烧结原理

合集下载

一、烧结基本原理解析

一、烧结基本原理解析

一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。

烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。

烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。

烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。

在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。

烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。

人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。

通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。

通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。

上述烧结过程中的种种变化都与物质的运动和迁移密切相关。

理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。

(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。

在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O 后会氧化,但在本体中可以被还原,同时还可以促进烧结。

2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。

负极材料烧结原理

负极材料烧结原理

负极材料烧结原理负极材料烧结是一种重要的材料加工方法,用于制备负极材料,常用于电池制造、储能设备、电动汽车等领域。

烧结是指将粉末状材料通过加热使其颗粒之间发生结合,形成致密的固体。

烧结过程可以分为三个阶段:预烧结阶段、烧结膨胀阶段和烧结收缩阶段。

首先是预烧结阶段,这个阶段主要是将原料粉末中的有机物和一些易挥发元素在加热过程中进行燃烧和挥发,使粉末中的杂质含量降低,提高材料的纯度和稳定性。

此阶段的温度一般在室温到300℃之间。

接下来是烧结膨胀阶段,当预烧结完成后,材料开始升温,温度在300℃到900℃之间。

在这个温度范围内,粉末颗粒会变得柔软并开始熔化,粉末表面形成液滴。

熔化的粉末颗粒之间会发生相互扩散和融合,粘结剂和其他添加剂的作用下,颗粒之间的结合变得更加牢固。

这个阶段还伴随着材料体积的膨胀,使得颗粒之间的孔隙逐渐减小。

最后是烧结收缩阶段,温度在900℃以上。

在这个温度范围内,粉末颗粒之间的结合继续增强,颗粒逐渐变得致密。

随着温度的升高,材料会收缩,孔隙进一步减小。

烧结收缩的过程由两个因素决定:表面张力和粉末颗粒的塑性变形。

通过控制烧结温度和时间,可以获得理想的材料致密度和力学性能。

在烧结过程中,还需要添加一些辅助剂和粘结剂,以提高材料的烧结性能和体积密度。

常用的辅助剂有碳酸铵、酒石酸铵等,它们可以在烧结过程中释放出气体,促进气孔的形成和材料的膨胀。

粘结剂可以增加烧结颗粒之间的粘结力,促进颗粒的结合。

负极材料的烧结原理主要涉及到颗粒间的熔合和结合机制。

常见的负极材料有石墨、石墨烯、金属锂等。

石墨的烧结主要是通过石墨颗粒间的变形和结合来实现。

金属锂的烧结则需要在特殊的条件下进行,因为金属锂在常温下是液态的,需要通过高温烧结来形成固态。

总之,负极材料的烧结是一个复杂的过程,需要在控制温度、时间和添加剂的基础上进行。

通过烧结可以获得致密且具有良好导电性能的负极材料,应用于各种电池和储能设备中,提高能量密度和循环寿命。

芯片烧结工艺

芯片烧结工艺

芯片烧结工艺芯片烧结工艺是一种常用于集成电路制造过程中的关键工艺,它负责将芯片的多个组件通过高温烧结的方式进行连接,以实现电路功能。

芯片烧结工艺的优劣直接影响着芯片的性能和可靠性。

本文将从烧结原理、工艺参数和优化等方面介绍芯片烧结工艺。

1. 烧结原理芯片烧结工艺的核心原理是通过在高温下使芯片表面的金属材料熔融,然后冷却固化,从而实现组件之间的连接。

烧结时,金属材料之间的扩散作用使它们相互溶解并形成一层坚固的连接。

在烧结过程中,需要控制好温度、压力和时间等参数,以确保烧结效果的稳定性和一致性。

2. 工艺参数芯片烧结工艺中的关键参数包括烧结温度、烧结压力和烧结时间等。

烧结温度是指烧结过程中芯片所处的温度,它直接影响到金属材料的熔化和扩散速度。

烧结压力则是指施加在芯片上的压力,它能够促进金属材料之间的接触和扩散。

烧结时间是指芯片在高温下保持的时间,它决定了金属材料的烧结程度和连接的牢固程度。

3. 优化方案为了提高芯片烧结工艺的效果,可以采取一些优化方案。

首先,选择合适的金属材料和烧结温度,以确保烧结后的连接具有良好的电导性和可靠性。

其次,优化烧结压力和时间的控制,使其能够适应不同尺寸和结构的芯片。

此外,引入适量的辅助材料,如烧结剂和填充剂,可以提高烧结效果和连接强度。

4. 工艺难点芯片烧结工艺中存在一些难点需要克服。

首先,烧结温度的控制是关键,过高或过低都会影响到连接的质量。

其次,不同组件之间的烧结温度和烧结时间可能存在差异,需要进行精确的控制。

另外,芯片材料的选择和组件的布局也会对烧结工艺产生影响,需要进行充分的分析和优化。

5. 质量控制为了确保芯片烧结工艺的质量,需要进行严格的质量控制。

首先,要对烧结设备进行定期的检测和维护,以确保其工作状态的稳定和可靠。

其次,要建立完善的烧结工艺流程和参数记录体系,以便对工艺进行追溯和分析。

此外,还需要建立有效的检测手段和方法,对烧结后的连接进行质量评估和验证。

烧结基本原理

烧结基本原理

一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。

烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。

烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。

烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。

在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。

烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。

人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。

通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。

通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。

上述烧结过程中的种种变化都与物质的运动和迁移密切相关。

理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。

(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。

在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O 后会氧化,但在本体中可以被还原,同时还可以促进烧结。

2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。

钢铁烧结工艺

钢铁烧结工艺

钢铁烧结工艺钢铁烧结工艺是一种重要的冶金工艺,用于将金属粉末通过高温烧结过程使其聚结成块状材料。

这种工艺在钢铁行业中应用广泛,具有高效、节能、环保等优点。

本文将详细介绍钢铁烧结工艺的基本原理、应用领域以及发展趋势。

一、钢铁烧结工艺的基本原理钢铁烧结工艺是利用金属粉末的高温烧结性质,通过加热和冷却过程使其粒子间发生扩散和结合,从而形成块状材料。

具体步骤包括原料制备、成型、烧结和冷却四个过程。

原料制备是钢铁烧结工艺的第一步,主要包括金属粉末的选择和配比。

金属粉末通常由铁粉、合金粉等组成,根据不同要求可以添加一定比例的添加剂。

配比的合理与否直接影响到烧结后材料的性能。

成型是将原料粉末按一定的形状和尺寸进行压制,使其具有一定的强度和形状稳定性。

常用的成型方式有压制、注塑、挤压等。

成型后的材料称为绿坯。

烧结是将成型后的绿坯置于高温环境中,使其发生热变形和结合。

烧结的温度通常在金属材料的熔点以下,但高于金属的晶界扩散温度。

在烧结过程中,金属粉末颗粒间会发生扩散,同时表面粒子经过短时间的高温接触,使其发生部分熔化,从而实现颗粒间的结合。

冷却是烧结后的最后一个过程,将已烧结的块状材料冷却至室温,使其具有一定的强度和形状稳定性。

冷却过程中,要注意避免过快或过慢的冷却速度,以免引起材料内部应力过大或结构不稳定。

钢铁烧结工艺广泛应用于钢铁行业的各个环节,包括铁矿石的烧结、高炉炉料的制备、铁精粉的制备等。

在铁矿石的烧结过程中,通过烧结工艺可以将低品位的铁矿石转化为高品位的烧结矿。

这样不仅提高了铁矿石的利用率,还减少了矿石资源的消耗,对环境保护也起到了积极的作用。

高炉炉料的制备是钢铁生产过程中的重要环节。

通过烧结工艺,可以将粉状的铁精粉和其他辅助材料烧结成块状的高炉炉料。

这样可以提高炉料的流动性和透气性,进一步提高高炉的冶炼效率和产量。

铁精粉的制备是钢铁烧结工艺的另一个重要应用领域。

通过烧结工艺,可以将铁精粉和其他添加剂烧结成块状的铁精矿。

一、烧结基本原理精讲

一、烧结基本原理精讲

一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。

烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。

烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。

烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。

在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。

烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。

人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。

通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。

通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。

上述烧结过程中的种种变化都与物质的运动和迁移密切相关。

理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。

(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。

在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。

2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。

烧结机工作原理

烧结机工作原理

烧结机工作原理
烧结机是一种通过高温加热和压力作用使粉末颗粒相互结合成为固体块的设备。

其工作原理如下:
1. 原料准备:将需要烧结的粉末材料按一定比例混合,并通过预处理工序得到具有一定粒度和形状的颗粒。

2. 加热:将混合好的粉末颗粒放入烧结机中,加热炉通过电阻加热器或火焰等热源对粉末颗粒进行加热。

3. 压力作用:同时,烧结机中的压力系统使压力媒体(如氮气或液体)通过喷嘴或供应管进入加热区域,施加压力在加热的颗粒上。

4. 烧结:经过加热和压力作用,粉末颗粒逐渐熔融和结合,形成固体块。

高温下,颗粒表面的金属原子发生扩散、扩张和重组,实现颗粒间的结合。

5. 冷却和固化:经过一定时间的加热和压力作用,关闭烧结机的加热和压力系统,然后将烧结好的块体缓慢冷却,使其保持一定的形状和结构。

烧结机的工作原理主要是通过高温和压力的双重作用,让粉末颗粒之间原子结合,实现粉末材料的烧结固化。

烧结过程中,颗粒间的扩散和重组是关键步骤,它使得颗粒之间形成新的结晶界面,从而形成较为致密和坚固的固体块。

烧结原理

烧结原理

烧结原理所谓烧结就是将粉末压坯加热到一定温度(烧结温度)并保持一定的时间(保温时间),然后冷却下来,从而得到所需性能的材料,这种热处理工艺叫做烧结。

烧结使多孔的粉末压坯变为具有一定组织和性能的制品,尽管制品性能与烧结前的许多工艺因素有关,但是在许多情况下,烧结工艺对最终制品组织和性能有着重大的甚至是决定性的影响。

硬质合金的烧结过程是比较复杂的,但是这些基本知识又是必须掌握的。

4.1 烧结过程的分类烧结过程的分类方法很多,按烧结制品组元的多少可以分为单元系烧结和多元系烧结,如钨、钼条烧结属于单元系烧结,硬质合金绕结则属于多元系烧结。

按烧结时组元中相的状态分为固相烧结和液相烧结,如钨钼的烧结过程中不出现液相,属于固相烧结,硬质合金制品在烧结过程中会出现液相,属于液相烧结。

按工艺特征来分,可分为氢气烧结、真空烧结、活化烧结、热等静压烧结等。

许多烧结方法都能用于硬质合金的烧结。

此外,还可以依烧结材料的名称来分,如硬质合金烧结,钼顶头烧结。

从学习烧结过程的实质来说,将烧结过程分为固相烧结和液相烧结两大类是比较合理的,但在生产中多按烧结工艺特点来进行分类。

4.2 烧结过程的基本变化硬质合金压坯经过烧结后,最容易观察到的变化是压块体积收缩变小,强度急剧增大,压块孔隙度一般为50%,而烧结后制品已接近理论密度,其孔隙一般应小于0.2%,压块强度的变化就更大了,烧结前压坯强度低到无法用一般方法来测定,压坯只承受生产过程中转移时所必备的强度,而烧结后制品却能达到满足各种苛刻工作条件所需要的强度值,显然制品强度提高的幅度较之密度的提高要大得多。

制品强度及其他物理机械能的突变说明在烧结过程中压块发生了质的变化。

在压制过程中,虽然由于外力的作用能增加粉末体的接触面,而颗粒中表面原子和分子还是杂乱无章的,甚至还存在有内应力,颗粒间的联结力是很弱的,但烧结后颗粒表面接触状态发生了质的变化,这是由于粉末接触表面原子﹑分子进行化学反应,以及扩散、流动、晶粒长大等物理化学变化,使颗粒间接触紧密,内应力消除,制品形成了一个强的整体,从而使其性能大大提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


正面电极因为要减小电极遮光面积,所 以使用导电性能良好的银浆,因为先前 的减反射膜已经形成正面电性绝缘,所 以银浆一般掺有含铅的硼酸玻璃粉 (PbO-B2O3-SiO glass frit),在高温烧 结时玻璃粉硼酸成分与氮化硅反应并刻 蚀穿透氮化硅薄膜,此时银可以渗入其 下方并与硅形成此种局部区域性的电性 接触,铅的作用是银-铅-硅共熔而降低银 的熔点。
四、背铝简介
1. 2. 3. 4. 5. 6. 7.
对铝浆的技术要求 形成铝背p-p+结,提高开路电压; 形成硅铝合金对硅片进行有效地吸杂, 提高效率; 能与硅形成牢固的欧姆接触; 有优良的导电性; 化学稳定性好; 有适宜大规模生产的工艺性; 价格较低。
1.
2.
3.
铝的特性 熔点:660.37℃,具有良好的导热性、导 电性和延展性。 在空气中其表面会形成一层致密的氧化 膜,使之不能与氧、水继续作用。 铝板对光的反射性能也很好
烧结原理
目录


银电极 正银烧结过程 正银线电流传导机构 背铝简介
一、银电极
•作用:输出电流 •电极就是与电池PN结两端形成紧密欧姆接触的导电材料。与P型区 接触的电极是电流输出的正极,与N型区接触的电极是电流输出的负 极。 •耐高温烧结,良好的导电性能及附着力,以及贵金属成本等因素, 决定了用银而不是其他贵金属。 •正面电极由两部分构成,主栅线是直接接到电池外部引线的较粗部 分,副栅线则是为了将电流收集起来传递到主线去的较细部分,制作 成窄细的栅线状以克服扩散层的电阻。电极图形,例如电极的形状、 宽度和密度等,对太阳能电池的转换效率影响较大。
二、正银烧结过程
·
网印正银在wafer上
有机物挥发,正银中的玻璃成份在加热到450度时开始融化
熔融的玻璃开始蚀刻SiN层,Ag则渐渐融入熔融的玻璃中
在670-700°C,玻璃蚀刻SiN层后,开始溶蚀Si的表层(emitter),产生 腐蚀坑 PbO+Si Pb+SiO2
在冷却时,熔融玻璃中过量的Ag析出成Ag颗粒, 并嵌入在Si的表面,于腐蚀坑处结晶形成电流传导的途径
6.
7.
银晶粒的析出机理?
1. 2.
3.Βιβλιοθήκη 与PbO和Si发生的氧化还原反应类似,玻璃料中的 Ag2O与Si发生如下反应:Ag2O+Si ——Ag+SiO2 Ag和被腐蚀的Si 同时融入玻璃料中。冷却时,玻璃料 中多余的Si外延生长在基体上,Ag晶粒则在玻璃料中 多余的Si外延生长在基体上,Ag晶粒则在Si表面随机 生长。 在烧结过程中通过氧化还原反应被还原出的金属Pb呈 液态,当液态铅与银相遇时,根据Pb-Ag 相图银粒子 融入铅中形成Pb-Ag相。Pb-Ag熔体腐蚀Si的<100>晶面。 冷却过程中, Pb和Ag发生分离,Ag在<111>晶面上结晶, 形成倒金字塔形。
正银烧结曲线(理论曲线)
1、Drying:在150°C干燥时先挥发掉胶料中所有的溶剂,否则在高温烧结时 溶剂产生的气泡将会造成裂缝。 2、Burn out:在300-400°C进行Burn-out的过程,烧除掉浆料中的有机粘结剂。 3、Firing:在700-800°C时,烧结后使银线粘附在Si wafer表面
1、Solvent evaporation:100-200°C,溶剂挥发 2、Resin removal:200-400°C,聚合物树脂烧除 3、Glass melting &Ag sintering:400-600,玻璃开始融化,银颗粒开 始缩合及烧结 4、Glass-Si&Ag-Si reaction:600-800°C,熔融的玻璃和溶解的银开始 刻蚀掉淡化硅表层,并刻蚀掉极薄的硅表层。最后,银颗粒在硅表 层结晶析出
三、正银电流传导机构
机构一:由银颗粒和emitter的直接接触来传导 机构二:银颗粒和emitter之间由tunneling effect 来传导电流
a. Direct connection:银颗粒和emitter的直接 接触 b. Tunneling:若银颗粒和emitter间存有极薄 的glass film,则电流可藉由tunneling effect 来传导 c. Tunneling&hopping:若银颗粒和emitter间 存有较厚的glass film,则电流可藉由 tunneling和玻璃中金属析出物之间的hopping 来传导
1. 2.
3.
4.
5.
电极材料的选择 能与硅形成牢固的接触 这种接触应是欧姆接触,接触电阻小 有优良的导电性 纯度适当 化学稳定性好
银的特性 1. 熔点:961.78°C, 电阻率1.586X10^-8Ω·cm 1. 银的特征氧化数为+1,其活性比铜差, 常温下,甚至加热时也不与水和空气中 的氧作用。 2. 有很好的柔韧性和延展性,是导电性和 导热性最好的金属。
1. 1.
铝的导电性能良好,金属电阻小,而且铝的熔 点相对其他的合适金属来说熔点低,有利于烧 结。
5.
在烧结时p-type的铝掺杂渗入形成使原本掺杂 硼的p-type Si形成一层数微米厚的p+-type Si作 为背场,以降低背表面复合速度来提高电池的 开路电压Voc。
因为硅片吸收系数差,当厚度变薄时衬底对入 射光的吸收减少,此时背场的存在对可以抵达 硅片深度较深的长波长光吸收有帮助,所以短 路电流密度Jsc的影响就更明显。 p和p+的能阶差也可以提升Voc,p+可以形成低 电阻的欧姆接触所以填充因子FF也可改善。
背铝烧结过程
铝硅形成背面电极
Al与Si形成BSF(back surface field)(P+),具有较高的电位。 当跃迁电子遇到BSF时,会倾向往n区移动,进而提高电流。
铝背场作用
背铝作为背电场能够阻挡电子的移动,减了表 面的复合率,有利于载流子的吸收; 1. 减少光穿透硅片,增强对长波的吸收; 1. Al吸杂,形成重掺杂,提高少子寿命;
相关文档
最新文档