实验1 电源外特性及等效变换
电源的等效变换实验报告数据

电流电压转换电源实验电流源电压源等效变换第1部分:实验4电压源与电流源之间的等效变换实验4电压源与电流源及其等效转换(1),当负载变化时,电压源的输出电压保持不变。
(2)将理想电流源连接到负载后,当负载电阻改变时,电流源提供的电流将保持不变。
其电路图符号及其特性如图4.5-1所示。
某些电源的外部特性非常接近理想电源,例如电子技术中常用的晶体管电流源和电压源。
因为借助电子设备,晶体管电压源的串联等效内部电阻可以最小化,通常为10Ω以下。
因此,大约可以将其视为理想的电源。
就其外部特性而言,实际的电源可以被视为电压源和电流源。
(1)实际电压源由理想电压源es和电阻R0的串联组合表示。
与电导G0并联。
4.5-3盒子内的零件是实际电压源和实际电流源。
它们向相同的负载提供相同的电流I,电源的端电压U也相等。
这样,电压源和电流源是等效的,也就是说,电压源及其等效电流源具有相同的外部特性。
当负载电阻在一定范围内变化时,电压源和电流源之间的等效转换条件为= ES / R0 G0 = 1 / R0 ES =为/ G0 R0 = 1 / G0(请注意,负载两端的电压电流源不得超过额定值),电流基本不变,因此可以视为理想电流源。
连接到电流稳定源的输出端,串联连接直流电流表,并并联连接直流电压表,即,连接到图4.5-4中的实验用电(2)。
首先,设置可变电阻R = 0,调整直流电流源使其输出电流I = 50mA,此时测量电流源的端电压并将其记录在表4.5-1中。
(3)通过记录表4.5-1中的数据可以获得理想电流源的外部特性。
当外部负载电阻在一定范围内变化时,电源的输出电压基本不变,可以认为是理想的电压源。
(1)按照图4.5-5进行连接,将DC电压源的输出调整为12V,并将可变电阻器连接到电压源的输出端子。
(2)改变电阻值R,测量u,并在表4.5-2中逐个记录数据,以获得理想电压源的外部特性(1)。
在实验1)中,理想电流源的测量电流为= 50mA。
电压源与电流源的等效变换.

实验一 电压源与电流源的等效变换一、实验目的1. 掌握电源外特性的测试方法。
2. 验证电压源与电流源等效变换的条件。
二、原理说明1. 一个直流稳压电源在一定的电流范围内,具有很小的内阻。
故在实用中,常将它视为一个理想的电压源,即其输出电压不随负载电流而变。
其外特性曲线,即其伏安特性曲线U =f(I)是一条平行于I 轴的直线。
一个恒流源在实用中,在一定的电压范围内,可视为一个理想的电流源,即其输出电流不随负载两端的电压(亦即负载的电阻值)而变。
2. 一个实际的电压源(或电流源), 其端电压(或输出电流)不可能不随负载而变,因它具有一定的内阻值。
故在实验中,用一个小阻值的电阻(或大电阻)与稳压源(或恒流源)相串联(或并联)来摸拟一个实际的电压源(或电流源)。
3. 一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。
若视为电压源,则可用一个理想的电压源Us 与一个电阻Ro 相串联的组合来表示;若视为电流源,则可用一个理想电流源Is 与一电导g o 相并联的给合来表示。
如果有两个电源,他们能向同样大小的电阻供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。
一个电压源与一个电流源等效变换的条件为: 电压源变换为电流源:I s =U s /R o ,g o =1/R o 电流源变换为电压源:U s =I s R o ,R o = 1/ g o 如图1-1所示。
图 1-1LIs=U s /R 0g 0=1/R 0g 0=1/R 0Is U s R 0.=L1. 测定直流稳压电源(理想电压源)与实际电压源的外特性(1) 利用HE-11上的元件和屏上的电流插座,按图1-2接线。
Us 为+12V 直流稳压电源。
调节R 2,令其阻值由大至小变化,记录两表的读数。
图 1-2 图 1-3 (2) 按图1-3接线,虚线框可模拟为一个实际的电压源。
调节R 2,令其2. 测定电流源的外特性按图1-4接线,Is 为直流恒流源,调节其输出为10mA ,令R o 分别为1K Ω和∞(即接入和断开),调节电位器R L (从0至1K Ω),测出这两种情况下的电压表和电流表的读数。
电源等效变换_实验报告

1. 理解电源等效变换的基本原理和定义。
2. 掌握电压源与电流源之间的等效变换方法。
3. 通过实际操作,验证电源等效变换的正确性和实用性。
二、实验原理在电路分析中,电源的等效变换是指将电路中的电压源或电流源用一个等效的电源来代替,而不会改变电路的外部特性。
常见的电源等效变换包括:1. 电压源与内阻的等效电压源变换。
2. 电流源与内阻的等效电流源变换。
3. 电压源与电流源的等效变换。
根据基尔霍夫电压定律和基尔霍夫电流定律,可以推导出以下等效变换公式:1. 电压源与内阻的等效电压源变换:\( E = U + Ir \),其中 \( E \) 为等效电压源的电动势,\( U \) 为实际电压源的电压,\( I \) 为电路中的电流,\( r \) 为电压源的内阻。
2. 电流源与内阻的等效电流源变换:\( I = \frac{U}{R} \),其中 \( I \) 为等效电流源的电流,\( U \) 为电路中的电压,\( R \) 为电流源的内阻。
3. 电压源与电流源的等效变换:\( E = I \cdot r \),其中 \( E \) 为等效电压源的电动势,\( I \) 为等效电流源的电流,\( r \) 为等效内阻。
三、实验器材1. 直流稳压电源2. 电压表3. 电流表4. 电阻5. 连接线6. 电路实验板1. 将电路连接好,接通电源。
2. 测量电路中的电压和电流值。
3. 根据测得的值,计算电路的等效电压源或等效电流源。
4. 将实际电源替换为等效电源,重新测量电路中的电压和电流值。
5. 比较实际电源和等效电源的电压和电流值,验证等效变换的正确性。
五、实验数据及分析实验1:电压源与内阻的等效电压源变换1. 实际电压源:电动势 \( E = 10V \),内阻 \( r = 2\Omega \)。
2. 电路连接:将实际电压源与一个 \( 5\Omega \) 的电阻串联。
3. 测量数据:电压 \( U = 7.5V \),电流 \( I = 1.5A \)。
实验报告1

实验名称:电源的等效变换姓名:陈庚学号:1138360117同组人:郭盛、全卓越学号:1138360110 、1138360138专业、班级:土木工程1班评分:日期:2013. 5. 6 指导老师:一、实验目的1、掌握电源外特性的测试方法。
2、验证电压源与电流源等效变换的条件。
二、原理说明1.一个直流稳压电源在一定的电流范围内,具有很小的内阻。
故在实用中,常将它视为一个理想的电压源,即其输出电压不随负载电流而变。
其外特性曲线,即其伏安特性曲线U=f(I)是一条平行于I轴的直线。
一个实用中的恒流源在一定的电压范围内,可视为一个理想的电流源。
2.一个实际的电压源(或电流源),其端电压(或输出电流)不可能不随负载而变,因它具有一定的内阻值。
故在实验中,用一个小阻值的电阻(或电流源)。
3.一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。
若视为电压源,则可用一个理想的电压源Us与一个电阻Ro相串联的组合来表示;若视为电流源,则可用一个理想电流源Is与一电导go相并联的组合来表示。
如果这两种电源能向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。
一个电压源与一个电流源等效变换的条件为:Is=Us/Ro,go=1/Ro 或Us=IsRo,Ro=1/go。
如图3-1所示。
三、实验设备图3-1序号名称型号与规格数量备注1 可调直流稳压电源0~30V 1 DG042 可调直流恒流源0~500mA 1 DG043 直流数字电压表0~200V 1 D314 直流数字毫安表0~200mA 1 D315 万用表 1 自备6 电阻器120Ω,200Ω,510Ω,1KΩDG097 可调电阻箱0~99999.9Ω 1 DG098 实验线路DG05 1.测定直流稳压电源与实际电压源的外特性。
(1)按图1接线。
Us为+12V直流稳压电源(将Ro短接)。
调节R2,令其阻值由大至小变化,记录数据结果在表3-1。
电源的等效变换及理想电源外特性研究实验

1、实验电路 、
51Ω Ω
Ic
100Ω Ω 2.2KΩ Ω
+
2、先取RL= 0Ω,调节 W使IC=20mA,让后改变 L值填写下表 。 、先取 Ω 调节R ,让后改变200 300
二、测试实际电流源(并联电阻)的伏安特性 测试实际电流源(并联电阻)
1、实验电路 、 IL
51Ω Ω UL 100Ω Ω
Ic
2.2KΩ Ω
200Ω Ω
2、先取RL= 0Ω,调节 W使IC=20mA,让后改变 L值填写下表 。 、先取 Ω 调节R ,让后改变R
RL(Ω ) IL(mA) UL(V) 10 75 100 150 200 300
三、电源模型的等效变换
1、实验电路 、
IL UL 200Ω Ω +
2、上图左边是实验2的实际电流源模型,将电流源模型转换为右边的实际 、上图左边是实验 的实际电流源模型 的实际电流源模型, 电压源模型,测量负载两端的电压和电流,记录在下表并和实验2比较 比较。 电压源模型,测量负载两端的电压和电流,记录在下表并和实验 比较。
RL(Ω ) IL(mA) UL(V) 10 75 100 150 200 300
画出实验2和实验 的伏安特性曲线 画出实验 和实验3的伏安特性曲线 和实验 -
电路分析实验报告

电压源与电流源的等效变换一、实验目的1、 加深理解电压源、电流源的概念。
加深理解电压源、电流源的概念。
2、 掌握电源外特性的测试方法。
掌握电源外特性的测试方法。
二、原理及说明1、 电压源是有源元件,电压源是有源元件,可分为理想电压源与实际电压源。
可分为理想电压源与实际电压源。
可分为理想电压源与实际电压源。
理想电压源在一定的电流理想电压源在一定的电流范围内,具有很小的电阻,它的输出电压不因负载而改变。
而实际电压源的端电压随着电流变化而变化,压随着电流变化而变化,即它具有一定的内阻值。
即它具有一定的内阻值。
即它具有一定的内阻值。
理想电压源与实际电压源以及理想电压源与实际电压源以及它们的伏安特性如图4-1所示所示((参阅实验一内容参阅实验一内容))。
2、电流源也分为理想电流源和实际电流源。
理想电流源的电流是恒定的,理想电流源的电流是恒定的,不因外电路不同而改变。
不因外电路不同而改变。
不因外电路不同而改变。
实际电流源的电流与所联接实际电流源的电流与所联接的电路有关。
当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电流越大。
实际电流源可以用一个理想电流源和一个内阻R S 并联来表示。
图4-2为两种电流源的伏安特性。
流源的伏安特性。
3、电源的等效变换一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。
两者是等效的,其中I S =U S /R S 或或 U S =I S R S图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s 和R s 的电压源变换为一个参数为I s 和R S 的等效电流源。
同时可知理想电压源与理想电流源两者之间不存在等效变换的条件。
之间不存在等效变换的条件。
三、仪器设备电工实验装置电工实验装置 : DG011 DG011、、 DG053 DG053 、、 DY04 DY04 、、 DYO31四、实验内容1、理想电流源的伏安特性1)1) 按图4-4(a)4-4(a)接线,毫安表接线使用电流插孔,接线,毫安表接线使用电流插孔,接线,毫安表接线使用电流插孔,R R L 使用1K Ω电位器。
电源及电源等效变换法

IR1
a
a
a
R3
IU1 +_UR11URIS+_2
+ IS U
I R
+R1 _U1
_
I
I
IS
R I1
R1 IS
R
(a) b
(b) b
(c) b
解:(1)由电源的性质及电源的等效变换可得:
I1
U1 R1
10A10A II1IS1 02A6A
1
22
精选2021版课件
16
a
a
+R1
I
I
_U1
IS
R
I1
R1 IS
精选2021版课件
7
五、验证
1、将图(a)所示电压源,按等效变换法化为电流源
10V
+ 1Ω 9Ω
(a)图
解: ,
RS =RS = 1Ω 10A
IS =E/RS=10A
所以有(b)图所示电流源。
1Ω 9Ω (b)图
2、将(a)(b)图同接9 Ω负载,验证两电源是否等效
{ { (a)图中 UL=9V IL=1A
151电压源一理想电压源1电路模型2外特性iulrluleilie接上负载讨论恒压源use二实际电压源1电路模型ersrs是电源内阻e为电源电动势实际电压源用理想电压源e和内阻rs串联的电路模型
1.5 电源等效变换法
电源等效变换法是一种利用电压源与电流源的相互等效, 分析计算电路中某支路电流或电压的方法。
14
解: 2
2
4A
1A
4 I 1
2
+ 8V
- 1A
2
4 I 1
I
等效变换实验报告

一、实验目的1. 理解并掌握等效变换的基本概念和原理。
2. 通过实际操作,验证电压源与电流源等效变换的条件。
3. 学会使用实验仪器进行电源外特性的测试。
4. 增强对电路分析方法的理解和应用能力。
二、实验原理等效变换是指在电路分析中,将复杂的电路简化为等效的简单电路,使得简化后的电路与原电路在某些方面具有相同的电性能。
常见的等效变换包括电压源与内阻的等效电压源、电流源与内阻的等效电流源等。
电压源与电流源的等效变换条件如下:- 电压源(Us)与内阻(Rs)串联可以等效为一个电流源(Is)与内阻(Rs)并联。
- 电流源(Is)与内阻(Rs)并联可以等效为一个电压源(Us)与内阻(Rs)串联。
等效变换的公式为:- 对于电压源与内阻的等效变换:Is = Us / Rs- 对于电流源与内阻的等效变换:Us = Is Rs三、实验器材1. 直流稳压电源1台2. 直流恒流源1台3. 直流数字电压表1块4. 直流数字电流表1块5. 可调电阻箱1个6. 电阻器若干7. 电线若干四、实验步骤1. 按照实验电路图连接电路,将直流稳压电源或直流恒流源作为电源接入电路。
2. 使用电压表和电流表测量电路中各个元件的电压和电流值。
3. 根据测得的电压和电流值,计算电路的等效电压源或等效电流源。
4. 将计算得到的等效电压源或等效电流源接入电路,再次测量电路中各个元件的电压和电流值。
5. 比较两次测量结果,验证等效变换的正确性。
五、实验数据及结果分析1. 实验一:电压源与内阻的等效变换- 实验电路:将直流稳压电源接入电路,测量电路中各个元件的电压和电流值。
- 等效变换:根据测得的电压和电流值,计算等效电流源。
- 实验结果:将计算得到的等效电流源接入电路,测量电路中各个元件的电压和电流值,与原电路结果基本一致。
2. 实验二:电流源与内阻的等效变换- 实验电路:将直流恒流源接入电路,测量电路中各个元件的电压和电流值。
- 等效变换:根据测得的电压和电流值,计算等效电压源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 直流电路中的基本测量—电源外特性及等效变换一、实验目的
1.学习正确使用常用的直流电表及直流稳压电源。
2.学习测定电压源和电流源的外特性。
3.掌握电压源和电流源等效变换的条件和方法。
4.学习通过实验来实现有源二端线性网络的等效变换。
二、实验原理
1.直流电路中基本测量包括对直流电压、电流及电阻的测量。
直流电压和电流的测量,可用万用表的直流电压(DCV)及直流电流(DCmA)档;当要求较高的准确度时,应选用准确度等级为0.5~1.0级的磁电式直流电压表和直流电流表(本实验采用此类仪表)。
电阻的测量可用伏安法、电桥法,一般情况下,常
用万用表的电阻(Ω)档测量。
测量结果的准确度不仅与仪表的准确度等级有关,还与所选用的量程有关。
2.一个具有一定内阻的电源,可以用电压源模型来表示,也可以用电流源模型来表示。
直流稳压电源在额定电流的范围内,其输出电压不随负载电流改变,近似为恒定值,所以可视为一个恒压源(理想电压源)。
如果用一个模拟电源内阻的电阻与稳压电源串联,即构成一个具有内阻值的电压源。
构成恒流源(理想电流源)的电路有很多形式,本实验利用晶体管的恒流特性,构成一个近似于理想的电流源,其电路如图1.1(a)所示。
将此恒流电源
的(其电流
mA
15
I=
S)与电阻并联(即在图1 (a) 中将a、b两端接0R),便
构成了具有一定内阻0R的电流源,如图1.1(b)所示。
a
b
15+输出端
S
(a) (b )
图1..1 恒流源和电流源
(a) 恒流源 (b ) 电
流源
在保持外特性相同的条件下,电压源模型和电流源模型可以相互等效变换,
但恒压源和恒流源不能等效互换。
3.一个有源二端线性网络可用一个恒压源和内阻串联的电路模型来等效。
等效电压源的端电压等于此有源二端网络的开路电压o U ,内阻0R 等于此有源二端网络中,除去独立电源后在其端口处的等效电阻。
这就是戴维宁定理,这个等效电路称为戴维宁等效电路。
本实验用电压源、电流源和电阻元件组成有源二端线性网络,如图2中外点划线方框所示,用实验中测得的开路电压U 和短路电流SC I 可以计算有源二端网
络的等效内阻。
)
I U (R R SC 0
00=。
图中L R 由图.3中6321R ,R ,R ,R 组成。
图1.2 有源二端网络原理接线图
三.实验仪器和设备
直流稳压电源1台(双路0.5~15V,1A);直流毫安表1个(0~15~30mA 0.5级);直流电压表1个(0~15~30V,0.5级);万用表1个;实验底板(自制,含电流源)。
四.实验内容和步骤
实验底板布置图如图1.3所示。
图1..3实验底板布置图
1.测恒流源和电流源外特性
+ +负载电阻
),,321R R )
,,321R R R
(a )
(b )
图1..44恒流源及电流源特性的测试原理图
(a )测恒流源外特性 (b )测电流源外特性
S
U 负载电阻
)
,,(321R R R P
Q
图1..5电压源外特性的测试原理图
2.测电压源的外特性
3.通过实验实现有源二端线性网络的等效变换
(1)测量网络的开路电压0U ;短路电流SC I 。
(2)测定网络的外特性
(3)测定戴维宁等效电路的外特性 五.预习内容
1.计算图1.2电路中a 、P 两 端的开路电压和戴维宁等效内阻。
如何用实
验方法测出上述两参数?
2.根据实验内容1.3(4)的要求。
画出实验电路图。