函数图象的变换在分式函数中的应用
五个重要的初等函数的图像和性质

五个重要的初等函数的图像和性质:一、羊角线:y=|x-a|(1)图像性质:单调性,对称性,(2)应用:①方程|x-2|=2a-1有两个不等实根,求a 的取值范围;②|x-2|=(1/2)x+a 有两个不等实根,求a 的取值范围;③若y=|x-2a+1|是偶函数,求a 的取值范围;二、槽形线:y=|x-a|+|x-b|(1)图像:值域,单调性,对称性(2)应用:①方程|x-2|+|x-3|=2a-1有2个不等实根,求a 的取值范围;②|x-2|+|x-3|> 2a+1恒成立,求a 的取值范围;③若y=|x-2a|+|x-3a+1|是偶函数,求a 的值;④若|x-2|+|x-3|> 3,求a 的取值范围.三、Z 形线:y=|x-a|-|x-b|(1)图像:值域,单调性,对称性(2)应用:①方程|x-2|+|x-3|=2a-1仅有一个实根,求a 的取值范围;②若|x-2|-|x-3|> 2a+1恒成立,求a 的取值范围;③若y=|x-2a|-|x-3a+1|是奇函数,求a 的值;④若|x+2|-|x-3|> 3,求a 的取值范围.引申:无解问题,有解问题 四、最简分式函数:bc)ad 0,(c dcx b ax y ≠≠++= (1)图像:定义域、值域、单调性、对称性、对称中心原式化为:dcx c a d cx b d cx y c ad bc c ad ca ++=++-+=-)(,移项整理则有:)(c d cad bc c ad bc x d cx c a y --=+=---故有: ⅰ⎪⎪⎪⎩⎪⎪⎪⎨⎧≠⎪⎩⎪⎨⎧=-=-≠≠++=;)2(),,()1(),0(的一切实数值域为渐近线为双曲线中心为c a y c a y c d x c a c d bc ad c d cx b ax y ; ⅱ当02>-cad bc 即ad bc >时,函数由反比例函数将对称中心按向量),(c a c d -=ξ平移,再经过横向的伸缩变换(102<-<c ad bc 时横向伸长,21cad bc -<时横向缩短)而得; ⅲ当20cad bc -<即ad bc <时,函数由反比例函数将对称中心按向量),(c a c d -=ξ平移,然后做关于X 轴的对称变换,再经过横向的伸缩变换而得(1||02<-<c ad bc 时横向伸长,||12cad bc -<时横向缩短)而得。
2022-2023学年辽宁省大连市庄河市高级中学高一上学期12月月考数学试题(解析版)

2022-2023学年辽宁省大连市庄河市高级中学高一上学期12月月考数学试题一、单选题1.已知集合{14}P x x =∈<N ∣,集合{}260Q x x x =--∣,则P Q =( ) A .(1,3] B .{2,3} C .{1,2,3} D .(1,4]【答案】B【分析】首先解一元二次不等式求出集合Q ,再用列举法表示集合P ,最后根据交集的定义计算可得;【详解】解:由260x x --,即()()320x x -+,解得23x -≤≤,所以{}{}223|60|Q x x x x x =---≤=≤,又{}{14}2,3,4P x x =∈<=N ∣,所以2,3P Q,故选:B2.已知α为第三象限角,且5cos 13α=-,则tan α的值为( ) A .1213-B .125C .125-D .1213【答案】B【分析】由同角三角函数的平方关系可得sin α,再由同角三角函数的商数关系即可得解. 【详解】∵α为第三象限角,且5cos 13α=-,∴12sin 13α==-, 故12sin 1213tan 5cos 513ααα-===-. 故选:B. 3.“1x >”是“11x<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】首先解分式不等式,再根据充分条件、必要条件的定义判断即可.【详解】解:因为11x<,所以10x x -<,(1)0x x ∴-<,(1)0x x ∴->,0x ∴<或1x >,当1x >时,0x <或1x >一定成立,所以“1x >”是“11x<”的充分条件;当0x <或1x >时,1x >不一定成立,所以“1x >”是“11x<”的不必要条件. 所以“1x >”是“11x<”的充分不必要条件. 故选:A4.已知函数()y f x =对任意12,x x ∈R ,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,若()20.8a f =,()()0.82log 0.8,2b f c f ==,则,,a b c 之间的大小关系是( )A .b a c <<B .a b c <<C .b<c<aD .a c b <<【答案】A【分析】由题意可得()f x 是增函数,再根据20.82log 0.80.82<<,即可求出答案.【详解】由对任意12,x x ∈R ,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,可得()f x 是增函数, 再由20.820.8(0,1),log 0.80,21∈<>,所以20.82log 0.80.82<<,所以b a c <<. 故选:A.5.若{}210,,a a ∈,则a 的值为( )A .1-B .0C .1D .2【答案】A【解析】本题首先可根据{}210,,a a ∈得出1a =或21a =,然后对1a =、21a =进行分类讨论,即可得出结果.【详解】因为{}210,,a a ∈,所以1a =或21a =,若1a =,则21a a ,不满足元素的互异性,排除;若21a =,则1a =-或1(舍去),1a =-,此时集合为{}0,1,1-, 故选:A.【点睛】本题考查根据元素与集合的关系求参数,集合中的元素需要满足确定性、互异性以及无序性,考查计算能力,是简单题.6.已知函数()log 11a y x =-+(0a >且1a ≠)恒过定点()00,A x y ,且满足001mx ny +=,其中m ,n 是正实数,则21m n+的最小值( ) A .4 B.C .9D【答案】C【分析】由对数函数解析式易知(2,1)A ,则有21m n +=,应用基本不等式“1”的代换求目标式的最小值即可,注意等号成立条件.【详解】由log (1)1a y x =-+过定点(2,1), ∴21m n +=, ∴22(21(521)2)m n m n m n m n n m +=++=++59≥+=,当且仅当22m n n m =,即13m n ==时取等号. 故选:C .7.下列函数是其定义域上的奇函数且在定义域上是增函数的是( ) A .21xy x =+B .21x xy x +=+C .y x =D .1y x x=-【答案】C【分析】利用奇函数的定义判断,结合分式型函数、复合函数的单调性判断各函数是否符合要求即可.【详解】A :函数定义域为R ,且22()()1()1x xf x f x x x --==-=-+-+,故为奇函数,当0x >时1()1f x x x=+,而1y x x =+在(0,1)上递减,(1,)+∞上递增, 故()f x 在(0,1)上递增,(1,)+∞上递减,易知:定义域上不是增函数,不符合; B :函数定义域为{|1}x x ≠-,显然不关于原点对称,不为奇函数,不符合; C :函数定义域为R ,且()()f x x f x -=-=-,故为奇函数,函数单调递增,符合; D :函数定义域为{|0}x x ≠,且11()()()f x x x f x x x-=--=--=--,故为奇函数,函数分别在(,0)-∞、(0,)+∞上递增,整个定义域不递增,不符合.故选:C8.已知圆锥的表面积等于227cm π,其侧面展开图是一个半圆,则圆锥底面的半径为( ) A .1cm B .2cmC .3cmD .3c m 2【答案】C【分析】设圆锥的底面圆的半径为r ,母线长为l ,利用侧面展开图是一个半圆,求得l 与r 之间的关系,代入表面积公式即可得解.【详解】设圆锥的底面圆的半径为r ,母线长为l , 圆锥的侧面展开图是一个半圆,22l r l r ππ∴=⇒=, 圆锥的表面积为27π,22327r rl r ππππ∴+==, 3r ∴=, 故圆锥的底面半径为3cm , 故选:C.【点睛】关键点点睛:本题考查圆锥的表面积公式及圆锥的侧面展开图,解题的关键是利用侧面展开图时一个半圆,求得母线长与半径的关系,考查学生的计算能力,属于一般题.9.已知函数()10,0{?,0x x f x lgx x -≤=>,函数()()()()24g x f x f x m m R =-+∈,若函数()g x 有四个零点,则实数m 的取值范围是 A .[)lg5,4 B .[)34, C .[){}34lg5⋃, D .(],4-∞【答案】B【详解】画出函数()10,0,0x x f x lgx x -⎧≤=⎨>⎩的图象如图所示.设()t f x =,由()()()240g x f x f x m =-+=,得240t t m -+=,由题意得方程240t t m -+=在[1,)+∞上有两个不同的实数解,所以216401410m m ∆=->⎧⎨-⨯+≥⎩,解得34m ≤<.点睛:已知方程解的个数(或函数零点的个数)求参数的取值范围时,可通过分离参数的方法将问题转化为求函数的值域问题处理;也可构造两个函数,在同一坐标系内画出两个函数的图象,利用数形结合的方法进行求解.二、多选题10.下列各组函数中,两个函数是同一函数的有( )A .()f x =()g x =B .()f x x =与()g x =C .()xf x x =与()1,01,0x g x x >⎧=⎨-<⎩D .()21f x x x =-+与()21g t t t =-+【答案】BCD【分析】分别判断每组函数的定义域和对应关系是否一致即可.【详解】解:对于A 选项,函数()f x =(][),11,-∞-⋃+∞,()g x =定义域为[)1,+∞,故错误;对于B 选项,()f x x =与()g x =R ,且()g x x =,满足,故正确; 对于C 选项,函数()xf x x =与()1,01,0xg x x >⎧=⎨-<⎩的定义域均为{}0x x ≠,且()1,01,0x x f x x x >⎧==⎨-<⎩,满足,故正确;对于D 选项,()21f x x x =-+与()21g t t t =-+的定义域与对应关系均相同,故正确.故选:BCD11.已知函数)123f x =,则( )A .()17f =B .()225f x x x =+C .()f x 的最小值为258-D .()f x 的图象与x 轴只有1个交点 【答案】AD【分析】利用换元法求出()f x 的解析式,然后逐一判断即可.故()225f x x x =+,[)1,x ∞∈-+,()17f =,A 正确,B 错误.()2252525248f x x x x ⎛⎫=+=+- ⎪⎝⎭,所以()f x 在[)1,-+∞上单调递增,()()min 13f x f =-=-,()f x 的图象与x 轴只有1个交点,C 错误,D 正确.故选:AD12.已知函数1|ln(2),2()12,22x x x f x x -⎧-⎪=⎨+≤⎪⎩,下列说法正确的是( )A .函数()f x 的单调递增区间是[1,2][3,)+∞B .若函数()()g x f x m =-恰有三个零点,则实数m 的取值范围是35,22⎧⎫⎛⎫+∞⎨⎬ ⎪⎩⎭⎝⎭C .若函数()()g x f x m =-有四个零点123,,x x x ,4x ,则3355222212346,6x x x x e e e e --⎛⎤+++∈++++ ⎥⎝⎦D .若函数2()[()]2()g x f x af x =-有四个不同的零点,则实数a 的取值范围是35,44⎧⎫⎛⎫⋃+∞⎨⎬ ⎪⎩⎭⎝⎭【答案】BCD【分析】根据函数图象变换作出函数图象即可判断选项A ,数形结合将问题转化为()f x 的图象与直线y m =有三个交点即可判断选项B ,根据题意,作出图象,确定有四个交点时122x x +=,43122x x =+-,利用双勾函数性质求出34x x +的取值范围,即可求解选项C ,根据一元二次方程的根结合()f x 的图象,数形结合可判断选项D. 【详解】利用函数图象变换,作图如下:由图可知,函数()f x 的单调递增区间是[1,2],[3,)+∞,故A 错误; 函数()()g x f x m =-恰有三个零点,即()f x 的图象与直线y m =有三个交点,所以3m =或5m >,故B 正确;函数()()g x f x m =-有四个零点,则3522m <≤, 不妨设123x x x <<<4x , 令3|ln(2)|2x -=,解得32e 2x -=+或32e 2+, 令5|ln(2)|2x -=,解得52e 2x -=+或52e 2+, 所以由图可知, 53352222123401,12,e2e2,e 2e 2x x x x --≤<<≤+≤<++<≤+,则有12|1||1|112222x x --+=+,即1211112222x x -+-+=+, 所以1211x x -+=-,所以122x x +=,34|ln(2)||ln(2)|x x -=-,即34ln(2)ln(2)x x --=-, 则43122x x =+-,所以3433331122422x x x x x x +=++=-++--, 设532232e ,e t x --⎡⎫=-∈⎪⎢⎣⎭,则对钩函数1()4f t t t =++在5322e ,e --⎡⎫⎪⎢⎣⎭单调递减,所以555333222222max ()(e )e e4,()(e )e e4f t f f t f ----==++>=++,所以335522224()4,f e e t e e --⎛⎤++++ ⎝∈⎥⎦,即33552242234,4x e e x e e --⎥+⎛⎤+++∈+ ⎝⎦又因为122x x +=,所以3355222212346,6x x x x e e e e --⎛⎤+++∈++++ ⎥⎝⎦,故C 正确;令2[()]2()0f x af x -=,解得()0f x =或()2f x a =, 由()0f x =解得3x =,所以()2f x a =有三个不同的解,由B 选项分析过程可知322a =,或522a >,解得34a =,或54a >,所以实数a 的取值范围是35,44⎧⎫⎛⎫⋃+∞⎨⎬ ⎪⎩⎭⎝⎭,故D 正确;故选:BCD.有三个交点,选项C 中,根据()f x 的图象与直线y m =有四个交点,确定四个零点分布的位置,并根据解析式确定122x x +=和43122x x =+-,利用换元思想将34x x +变为单变量函数,利用双勾函数性质求范围,属于综合性较强的问题.三、填空题13.已知函数()()2f x g x =()()⋅f x g x __________.【答案】()()(()2,f x g x x x =∈-+∞【分析】相乘后得到新函数,定义域需要也需要求解.【详解】()()2f x gx x ⋅=10x x +>⎧⎪⎨⎪⎩,所以(()2,x ∈-+∞.【点睛】利用已有的函数求解新的函数解析式时,一定要注意函数的定义域,若定义域非实数集一定要记得将定义域写在末尾.14.已知函数2()x f x e ax =-,对任意12,(,0)x x ∈-∞且12x x ≠,都有()()()()21210x x f x f x --<,则实数a 的取值范围是_______. 【答案】(,]2e-∞【分析】确定函数为偶函数,再判断函数的单调性得到2xe a x≤在(0,)+∞上恒成立,令()x e g x x =,求导得到单调区间,计算最值得到答案.【详解】|()|2||2()()()x x f x e a x e ax f x --=--=-=,即()f x 为偶函数, 又对120,0x x <<且12x x ≠,都有2121()(()())0x x f x f x --<, 知()f x 在(,0)-∞上单调递减,故()f x 在(0,)+∞上单调递增, 则当0x >时,()20x f x e ax '=-≥,即2xe a x≤在(0,)+∞上恒成立, 令()x e g x x =,0x >,则2(1)()x e x g x x '-=,当1x >时,()0g x '>,()g x 单调递增,当01x <<时,()0g x '<,()g x 单调递减, ∴当1x =时,()g x 取得极小值也是最小值(1)1e g e ==, ∴2a e ≤,即2e a ≤.故答案为:(,]2e-∞.15.已知集合sin 2,,123A y y x x ππ⎧⎫⎛⎫==∈⎨⎬ ⎪⎝⎭⎩⎭,{}cos ,0B y y x x π==<<,则A B =_______.【答案】112⎛⎫⎪⎝⎭, 【分析】分别求两个集合,再求交集.【详解】,123x ππ⎛⎫∈ ⎪⎝⎭,22,63x ππ⎛⎫∈ ⎪⎝⎭,1sin 2,12y x ⎛⎤∴=∈ ⎥⎝⎦,()0,x π∈ ()cos 1,1y x ∴=∈-,所以1,12A ⎛⎤= ⎥⎝⎦,()1,1B =-,所以1,12A B ⎛⎫= ⎪⎝⎭.故答案为:1,12⎛⎫⎪⎝⎭16.函数()2()lg 2f x x x =+-定义域是___________.【答案】(1,]2π-【解析】利用余弦函数的性质、结合对数的定义进行求解即可.【详解】由题意可知:2cos 022()12220212x k x k k Z x x x x πππππ⎧≥-≤≤+∈⎧⎪⇒⇒-<≤⎨⎨+->⎩⎪-<<⎩. 故答案为:(1,]2π-四、解答题17.计算:(1)112416254-⎛⎫ ⎪⎝⎭;(2)3332log 2log32log 8-+;(3) (4)2345log 3log 4log 5log 2⨯⨯⨯. 【答案】(1)1;(2)0;(3)18;(4)1.【解析】利用指数与对数的运算性质以及换底公式即可求解. 【详解】(1)11224162522514-⎛⎫=+-= ⎪⎝⎭.(2)3333333342log 2log 32log 8log log 32log 8log 8log 10324⎛⎫-+=+=⨯== ⎪⎝⎭-.(3)111362233 1.512⨯⨯⨯⨯111136623233342⎛⎫=⨯⨯⨯⨯⨯ ⎪⎝⎭22318=⨯=.(4)234513141512log 3log 4log 5log 2112131415g g g g g g g g ⨯⨯⨯=⋅⋅⋅= 【点睛】本题考查了指数、对数的运算性质、换底公式,掌握运算性质是解题的关键,属于基础题. 18.画出下列函数在长度为一个周期的闭区间上的简图: (1)cos 2y x =+; (2)4sin y x =; (3)1cos32y x =;(4)π3sin 26y x ⎛⎫=- ⎪⎝⎭.【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析. 【分析】(1)根据五点法列表描点作图即可; (2)根据五点法列表描点作图即可; (3)根据五点法列表描点作图即可; (4)根据五点法列表描点作图即可; 【详解】解:(1)列表描点,并用光滑的曲线连接即可cos 2y x =+在[]0,2π上的图象,(2)列表 x2π π32π2πsin y x =0 10 1-0 4sin y x =4 04-描点,并用光滑的曲线连接即可得4sin y x =在[]0,2π上的图象,(3)列表3x2π π32π2πx6π3π 2π23π1cos32y x =1212-12描点,并用光滑的曲线连接即可得1cos32y x =在20,3π⎡⎤⎢⎥⎣⎦上的图象,(4)列表π26x -2π π32π2πx12π3π712π56π1312ππ3sin 26y x ⎛⎫=- ⎪⎝⎭ 033-描点,并用光滑的曲线连接即可得π3sin 26y x ⎛⎫=- ⎪⎝⎭在13,1212ππ⎡⎤⎢⎥⎣⎦上的图象,19.已知函数()243f x ax x =++.(1)若关于x 的不等式2430ax x ++>的解集为{}1x b x <<,求,a b 的值. (2)求关于x 的不等式()1f x ax >--的解集. 【答案】(1)7a =-;37b =-(2)答案见解析【分析】(1)由一元二次不等式解的特点可得1x =与x b =是方程2430ax x ++=的两根,由此可代入1x =求得7a =-,再将7a =-代入不等式求得37b =-;(2)由题意得()()410ax x ++>,对0a =,a<0,04a <<,4a =与4a >五种情况分类讨论即可得到结果.【详解】(1)因为2430ax x ++>的解集为{}1x b x <<, 所以1x =与x b =是方程2430ax x ++=的两根,且a<0, 将1x =代入2430ax x ++=,得430a ++=,则7a =-,所以不等式2430ax x ++>为27430x x -++>,转化为()()1730x x -+<, 所以原不等式解集为317xx ⎧⎫-<<⎨⎬⎩⎭∣,所以37b =-.(2)因为()243f x ax x =++,所以由()1f x ax >--得2431ax x ax ++>--,整理得()2440ax a x +++>,即()()410ax x ++>,当0a =时,不等式为440x +>,故不等式的解集为{}1x x >-; 当0a ≠时,令()()410ax x ++=,解得4x a=-或=1x -, 当a<0时,()4410a a a ----=>,即41a ->-,故不等式的解集为41x x a ⎧⎫-<<-⎨⎬⎩⎭∣; 当04a <<时,41a -<-,故不等式的解集为4x x a ⎧<-⎨⎩或}1x >-;当4a =时,41a-=-,不等式为()210x +>,故其解集为{}1x x ≠-; 当4a >时,41a->-,故不等式的解集为{1x x <-或4x a ⎫>-⎬⎭;综上:①当a<0时,原不等式解集为41xx a ⎧⎫-<<-⎨⎬⎩⎭∣; ②当0a =时,原不等式解集为{}1x x >-;③当04a <<时,原不等式解集为4x x a ⎧<-⎨⎩或}1x >-;④当4a =时,原不等式解集为{}1x x ≠-; ⑤当4a >时,原不等式解集为{1x x <-或4x a ⎫>-⎬⎭.20.在①()()()b a b a c b c +-=-;②4AB AC ⋅=;③2sin 22cos122A A π⎛⎫++= ⎪⎝⎭这三个条件中任选一个,补充在下面问题中,求ABC 的面积.问题:已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin C B =,2b =,_________?【答案】条件选择见解析,【分析】选①:结合正弦求出边c ,利用余弦定理求出角A ,结合三角形的面积公式即可求出结果; 选②:合正弦求出边c ,利用平面向量数量积的定义求出角A ,结合三角形的面积公式即可求出结果;选③:合正弦求出边c ,利用二倍角公式以及降幂公式得到关于角A 的方程,进而解方程求出角A ,结合三角形的面积公式即可求出结果;【详解】解:因为sin 2sin C B =,2b =,所以24c b ==, 选①:因为()()()b a b a c b c +-=-,所以222b c a bc +-=,所以2221cos 22b c a A bc +-==,又因为(0,)A π∈,所以3A π=,所以ABC 的面积11sin 2422S bc A ==⨯⨯=选②:若4AB AC ⋅=,故||||cos 4AB AC A ⋅⋅=, 则1cos 2A =,∵(0,)A π∈,故3A π=,所以ABC 的面积11sin 2422S bc A ==⨯⨯=选③:若2sin 22cos 122A A π⎛⎫++= ⎪⎝⎭,则cos2cos 0A A +=, 故22cos cos 10A A +-=,解得1cos 2A =(cos 1A =-舍去), ∵(0,)A π∈,故3A π=.所以ABC 的面积11sin 2422S bc A ==⨯⨯=21.若{},0,1A a =-,1,,1B c b b a ⎧⎫=+⎨⎬+⎩⎭,且A B =,()2f x ax bx c =++. (1)求()f x 解析式;(2)若[]1,2x ∈-时,求()f x 的值域;(3)若[]1,x m ∈时,()[]1,f x m ∈,求实数m 的值.【答案】(1)()222f x x x =-+;(2)[] 1,5;(3)2. 【分析】(1)由集合相等,可求得,,a b c ,从而求得函数解析式; (2)简单二次函数的值域求解,配方即可;(3)由对称轴知,二次函数在该区间上单调递增,则该二次函数过点()1,1和(),m m ,解方即可. 【详解】(1)由A B =,可得:1a =,1b a +=-,0b c +=,解得:1,2,2a b c ==-=,故:()222f x x x =-+.(2)()222f x x x =-+=()211x -+故:当1x =时,取得最小值1; 当1x =-时,取得最大值5.故该函数的值域为[]1,5.(3)由解析式可得,对称轴为:1x =, 故该二次函数在[]1,m 上单调递增,故: ()()11f f m m ⎧=⎪⎨=⎪⎩整理得21122m m m =⎧⎨-+=⎩ 解得1m =或2m =,又1m >, 故2m =.【点睛】本题考查集合的相等、二次函数的值域、二次函数的基本性质,属基础题.22.某工厂第一季度某产品月生产量分别为100件、120件、130件.为了估测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量y (单位:件)与月份x 的关系.模拟函数可以选用二次函数或函数x y ab c =+(其中a ,b ,c 为常数).已知4月份的产量为136件,问:用以上哪个函数作为模拟函数较好?为什么?【答案】135件比130件更接近于4月份的产量136件,选用指数型函数,()800.5140x g x =-⨯+作为模拟函数较好.【分析】利用待定系数法得到函数的表达式,即可作出判断.【详解】解:选二次函数作为模拟函数时,设2()(0)f x px qx r p =++≠,由已知1004212093130p q r p q r p q r ++=⎧⎪++=⎨⎪++=⎩,解得53570p q r =-⎧⎪=⎨⎪=⎩,故2()53570f x x x =-++,2(4)5435470130f =-⨯+⨯+=件;选指数型函数()(0)x g x ab c a =+≠作为模拟函数时,由已知23100120130ab c ab c ab c +=⎧⎪+=⎨⎪+=⎩,解得800.5140a b c =-⎧⎪=⎨⎪=⎩,故()800.5140x g x =-⨯+,4(4)800.5140135g =-⨯+=件,经比较可知,135件比130件更接近于4月份的产量136件,故选用指数型函数 ()800.5140x g x =-⨯+作为模拟函数较好.。
(完整版)高考函数知识点总结(全面)

高考函数总结一、函数的概念与表示 1、函数 (1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。
②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=f(x),其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。
B C ⊆(2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。
二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法(4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合。
求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。
3。
复合函数定义域:已知f (x )的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出。
三、函数的值域 1.函数的值域的定义在函数y=f (x )中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。
2.确定函数的值域的原则①当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定。
高中数学必修一函数性质详解及知识点总结及题型详解

经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。
一次分式函数

归纳: 图象向右平移1个单位; 图象向下平移2个单位,等等.
联系和反比例函数的关系
提出问题2:作函数 的图象,并归纳一次型分式函数 图象与函数函数 的图象的关系是什么?
一次分式型函数 ( ),本质上是一个反比例函数.两者的图象,一般只相差一个平移.作函数 的图象可用“二线一点”法. 和 是双曲线的两条渐近线,点 是图象的中心对称点.
学生:反函数法、单调性法、分离系数法等求解,
一题多解
例4已知函数 ,其中 。
(1)当函数 的图象关于点P(-1,3)成中心对称时,求a的值及不等式 的解集;
(2)若函数 在(-1,+ )上单调递减,求a的取值范围.
通过例题体会综合考查一次分式函数图象和性质的应用
7、教学评价设计:一次分式函数问题在高考试题中频繁出现,尤其是在近几年,各地实行自主命题后,高考试题更是百花齐放,一次分式函数试题的出现频率就更高。但不管怎样,只要我们抓住了其性质,一次分式函数问题就可迎刃而解。这样的补充课是及时有用的。
激发学习兴趣,形成积极主动的学习方式;突出数学的人文价值,提高数学文化品味;注重构建学生共同的知识基础;让学生成为课堂学习的主体,教师成为课堂上的主持人,把思考,讨论,研究的时间还给学生,让教师成为独具慧眼的发现者,善于发现学生的长处,成为学生的热情观众,精彩时报以掌声,给予充分的肯定,失误时,评论切磋,提出中肯的意见。
对于一次型分式函数 图像作法有几步?
(1)先确定x与y的取值范围: , ,即找到双曲线的渐近线 , ;
(2)再取与一个坐标轴的交点确定图象在“一、三象限”还是在“二、四象限”;
(3)根据双曲线的大致形状画出函数的图象
归纳总结
例3.(考查一次分函数的定义域和值域)求函数y= 的值域.
高一数学函数题型及解题技巧总结

高一数学函数题型及解题技巧总结一、基本概念函数是数学中非常重要的概念,它描述了输入和输出之间的关系。
在高中数学课程中,函数是一个重要的内容,学生需要掌握函数的基本概念以及相关的解题技巧。
1.1函数的定义函数是一种特殊的关系,它将一个或多个输入值映射到一个输出值。
数学上通常用f(x)表示函数,其中x是自变量,f(x)是因变量。
函数可以用一个公式、一个图象、一个表格或者一段描述来表示。
1.2函数的分类函数可以根据其性质进行分类,常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
每种函数都有其特定的表达式和性质。
1.3函数的性质函数有很多性质,例如定义域、值域、奇偶性、单调性、周期性等。
学生需要了解这些性质,以便在解题中灵活运用。
二、题型及解题技巧在高一数学中,关于函数的题型多种多样,接下来我们将针对常见的函数题型及解题技巧进行总结。
2.1函数的图象和性质这种题型要求学生根据函数的表达式画出函数的图象,并分析其性质。
解题时,学生需要掌握函数的图象特征,如开口方向、交点、极值点等,可以通过计算一阶导数和二阶导数来判断函数的单调性和凹凸性。
2.2函数的定义域和值域在这类题型中,学生需要根据函数的表达式确定其定义域和值域。
解题时,可以通过分析函数的分式和根式部分来确定函数的定义域和值域,需要注意的是,对于分式函数,分母不能为0。
2.3函数的性质和变化这类题型要求学生根据函数的表达式和图象,分析其性质和变化规律。
解题时,学生可以通过变换函数的参数来研究函数的性质和图象的变化。
2.4函数的应用函数在实际问题中有着广泛的应用,如匀速运动、生长模型、利润最大化等。
在解决这类问题时,学生需要将实际问题转化为数学模型,并根据函数的性质来解决问题。
2.5函数的求值与方程这类题型包括函数值的计算和方程的解法。
解题时,学生需要根据函数的表达式和条件,求出函数的值或解出方程。
在解决方程时,可以通过化简、配方、倒代入等方法来得到解。
高一数学必修一知识点总结

高一数学必修一知识点总结高一数学必修一知识点总结高一数学必修一的学习,需要大家对知识点进行总结,这样大家最大效率地提高自己的学习成绩,今天公文小编收集整理了高一数学必修一知识点总结,欢迎阅读!高一数学必修一知识点总结篇1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。
函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。
所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。
选择题、填空题和解答题都有,并且题目难度较大。
在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。
多考查函数的单调性、最值和图象等。
误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
高一数学必修一知识点总结篇2一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性,(2)元素的互异性,(3)元素的无序性,3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图象的变换在分式函数中的应用
在函数的学习过程中,我们经常会遇到形如(00)cx d
y a ad bc ax b
+=
≠-≠+,的函数,下面我们从函数图象变换的角度出发,研究这类函数的性质:
对cx d y ax b +=+分离常数,可得2bc ad bc
d cx d c c a a y b ax b a ax b a x a
--
+==+=++++,由于2ad bc a -是常数,所以我们可以把函数cx d y ax b +=+的图象看做由反比例函数2ad bc
a y x
-=的图象经过
横、纵坐标的平移变换得到。
由于图象的平移变换不改变图象的形状,所以函数cx d
y ax b
+=
+的图象与反比例函数2ad bc
a y x
-=的图象一样,也是双曲线,只不过双曲线的对称中心由原来反比例函数的坐标原点平移到了(b c
a a
-,),渐近线方程由原来的x 轴、y 轴变成了现在
的b x a =-与c
y a
=。
我们知道,反比例函数的单调性由反比例系数的正负决定,由于图象的平移变换不改变
函数的单调性,只改变函数的单调区间,又因为2
0a >,反比例系数
2
ad bc
a
-的正负完全由ad bc -的正负决定,所以当(1)0ad bc ->时,函数cx d y ax b +=
+在(,b
a
-∞-)上为减函数,(,b a -+∞)上为减函数;(2)0ad bc -<时,函数cx d y ax b +=+在(,b
a -∞-)上为
增函数,(,b
a
-+∞)上为增函数。
由图象我们还可以看出,函数cx d y ax b +=+的定义域为()()b b
a a
-∞--+∞,,,值域为
()()c c a a
-∞+∞,,。
综上我们可以得出,形如(0,0)cx d
y a ad bc ax b
+=≠-≠+的函数:
1.图象为双曲线:(1)双曲线的对称中心为(,b c a a -);(2)渐近线方程为b x a
c y a ⎧=-⎪⎪⎨⎪=⎪⎩
2.定义域与值域:定义域为()()b
b a a -∞--+∞,
,,值域为()()c c a a
-∞+∞,,。
3.单调性:(1)0ad bc ->时,在(,b a -∞-)上为减函数,(,b a
-+∞)上为减函数; (2)0ad bc -<时,在(,b a -∞-)上为增函数,(,b
a
-+∞)上为增函数
例1.函数x
x
x f -+=43)(的值域为__________。
解析:由上面性质直接得出,函数值域为(1)(1)-∞--+∞,,。
例2.函数2()21
x
f x x -=
-的单调区间为__________ 解析:由于22(1)(1)30⋅--⋅-=>,所以函数()f x 在1()2
-∞,上减,1()2
+∞,上减。
例3.函数2
5
---=
a x x y 在),1(+∞-上单调递增,则a 的取值范围是__________
解析:由上面性质可知,函数如果递增,1(5)(2)10a ⋅----⋅<,所以3a <,而且函数是在(2)a -∞+,上增,(2)a ++∞,上增,所以21a +≤-,3a ≤-,综上,a 的取值范围为(3]-∞-,。
例4.函数1
2+-=
x x
y 的图像关于__________对称 解析:由上面性质直接得出,函数图象关于点(11)--,对称。