略纳什均衡是 (进入,不建厂); 若在位者是低成本,有两个纯策略纳什均衡。如 果低成本在位者主动选择建厂,潜在进入者将不进 入。
自然以1-p的概率 选择低需求 开发 开发商 A 不开发
开发商B
开发 2, 2 0, 4 开发商B 开发 -1, -1 0, 1 不开发 1, 0 0, 0 不开发 4, 0 0, 0
(2)市场进入的不完全信息博弈模型
• 垄断者(在位者)和潜在进入者:在位者决定是否建 立一个新厂,同时潜在进入者决定是否进入该行业。 • 在位者有两种可能的建厂成本函数:高成本和低成本, 潜在进入者不知道在位者的成本函数。 • 假定对应的支付矩阵如下: 潜在进入者 进入 不进入 0,-1 2 ,0 2,1 3 ,0 1,-1 2,1 4 ,0 3 ,0
• 通过引入“自然”这一虚拟局中人,将不完 全信息博弈转换为不完美信息博弈。 • 所有局中人的实际类型均来自于由“自然” 根据类型上的联合概率分布进行的一种初始 抽彩,局中人根据这种抽彩决定自己对其他 局中人类型的主观判断,由此进行实际博弈。 • 例如:在市场进入博弈中,自然决定在位者 建厂成本类型
不完全信息静态的市场进入模型
• 垄断者(在位者):决定是否建立一个新厂 有两种建厂成本类型:高成本(概率0.4)和低成本 • 潜在进入者:决定是否进入该行业 只有一种成本:高成本 • 对应的支付矩阵如下: 潜在进入者 进入 不进入 高成本 建厂 0,-1 2 ,0 2,1 3 ,0 在位 (0.4) 不建厂 者 低成本 建厂 1,-1 4 ,0
在位者 (高成本 类型概率 为0.4)
(建,建) (建,不建) (不建,建) (不建,不建)
不完全信息静态市场进入模型 --贝叶斯均衡求解
• 该博弈的纯策略贝叶斯均衡有两个: ((不建, 建),不进入)和((不建,不建),进入)
• 贝叶斯均衡是类型依存的策略组合(最大化期望收益函数)。
在位者 (高成本 类型概率 为0.4)
q2
q1*(q2) 1/2 1/6
• 企业1对企业2的期望产出 做出反应,以最大化自己的 期望效用
Eq2
q2
1/4 5/12
H
q2L q1
q2
图示——不完全信息情形
q1*(q2)
•与完全信息情形相比,在不完全信息下, 低成本企业的产量相对较低,高成本企 业的产量相对较高,这是由于企业1对 期望利润做出反应的结果。 不完全信息时的纳什均衡
(二) 海萨尼转换
• 房地产开发博弈:开发商面临市场两种需求状态,高需 求和低需求,通过自然决定(以概率表示) • 市场进入博弈模型的换位思考: 进入者与两个不同成本的在位者博弈:高成本和低成 本类型 一般地,若在位者有N种可能的成本函数,则进入者 似乎是在与N个不同的在位者博弈 • 海萨尼引入了虚拟参与人——自然,自然首先行动,以 此将不完全信息博弈转化为完全但不完美信息博弈。 参与人类型的不确定:自然决定参与人的特征(类 型),参与人知道自己的特征,其他参与人不知道
不完全信息博弈的例子
• 在讨价还价中,通常买主并不知道卖主的最低要价(底 价),卖主也不知道买主的最高出价(限价) 静态博弈:招标投标 动态博弈:讨价还价 • 在信贷市场中,银行未必掌握企业的真实情况;
• 在证券市场中,投资者未必清楚上市公司的真实质量;
• 在保险市场中,保险公司未必清楚投保人的真实信息; • 在市场进入模型中,想进入市场的企业未必知道现有企业 的真实成本。 • 在2008年的全球金融危机中,各类市场参与者未必知道市 场的真实情况。
不完全信息博弈
不完全信息静态博弈 不完全信息动态博弈 拍卖问题
一、 不完全信息博弈
(一)不完全信息的含义 • 完全信息意味着参与人的纯策略空间和支付函数是所 有参与人的共同知识。 • 不完全信息指一种博弈局势中,局中人对其他局中人 (或他自己)与该种博弈有关的事前信息(如局中人 所处的地位或状态等信息,它们会影响博弈局势)了 解不充分。 • 从技术上看,博弈的不完全信息表现为对博弈的基本 数学结构了解不充分。在策略型博弈中,则表现为对 博弈的三种组成部分,即局中人、策略和支付有着不 完全的了解。 在理论上,各类不完全信息情形都可归结为对支付 函数的不完全信息。
1、类型
• 一般地,将一个参与人所拥有的所有私人信息 (private information)称为他的类型。 • 由于大多数博弈中,参与人的特征由支付函数完 全确定,因而一般将参与人的支付函数等同于他 的类型。 • 将参与人i的一个特定类型记为i (它反应了参与 人i的某种特定私人信息),将参与人i的所有类型 的集合记为i。 • 通常假定,参与人i只知道自己的类型,并且知道 其他局中人的类型分别为若干种可能类型中的一 种,但不知道具体是哪一种,但他知道其他参与 人类型的概率分布。
不进入D (2,0) E (2,1)
N○
[0.6]
1
低建厂成本
不建
建 不建
2
相关文档
最新文档