单相电压型逆变电路的设计

合集下载

电压型单相全桥逆变电路

电压型单相全桥逆变电路

1. 引言逆变电路 所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交换电(DC/AC)的进程.当把转换后的交换电直接回送电网,即交换侧接入交换电源时,称为有源逆变;而当把转换后的交换电直接供应负载时,则称为无源逆变.平日所讲的逆变电路,若不加解释,一般都是指无源逆变电路.1. 电压型逆变器的道理图当开关S1.S4闭合,S2.S3断开时,负载电压u o 为正;当开关S1.S4断开,S2.S3闭应时,u o 为负,如斯瓜代进行下去,就在负载上得到了由直流电变换的交换电,u o 的波形如图7.4(b)所示.输出交换电的频率与两组开关的切换频率成正比.如许就实现了直流电到交换电的逆变.2. 电压型单相全桥逆变电路它共有4个桥臂,可以算作由两个半桥电路组合而成.两对桥臂瓜代导通180°.输出电压和电流波形与半桥电路外形雷同,幅值凌驾一倍.转变输出交换电压的有用值只能经由过程转变直流电压U d 来实现. 输出电压定量剖析u o 成傅里叶级数基波幅值基波有用值当u o 为正负各180°时,要转变输出电压有用值只能转变d d1o 9.022U U U ==πU d来实现可采取移相方法调节逆变电路的输出电压,称为移相调压.各栅极旌旗灯号为180º正偏,180º反偏,且T1和T2互补,T3和T4互补关系不变.T3的基极旌旗灯号只比T1落伍q ( 0<q <180º),T3.T4的栅极旌旗灯号分离比T2.T1的前移180º-q,uo 成为正负各为q 的脉冲,转变q 即可调节输出电压有用值.3MATLAB 仿真Simulink组建电路模子及试验成果电压型全桥逆变电路构造图:阻感性质下的仿真:T1 T4的脉冲旌旗灯号:T2 T3的脉冲旌旗灯号:带电阻情形下Ia Vab 波形电感负载下的Ia波形Vab波形阻感负载时RL负载电流波形输入电流Id的波形剖析:在直流电源电压Vd一准时,输出电压的基波大小不成控,且输出电压中谐波频率低.数值大,直流电源电流Id脉动频率低且脉动数值大.是以为了使负载获得优越的输出电压波形和减小直流电源电流的脉动,必须采取较大的LC输出滤波器和LdCd输入滤波器.经由过程此次的功课,在运用MATLAB的进程中碰到了很多问题,在对这些问题的解决进程中逐渐学会一些关于这套软件的运用办法,在查找MATLAB软件运用办法的时刻找到了相干的专业论坛,这为今后进修生涯供给了很多帮忙,可以在与他人的交换进程中学到更多的常识.《电力电子变换和掌握技巧》高级教导出版社陈坚《电力电子及其仿真》江苏技巧师范学院刑绍邦《电力电子技巧运用电路》机械工业出版社王文郁石玉《石新春电力电子技巧》中国电力出版社石新春。

单相全桥电压型逆变电路

单相全桥电压型逆变电路

单相全桥电压型逆变电路单相全桥电压型逆变电路是一种常用的电力电子变换器,它能将直流电源转换为交流电源,广泛应用于各种电力供应系统和电力调节系统中。

本文将对单相全桥电压型逆变电路的工作原理、优缺点以及应用领域进行详细介绍。

一、工作原理单相全桥电压型逆变电路由四个开关管和相应的控制电路组成。

开关管分别为Q1、Q2、Q3和Q4,通过适当的控制,可以实现对开关管的导通和关断。

在工作过程中,当Q1和Q4导通,Q2和Q3关断时,直流电源的正极连接到电路的A相,负极连接到电路的B 相,此时输出的是正半周的交流电压。

当Q1和Q4关断,Q2和Q3导通时,正负极的连接情况反转,输出的是负半周的交流电压。

通过不断交替导通和关断,可以在输出端获得一段完整的交流电压波形。

二、优缺点单相全桥电压型逆变电路具有以下优点:1. 输出电压稳定:由于采用全桥结构,能够有效地消除直流电源的波动和噪声,输出电压稳定可靠。

2. 输出功率大:全桥结构能够充分利用电源能量,输出功率相对较大。

3. 输出电压可调:通过控制开关管的导通和关断时间,可以实现对输出电压的调节,满足不同需求。

4. 抗干扰能力强:逆变电路可有效抑制外界干扰信号,提高系统的抗干扰能力。

然而,单相全桥电压型逆变电路也存在一些缺点:1. 成本较高:由于需要四个开关管,控制电路和保护电路等,相对于其他逆变电路而言,成本较高。

2. 效率较低:由于开关管的导通和关断需要一定的时间,逆变过程中会产生一定的开关损耗,导致转换效率有所降低。

三、应用领域单相全桥电压型逆变电路具有广泛的应用领域,包括但不限于以下几个方面:1. 电力供应系统:逆变电路可以将直流电源转换为交流电源,用于电力供应系统中的电压和频率调节,满足不同负载的需求。

2. 电动机控制:逆变电路可将直流电源转换为交流电源,用于电动机的控制和驱动,实现电机的速度调节和方向控制等功能。

3. 新能源应用:逆变电路可以将太阳能、风能等新能源转换为交流电源,供应给家庭、工厂等用电设备。

单相逆变器电路设计与仿真multisim

单相逆变器电路设计与仿真multisim

单相逆变器电路设计与仿真multisim【原创实用版】目录1.单相逆变器电路设计2.单相逆变器的建模与仿真3.控制思路与电路拓扑4.负载使用单相桥式整流5.电流内环与电压外环控制6.MATLAB 中的单相全桥逆变器电路建模与仿真7.利用仿真减少逆变器电路设计工时8.单相 LCL 并网逆变器 simulink 仿真9.逆变电路设计过程及仿真实例10.DC/AC:单相方波全桥逆变电路设计原理及实验仿真正文一、单相逆变器电路设计单相逆变器是一种将直流电源转换为交流电源的电路,其主要应用在太阳能发电、风力发电以及电力电子设备中。

在设计过程中,需要考虑电路的拓扑结构、控制策略以及负载特性等因素。

二、单相逆变器的建模与仿真建模是对电路的数学描述,仿真是利用计算机模拟电路的工作过程。

对于单相逆变器,可以使用 MATLAB 或 Multisim 等软件进行建模与仿真,以验证电路的性能指标是否满足设计要求。

三、控制思路与电路拓扑控制部分采用 PI 控制,包含电压外环和电流内环。

电压外环控制输出电压,电流内环控制输出电流。

电路拓扑采用全桥逆变电路,使用 LC 滤波器,负载为单相桥式整流电路。

四、负载使用单相桥式整流在单相逆变器电路中,负载通常使用单相桥式整流电路。

这种整流电路具有结构简单、工作效率高等优点,适合用于电压波形为矩形波的负载。

五、电流内环与电压外环控制电流内环和电压外环是逆变器控制策略的两个重要部分。

电流内环控制电流,电压外环控制电压。

通过这两个环路的联合控制,可以实现逆变器输出电压和电流的高效调节。

六、MATLAB 中的单相全桥逆变器电路建模与仿真在 MATLAB 中,可以通过 Simulink 工具箱搭建单相全桥逆变器电路模型,并进行仿真实验。

仿真结果表明,当同时打开绝缘栅双极型晶体管时,负载两端的电压和电流波形方向相同;当二极管 vd 同时导通时,电压和电流波形方向相反,理论分析与仿真实验结果完全一致。

igbt单相电压型半桥无源逆变电路设计

igbt单相电压型半桥无源逆变电路设计

igbt单相电压型半桥无源逆变电路设计本文介绍了一种IGBT单相电压型半桥无源逆变电路设计,该电路采用半桥拓扑结构,通过IGBT管控制开关实现正负半周期无源逆变,具有高效、可靠、稳定等优点。

同时,本文还介绍了电路的设计流程和注意事项。

一、电路拓扑结构IGBT单相电压型半桥无源逆变电路采用半桥拓扑结构,如图1所示。

电路中,IGBT1和IGBT2分别代表上管和下管,L1和L2为变压器的两个线圈,C为输出滤波电容。

该拓扑结构有以下优点:1、半桥结构可以避免直流电离子飘移问题,提高电路的可靠性。

2、IGBT管负责开关电流,电压由变压器自行绝缘,可以避免功率管受到高频电磁干扰而损坏的问题。

3、半桥拓扑结构使得电路的效率较高,能够满足高效、小型化的需求。

二、电路设计1、选择IGBT管根据电路的工作电压和电流,选择适合的IGBT管是很重要的。

可以根据功率、电压承受能力、开关速度、漏电流等因素进行选择。

2、选择变压器变压器是半桥无源逆变电路的关键元件之一,变压器的参数需要根据电路需求进行选择。

如果输出功率较大,则需选择大功率变压器;如果需要较小的体积,则可以选择小型化的变压器。

3、选择输出电容电容可以用来过滤输出端的噪声和杂波。

根据输出电压、输出电流等参数选择适合的电容,并确保电容的电压承受能力充足。

4、电路参数计算根据电路的拓扑结构和工作参数,进行电路参数的计算。

需要计算的参数包括变压器的线圈数、电感值、电容容值等。

这些参数的计算需要根据电路需求进行合理设置。

三、注意事项在使用IGBT管时,需要防止温度过高和静电干扰等问题。

建议在使用IGBT管时加装散热器,并采用静电保护措施,以保证管子的正常工作。

总之,IGBT单相电压型半桥无源逆变电路是一种高效、可靠、稳定的电路结构,在工业自动化控制等领域有着广泛的应用。

IGBT单相电压型全桥无源逆变电路设计.

IGBT单相电压型全桥无源逆变电路设计.

电子技术课程设计说明书IGBT 单相电压型全桥无源逆变电路设计学生姓名: 学号:学 院: 专指导教师:2013年01月XXX 1005044245 信息与通讯工程学院 电气工程及其自动化中北大学电子技术课程设计任务书2012/2013 学年第一学期学院:信息与通讯工程学院专业:电气工程及其自动化学生姓名:胡定章学号: 1005044245课程设计题目:IGBT单相电压型全桥无源逆变电路设计起迄日期: 12月24日~ 01月4 日课程设计地点:电气工程系软件实验室指导教师:石喜玲系主任:王忠庆下达任务书日期: 2012 年 12 月 24日课程设计任务书课程设计任务书目录1 引言 (1)2 工作原理概论 (1)2.1 IGBT的简述 (1)2.2 电压型逆变电路的特点及主要类型 (2)2.3 IGBT单相电压型全桥无源逆变电路原理分析 (2)3 主电路设计及参数选择 (3)3.1 主电路仿真图 (3)3.2参数设置及计算 (3)3.2.1参数设置 (3)3.2.2计算 (3)3.2.3设置主电路 (4)4 仿真电路结果的分析 (5)4.1 仿真电路图 (5)1.1.14.1.1 触发电平与负载输出波的波形图 (5)4.1.2 IGBT电流电压波形图 (6)4.2 仿真波形分析 (6)5 总结 (7)参考文献 (7)2引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

3工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

单相逆变电路设计

单相逆变电路设计

单相逆变电路设计
单相逆变电路是一种电子电路系统,可以将直流电转换为交流电。

这种电路系统在许多应用中都非常有用,例如太阳能发电系统和风力发电系统中。

单相逆变电路通常由两个部分组成:直流-直流变换器和直流-
交流变换器。

直流-直流变换器将输入的直流电转换为所需的电压和
电流水平,然后将其传递到直流-交流变换器。

直流-交流变换器把直流电转换为交流电,并将其输出到负载中。

设计单相逆变电路需要考虑一些因素,例如输出功率、波形质量、效率和成本等。

为了实现高效能的单相逆变电路,需要选择合适的器件和控制策略,并进行适当的参数选择和优化设计。

在实际应用中,单相逆变电路的设计需要按照不同的需求进行定制。

例如,在太阳能发电系统中,需要将太阳能电池板输出的直流电转换为交流电,以便供电给家庭和商业用途。

因此,单相逆变电路的设计必须考虑到太阳能电池板的输出特性和负载需求。

- 1 -。

毕业设计(论文)-单相逆变器设计与仿真

毕业设计(论文)-单相逆变器设计与仿真

单相逆变器设计与仿真班级学技术要求:逆变器类型:单相逆变器输出额定电压:825V输出额定功率:25KVA输出额定频率:50HZ功率因素:≥0.8过载倍数:1.5⑴、设计主电路参数;⑵、建立数学模型,给出控制策略,计算控制器参数;⑶、建立仿真模型,给出仿真结果,对仿真结果进行分析。

目录一、单相逆变器设计 .....................................................................................................- 4 -1、技术要求 ..........................................................................................................- 4 -2、电路原理图 .......................................................................................................- 4 -3、负载参数计算 ...................................................................................................- 4 -3.1、负载电阻最小值计算 ...............................................................................- 5 -3.2、负载电感最小值计算 ...............................................................................- 5 - 3.3、滤波电容计算..........................................................................................- 5 - 4、无隔离变压器时,逆变器输出电流计算 .............................................................- 6 -4.1、长期最大电流(长)O I ...............................................................................- 6 -4.2、短期最大电流短)(0I .................................................................................- 7 - 5、无隔离变压器时,逆变器输出电流峰值 .............................................................- 7 -5.1、长期电流峰值长)(OP I ...............................................................................- 7 - 5.2、短期电流峰值短)(OP I ...............................................................................- 7 - 6、滤波电感计算 ...................................................................................................- 7 -6.1、滤波电感的作用 ......................................................................................- 7 - 6.2、设计滤波器时应该注意的问题 .................................................................- 7 - 6.3、设计滤波器的要求...................................................................................- 8 - 7、逆变电路输出电压(滤波电路输入电压) .........................................................- 8 -7.1、空载........................................................................................................- 9 - 7.2、 额定负载纯阻性1cos =ϕ .....................................................................- 9 - 7.3、额定负载阻感性8.0cos =ϕ ....................................................................- 9 - 7.4、过载纯阻性1cos =ϕ ............................................................................ - 10 - 7.5、过载阻感性8.0cos =ϕ ......................................................................... - 11 - 8、逆变电路输出电压 .......................................................................................... - 11 - 9、逆变电路和输出电路之间的电压匹配 .............................................................. - 12 - 10、根据开关压降电流选择开关器件.................................................................... - 12 - 11、开关器件的耐压 ............................................................................................ - 13 - 12、单相逆变器的数学模型.................................................................................. - 13 - 13、输出滤波模型................................................................................................ - 14 - 14、单相逆变器的控制策略.................................................................................. - 15 - 14.1、电压单闭环控制系统 ........................................................................... - 15 - 14.2、电流内环、电压外环双闭环控制系统 ................................................... - 16 -二、单相逆变器仿真 ................................................................................................... - 20 -1、输出滤波电路仿真 .......................................................................................... - 20 -2、电压单闭环控制系统仿真 ................................................................................ - 21 -3、电流内环、电压外环双闭环控制系统 .............................................................. - 23 -一、单相逆变器设计1、技术要求输出额定电压:825V输出额定功率:25KVA输出额定频率:50HZ功率因素:≥0.8过载倍数:1.52、电路原理图图1 单相全桥逆变电路设计步骤:(1)、根据负载要求,计算输出电路参数。

IGBT单相电压型半桥无源逆变电路设计

IGBT单相电压型半桥无源逆变电路设计

IGBT单相电压型半桥无源逆变电路设计引言:无源逆变器是一种将直流电源转换为交流电源的电力电子装置。

在工业和家庭中,无源逆变器被广泛应用于交流电源的供应,如电机驱动、照明系统和电力供应等。

本文将介绍IGBT单相电压型半桥无源逆变电路的设计原理和方法。

一、无源逆变器原理:无源逆变器的基本原理是通过DC电源,经过电容滤波以及交流输出变压器等,将直流电源转换为交流电源。

在半桥无源逆变器中,瞬时电流流经其两个输出电容之一,从而实现交流输出。

二、电路设计:1.IGBT选择:由于半桥无源逆变器所需承受较高的电压和电流,因此需要选择耐压能力强的IGBT。

根据要求,选择耐压大于输入电压和输出电压的IGBT装置。

2.控制电路设计:半桥无源逆变器需要一个合适的控制电路来控制IGBT的开关状态。

一种常见的控制方法是采用PWM(脉冲宽度调制)技术。

PWM技术可通过控制转换器的开关时间,来实现输出电压的调节。

3.输出滤波电路设计:在半桥无源逆变器中,输出的交流电压通常需要通过滤波电路进行过滤,以消除输出中的谐波和噪音。

滤波电路通常由电感和电容组成,可根据需求选择适当的参数。

4.保护电路设计:为了确保无源逆变器的安全运行,需要设计相应的保护电路。

保护电路可以包括过压保护、过流保护、温度保护等功能,以防止电路过载、过热等情况发生。

三、实际应用:1.交流电机驱动:无源逆变器常用于交流电机驱动中,通过将直流电源逆变成交流电源,实现电机的控制和调速。

逆变器可以根据需要变换频率和电压,以满足不同负载的要求。

2.照明系统:无源逆变器也可以应用于照明系统中,通过逆变电路将直流电源转换成交流电源,供给照明设备。

逆变器可以实现对照明的调亮调暗和调色调温等功能,提高照明系统的灵活性。

3.电力供应:无源逆变器可以将直流电源转换为交流电源,用于电力供应。

逆变器可以应用于太阳能和风能等可再生能源系统中,将直流电源转换为交流电源,供给家庭和工业用电等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要逆变电路的应用非常广泛。

在已有的各种电源中,蓄电池、干电池、太阳能电池等都是直流电源,当需要把这些电源向交流负载供电时,就需要逆变电路。

另外,交流电动机调速用的变频器、不间断电源、感应加热电源等电力电子装置使用非常广泛,其电路的核心部分都是逆变电路。

有人说,电力电子技术早期曾处在整流电路时代,后来则进入了逆变器时代,可见逆变电路在现实生产生活中的作用之大和应用之广泛。

而PWM 控制技术是逆变电路中应用最为广泛的技术,现在大量应用的逆变电路中,绝大部分都是PWM型逆变电路。

为了对PWM型逆变电路进行分析,首先建立了逆变器控制所需的电路模型,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和PWM控制电路的工作原理进行了分析,运用MATLAB中的SIMULINK对电路进行了仿真,给出了仿真波形,并运用MATLAB提供的powergui模块对仿真波形进行了FFT分析(谐波分析)。

通过仿真分析表明,运用PWM控制技术可以很好的实现逆变电路的运行要求。

关键字:逆变电路、PWM控制技术、换流。

The application of inverter circuits is very extensive. In the existing various power, storage battery, dry cells, solar battery is dc power, when need to put these power to ac load power supply, they need to inverter circuits. In addition, ac motor speed control with frequency converter, uninterrupted power supply, induction heating power supply, power electronics device to use a very extensive, its core part of the circuit is inverter circuits. Some say, power electronic technology rectifier circuit was in early times, later, into the inverter era, visible inverter circuits in real life and the role of the production of the broad application. And PWM control technology is widely used in the inverter circuits of technology, now a lot of the application of inverter circuits, the majority is type PWM inverter circuits. In order to type PWM inverter circuit analysis, first established the inverter control the circuit model, IGBT power as switching device, and bridge type of single-phase voltage type inverter circuits and PWM control circuit principle is analyzed with MATLAB, the circuit simulation of SIMULINK, then the simulation with MATLAB and waveform, provide powergui module to the simulation of the profile FFT analysis (harmonic analysis). Through the simulation analysis shows that, using PWM control technology can well realize the operation requirements of inverter circuits. Key word: inverter circuits, PWM control technology, the commutation目录1方案介绍及主电路设计 (3)1.1题目要求 (3)1.2方案概述 (3)1.3逆变电路及换流原理介绍 (3)1.4电压型逆变电路的特点及主要类型 (4)2SPWM控制法 (6)3主电路的设计和说明 (8)3.1PWM控制的基本原理 (8)3.2PWM逆变电路及其控制方法 (8)3.3主电路及其工作原理 (9)4方案介绍及主电路设计 (10)4.1单极性PWM控制发生电路模型 (10)4.2单极性PWM方式下的单相桥式逆变电路 (11)4.3仿真结果 (12)5小结体会 (13)6参考文献 (14)单相电压型逆变电路的设计1方案介绍及主电路设计1.1题目要求技术要求:设计一单相桥式逆变电路,采用SPWM调制方法,已知直流电源电压为400V,要求输出220V、50Hz的交流电,带电阻性负载,其中R的值为20Ω。

1.2方案概述本次课程设计的主要目标,是设计一个单相桥式电压型逆变电路。

同时可以设计相应的触发电路和过电流过电压保护电路。

根据电力电子技术的相关知识,单相桥式电压型逆变电路是一种常见的逆变电路模型,在日常生活中有着广泛的应用。

它的电路结构主要是由四个桥臂组成,其中每个桥臂都有一个全控器件IGBT和一个反向并接的续流二极管,在直流侧并联两个电容而负载接在桥臂与电容之间。

而IGBT的导通控制需要触发电路,通过资料的查询,找到相关的触发电路图,从中进行选择,最终确定方案。

可以用芯片进行触发也可以用下面章节介绍的使用D触发器为主体设计出来的触发电路,根据D触发器的特性,使换流能够实行。

最后设置过电流过电压保护电路,采用抑制电路和缓冲电路构成的过电压过电流保护电路,通过查阅资料,在仿真软件中连接出电路图,将触发电路接入,设置参数后进行仿真,观察波形,根据设置的参数进行计算。

1.3 逆变电路及换流原理介绍与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变。

在不加说明时,逆变电路一般指无源逆变。

逆变电路在现实生活中有很广泛的应用。

交流电路在工作过程中不断发生电流从一个支路向另一个支路的转移,这称为换流。

换流是实现逆变的基础。

通过控制开关器件的开通和关断来控制电流通过的支路,这就是实现换流的基本原理。

换流有多种方式,其中主要分为器件换流、电网换流、负载换流和强迫换流四种方式。

1.4 电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:1)直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

2)由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

3)当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

又称为续流二极管。

逆变电路分为三相和单相两大类。

其中,单相逆变电路主要采用桥式接法。

主要有:单相半桥和单相全桥逆变电路。

而三相电压型逆变电路则是由三个单相逆变电路组成。

最常用的是三相桥式逆变电路。

1.5电压型单相桥式逆变电路的主电路设计在本次设计中,主要采用单相桥式逆变电路作为设计的主电路。

其主电路结构图如图1-1所示:图1-1单相桥式逆变电路如上图所示,单相全桥逆变电路主要有四个桥臂,可以看成由两个半桥电路组合而成。

其中桥臂1,4为一对,桥臂2,3为一对。

每个桥臂由一个可控器件IGBT以及一个反并联的二极管组成。

在直流侧接有足够大的电容,负载接在桥臂之间。

它的具体工作过程如下:设最初时刻时,给IGBT Q1、Q4触发信号,使其导通。

则电流通过桥臂1,负载,桥臂4构成一个导通回路。

当时刻时,给Q2,Q3触发信号,给Q1,Q4关断信号。

但由于负载电感较大,通过它的电流不能突变,所以二极管D2,D3导通进行续流。

当电流逐渐减小为0,桥臂1,4关断,桥臂2,3导通,构成一个回路,从而实现换流。

单相桥式逆变电路工作波形如图1-2所示。

图1-2单相桥式逆变电路工作波形分析其工作过程:设在t1时刻前和导通,输出电压为,t1时刻和栅极信号反向,截止,而因负载电感中电流不能突变,不立刻导通,导通实现续流。

因为和同时道童,所以输出电压为0。

到t2时刻和栅极信号反向,截止,而不能立刻导通,续流,和构成电流通道,输出电压-。

到负载电流过零并开始反向时,和截止,和开始同时导通,仍然为-。

在t3时刻和栅极信号再次反相,截止,而不能立刻导通,导通续流,再次为0。

以后的过程与前面类似。

2 SPWM控制法SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法。

前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。

该方法的实现有以下几种方案。

一等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的。

由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点。

二硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。

相关文档
最新文档