小学_六年级_数学奥数_分数运算_练习题_带答案

合集下载

六年级分数除法应用题奥数题

六年级分数除法应用题奥数题

六年级分数除法应用题奥数题一、分数除法应用题奥数题20题及解析。

1. 甲数的(2)/(3)等于乙数的(4)/(5),甲数是乙数的几分之几?乙数是甲数的几分之几?- 解析:设甲数为a,乙数为b。

根据题意可得(2)/(3)a=(4)/(5)b,则a=(4)/(5)b÷(2)/(3)=(4)/(5)b×(3)/(2)=(6)/(5)b,所以甲数是乙数的(6)/(5)。

b =(2)/(3)a÷(4)/(5)=(2)/(3)a×(5)/(4)=(5)/(6)a,所以乙数是甲数的(5)/(6)。

2. 一个数的(3)/(4)是18,这个数的(5)/(6)是多少?- 解析:首先求这个数,已知一个数的(3)/(4)是18,那么这个数是18÷(3)/(4)=18×(4)/(3)=24。

这个数的(5)/(6)就是24×(5)/(6)=20。

3. 有一堆煤,第一天运走了全部的(1)/(4),第二天运走了剩下的(3)/(5),这时还剩下12吨。

这堆煤共有多少吨?- 解析:设这堆煤共有x吨。

第一天运走(1)/(4)x吨,剩下x-(1)/(4)x=(3)/(4)x 吨。

第二天运走(3)/(5)×(3)/(4)x=(9)/(20)x吨。

可列方程x-(1)/(4)x-(9)/(20)x = 12,即(20x-5x - 9x)/(20)=12,(6x)/(20)=12,x = 40吨。

4. 修一条路,甲队单独修12天完成,乙队每天修150米。

两队合修,完工时甲、乙两队工作量的比是2:1。

这条路有多长?- 解析:因为完工时甲、乙两队工作量的比是2:1,所以甲、乙两队的工作效率比也是2:1。

甲队单独修12天完成,甲队的工作效率是(1)/(12),那么乙队的工作效率是(1)/(12)÷2=(1)/(24)。

乙队每天修150米,所以这条路的长度为150÷(1)/(24)=3600米。

小学奥数6-2-1 分数应用题(一).专项练习及答案解析

小学奥数6-2-1 分数应用题(一).专项练习及答案解析

1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

小学奥数:分数四则混合运算综合.专项练习及答案解析

小学奥数:分数四则混合运算综合.专项练习及答案解析

分数是小学阶段的关键知识点,在小学的学习有分水岭一样的阶段性标志,许多难题也是从分数的学习开始遇到的。

分数基本运算的常考题型有(1)分数的四则混合运算 (2)分数与小数混合运算,分化小与小化分的选择 (3)复杂分数的化简 (4) 繁分数的计算分数与小数混合运算的技巧 在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。

技巧1:一般情况下,在加、减法中,分数化成小数比较方便。

技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。

此时要将包括循环小数在内的所有小数都化为分数。

技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。

技巧4:在运算中,使用假分数还是带分数,需视情况而定。

技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。

分数混合运算 【例 1】 0.3÷0.8+0.2= 。

(结果写成分数形式)【考点】分数混合运算 【难度】1星 【题型】计算【关键词】希望杯,五年级,一试【解析】 310×54+15=38+15=2340。

【答案】2340【例 2】 计算:34567455667788945678⨯+⨯+⨯+⨯+⨯ 【考点】分数混合运算 【难度】2星 【题型】计算知识点拨教学目标例题精讲分数的四则混合运算综合【解析】原式34567 4(5)5(6)6(7)7(8)8(9) 45678 =⨯++⨯++⨯++⨯++⨯+ 453564675786897=⨯++⨯++⨯++⨯++⨯+245=【答案】245【例 3】412114 23167137713⨯+⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【解析】原式4124412347137713=⨯+⨯+⨯412123471313⎛⎫=⨯++⎪⎝⎭=16【答案】16【例 4】计算1488674 3914848149149149⨯+⨯+【考点】分数混合运算【难度】1星【题型】计算【解析】398624398624 148148148148()148 149149149149149149⨯+⨯+=⨯++=【答案】148【巩固】计算:1371 1391371138138⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【关键词】小数报,初赛【解析】原式1371 (1381)137(1)138138 =+⨯+⨯+137137 137137138138=+++113722(1)138=⨯+⨯-12762138=-⨯6827569=【答案】68 27569【例 5】253749517191334455÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【关键词】清华附中【解析】观察发现如果将2513分成50与213的和,那么50是除数53的分子的整数倍,213则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆.原式253749 501701901334455⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭579501701901345=÷++÷++÷+3040503=+++123=【答案】123【巩固】131415314151223344÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【解析】观察发现如果将1312分成30与112的和,那么30是除数32的分子的整数倍,112则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆.原式131415 301401501223344⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭345301401501234=÷++÷++÷+2030403=+++93=【答案】93【巩固】173829728191335577÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【解析】原式173829 702801901335577⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭789701801901357=÷++÷++÷+3050703=+++153=【答案】153【巩固】计算:1130.42(4.3 1.8)26524⎡⎤⨯÷⨯-⨯=⎢⎥⎣⎦。

六年级分数运算专项训练(含答案)

六年级分数运算专项训练(含答案)

六年级分数运算专项训练(含答案)一、加法运算1. 将下列分数相加,并化简结果:- $$\frac{3}{4} + \frac{2}{8}$$答案:$$\frac{3}{4} + \frac{2}{8} = \frac{6}{8} + \frac{2}{8} = \frac{8}{8} = 1$$2. 计算下列分数的和,并找出错误的答案:- $$\frac{5}{9} + \frac{1}{3}$$- $$\frac{2}{7} + \frac{3}{7}$$- $$\frac{1}{6} + \frac{2}{3}$$答案:- $$\frac{5}{9} + \frac{1}{3} = \frac{5}{9} + \frac{3}{9} =\frac{8}{9}$$- $$\frac{2}{7} + \frac{3}{7} = \frac{5}{7}$$- $$\frac{1}{6} + \frac{2}{3} = \frac{1}{6} + \frac{4}{6} =\frac{5}{6}$$二、减法运算1. 将下列分数相减,并化简结果:- $$\frac{7}{10} - \frac{3}{5}$$答案:$$\frac{7}{10} - \frac{3}{5} = \frac{7}{10} - \frac{6}{10} = \frac{1}{10}$$2. 计算下列分数的差,并找出错误的答案:- $$\frac{4}{6} - \frac{2}{3}$$- $$\frac{5}{8} - \frac{1}{4}$$- $$\frac{3}{5} - \frac{2}{7}$$答案:- $$\frac{4}{6} - \frac{2}{3} = \frac{4}{6} - \frac{4}{6} = 0$$- $$\frac{5}{8} - \frac{1}{4} = \frac{5}{8} - \frac{2}{8} =\frac{3}{8}$$- $$\frac{3}{5} - \frac{2}{7} = \frac{21}{35} - \frac{10}{35} = \frac{11}{35}$$三、乘法运算1. 计算下列分数的乘积,并化简结果:- $$\frac{2}{3} \times \frac{4}{5}$$答案:$$\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3\times 5} = \frac{8}{15}$$2. 计算下列分数的乘积,并找出错误的答案:- $$\frac{3}{4} \times \frac{2}{5}$$- $$\frac{5}{6} \times \frac{1}{2}$$- $$\frac{2}{7} \times \frac{3}{8}$$答案:- $$\frac{3}{4} \times \frac{2}{5} = \frac{3 \times 2}{4 \times 5} = \frac{6}{20} = \frac{3}{10}$$- $$\frac{5}{6} \times \frac{1}{2} = \frac{5}{12}$$- $$\frac{2}{7} \times \frac{3}{8} = \frac{6}{56} =\frac{3}{28}$$四、除法运算1. 计算下列分数的商,并化简结果:- $$\frac{5}{6} \div \frac{4}{7}$$答案:$$\frac{5}{6} \div \frac{4}{7} = \frac{5}{6} \times\frac{7}{4} = \frac{5 \times 7}{6 \times 4} = \frac{35}{24}$$2. 计算下列分数的商,并找出错误的答案:- $$\frac{3}{4} \div \frac{2}{5}$$- $$\frac{2}{3} \div \frac{1}{6}$$- $$\frac{4}{5} \div \frac{3}{8}$$答案:- $$\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \times \frac{5}{2} = \frac{3 \times 5}{4 \times 2} = \frac{15}{8}$$- $$\frac{2}{3} \div \frac{1}{6} = \frac{2}{3} \times \frac{6}{1} = \frac{2 \times 6}{3 \times 1} = 4$$- $$\frac{4}{5} \div \frac{3}{8} = \frac{4}{5} \times \frac{8}{3} = \frac{4 \times 8}{5 \times 3} = \frac{32}{15}$$以上是六年级分数运算专项训练题目和答案。

六年级数学分数奥数题附答案

六年级数学分数奥数题附答案

分数乘除应用题奥数1.把甲乙丙三根木棒插入水池中;三根木棒的长度和为360厘米;甲有3/4在水外;乙有4/7在水外;丙有2/5在水外..水有多深2.小刚有若干本书;小华借走一半加一本;剩下的书小明借走一半加两本;再剩下的书小峰借走一半加三本;最后小刚还剩下两本书;那么小刚原有还剩下两本书;那么小刚原有多少本书3.甲数比乙数多1/3;乙数比甲数少几分之几4.有梨和苹果若干个;梨的个数是全体的5/3少17个;苹果的个数是全体的7/4少31个;那么梨和苹果的个数共多少5.有一个分数;它的分母比分子多4;如果把分子、分母都加上9;得到的分数约分后是9分之7;这个分数是多少6.把一根绳分别折成5股和6股;5股比6股长20厘米;这根绳子长多少米7.小萍今年的年龄是妈妈的1/3;两年前母女的年龄相差24岁..四年后小萍的年龄是多少岁8.有一篮苹果;甲取一半少一个;乙取余下的一半多一个;丙又取余下的一半;结果还剩下一个..如果每个苹果值1元9角8分;那么这篮苹果共值多少元12.把100个人分成四队;一队人数是二队人数的4/3倍;一队人数是三队人数的5/4倍;那么四队有多少人13.足球赛门票15元一张;降价后观众增加了一半;收入增加了五分之一;每张门票降价多少元14.甲、乙、丙三人共同加工一批零件..甲比乙多加工零件20个;丙加工的零件是乙加工零件的4/5;甲加工的零件是乙丙两人加工零件总数的5/6.甲、乙、丙各加工零件多少个18.某校六年级共有152人;选出男生的1/11和5名女生去参加科技小组;则剩下的男女生人数刚好相等;六年级男女生各有多少人19.林林倒满一杯纯牛奶;第一次喝了1/3;然后加入豆浆;将杯子斟满并搅拌均匀;第二次;林林又喝了1/3;继续用豆浆将杯子斟满并搅拌均匀;重复上述过程;那么第四次后;林林共喝了一杯纯牛奶总量的多少用分数表示20.有一根1米长的木条;第一次去掉它的1/5;第二次去掉余下木条的1/6;第三次又去掉第二次余下木条的1/7;这样一直下去;最后一次去掉上次余下木条的1/10..问:这根木条最后还剩下多长21.某小学一至六年级共有780人..在参加数学兴趣学习的学生中;恰有17分之8是六年级的学生;有23分之9是五年级的学生;那么;该校没有参加数学兴趣小组的学生有几人22.用甲、乙两种糖配成什锦糖;如果用3份甲种糖和2份乙种糖配成的1千克什锦糖;比用2份和3份乙种糖配成的1千克什锦糖贵1.32元;那么1千克甲种糖比1千克乙种糖贵多少元呢23.今有苹果95个;分给甲、乙两班同学吃..甲班分到的苹果有2/9是坏的;其他是好的;乙班分到的苹果有3/16是坏的;其他是好的..甲、乙两班分到的好苹果共有多少个24.一满杯水溶入10克糖;搅匀后喝去3分之2;添入6克糖;加满水;又搅匀;再喝去3分之2;添入6克糖;加满水;搅匀后;喝去3分之2;喝去之后杯里还剩下多少糖25.一份材料;甲单独打完要3小时;以单独打完要5小时;甲乙两人合作打完要多少小时26.打扫多功能教师;甲组同学1/3小时可以打扫完;乙组同学1/4小时可以打扫完;如果甲、乙合做;多少小时能打扫完整个教室27.一项工程;甲队单独做需要18天;乙独做15天完成;现决定由甲、乙二人共同完成;但中途甲有事请假四天;那么完成任务时甲实际做了多少天答案:1. 设水深xcm;则甲长4x;乙长7x/3;丙长5x/34x+7x/3+5x/3=360 x=45 水有45cm深2. 考点:逆推问题.分析:本题需要从问题出发;一步步向前推;小刚剩的2本书加上3本就是小明借走后的一半;那么就可以求出小明借走后的数量;同理可以求出小华借走后的数量;进而可求小明原有的数量.解答:解:小峰未借前有书:2+3÷1-1/2 =10本;小明未借之前有: 10+2÷1-1/2 =24本;小刚原有书: 24+1÷1-1/2 =50本.答:小明原有书50本.故答案为:50.3. 乙数是单位“1”;甲数是:1+1/3=4/3 乙数比甲数少: 1/3÷4/3=1/44. 解:设总数有35X个那么梨有35X3/5-17=21X-17个苹果有35X4/7-31=20X-31个20X-31+21X-17=35X 41X-48=35X 6X=48 X=8所以梨有21×6-17=109个苹果有20×6-31=89个5. 设分子为X;分母为X+4;则;X+9/X+13=7/9;解之;得X=5答:该分子为5/96. 这根绳子长20÷1/5-1/6=600cm7. 解:设小萍今年X岁;则妈妈今年3X岁3X-2=X-2+24 3X=X+24 2X=24 X=12最终答案:12+4=16岁8. 丙又取其余的一半;结果还剩一个;说明丙取前是1+1=2个乙取余下的一半多一个;则乙取前是2+12=6个甲取其中的一半少一个;则甲取前时6-12 = 10个因此;原来有10个下面是解题过程:设这袋苹果原来X个;则甲取走苹果的个数为X/2-1乙取走苹果的个数为X-X/2+1/2+1丙取走苹果的个数也是剩余的个数为:总数-甲取走-乙取走;即X-X/2+1-X-X/2+1/2-1/2=1 解方程得X=1012.设第一队为1;第二队为3/4;第三队为4/5;则三队和为1+3/4+4/5=51/20;可知;第一队人数应为20的倍数..第一队为20时;20+15+16+49=100;第一队为40时;40+30+32>100 舍去..所以;20+15+16+49=100为唯一解;即:第四队有49人..ps:也可将第一队设为k人;三队之和=51k / 20 ;显见;k应为20的倍数..只有k=20时有解.. 13.观众增加一倍;即原来只有一个人来看;现在是两个人来看.. 收入增加1/5;即现在两个人的总票价比原来一个人时单人票价多1/5;为151+1/5=18元平均每人18/2=9元比原来降低了15-9=6元降低了6/15=40%答:解:15-15×1+1 /5 ÷1+1 /2=15-15×6 /5 ÷3 /2=15-15×6/ 5 ×2 /3=15-15×4/ 5=15-12=3元答:一张门票降价是3元.故填:3.点评:此题关键是找准单位“1”;找准单位“1”对应的量;求单位“1”;用除法;告诉单位“1”;求单位“1”的几分之几;用乘法.降价前假设有10名观众;收入为L=15×10=150元现在有15人;降x元;15-x×15=150×1+1/5225-15x=18015x=45x=3;降价3元..14.设:甲加工x个;乙加工x-20;丙加工4/5x-205/6x-20+4/5x-20=x x=60乙加工=60-20=40丙加工=40×4/5=3218.男生有x人;女生有152-x10/11x=152-x-5 x=77男生77人;女生75人19.第一次1/3搅匀之后又是1/3;那么这次是2/31/3=2/9;剩下1-1/3-2/9=4/9再均匀之后1/3;那么这次是4/91/3=4/24;剩下4/9-4/27=8/27再均匀之后1/3;那么这次是8/271/3=8/81;剩下8/27-8/81=16/81那么一共喝了1-16/81=65/8120.11-1/51-1/61-1/7……1-1/100=4/55/66/7……99/100=4/100=1/2521.因为人数必须是整数;17和23的最小公倍数是391;所以参加兴趣小组的人数是391人没参加兴趣小组的人数=780-391=389人22.此题可以用赋值法第一次用3千克甲和2千克乙配成的什锦糖5千克第二次用2千克甲和3千克乙配成的什锦糖5千克则第一次比第二次总共贵1.32×5=6.6元第一次减去第二次;就是1kg甲种糖比1kg乙种糖贵的钱数即1kg甲种糖比1kg乙种糖贵1.32×5=6.6元23.根据“甲班分到的苹果有2/9是坏的”可以推测甲班分到苹果的个数是9的倍数;同理可推测乙班分到苹果的个数是16的倍数..设甲班分到9a个;乙班分到16b个;则;当a、b都是整数时;a=7;b=2即甲班分到9×7=63个;乙班分到16×2=32个.甲好苹果的个数:63×7/9=49个乙有好苹果的个数:32×13/16=26个甲、乙两班分到的好苹果共有:49+26=75个24.第一次喝去2/3;剩10×1-2/3=10/3克糖..再加6克糖得28/3克糖..加满水再喝去2/3;剩28/3×1-2/3=28/9克糖..再加6克糖得82/9克糖..加满水再喝去2/3;最后剩82/9×1-2/3=82/27克糖..25.甲每小时打1/3篇 1÷3=1/3乙每小时打1/5篇 1÷5=1/5一起打 1÷1/3+1/5=1÷8/15=15/8=1 7/8 小时26.设打扫多功能教室工作总量为X甲的速度为3X;乙的速度为4X共同打扫只需:X/3X+4X=1/7小时27.甲请假四天所以就相当于乙做4天;然后合作甲1天作1/18;乙是1/15;以乙4天作4/15;有1-4/15=11/15合作一天完成1/18+1/15=11/90;以甲做了11/15÷11/90=6天。

小学六年级分数混合运算练习题及其答案

小学六年级分数混合运算练习题及其答案

小学六年级分数混合运算练习题及其答案一、练习题1.(2/3) - (1/4) = _______2.(5/6) + (1/2) - (3/4) = _______3. 1 - (2/5) + (1/3) = _______4.(4/7) × (3/2) = _______5.(5/8) ÷ (5/12) = _______6.(1/2) + (2/3) × (3/4) = _______7.(3/4) - (1/2) ÷ (2/3) = _______8. 1 - (3/5) ÷ (2/5) = _______9.(2/3) + (1/4) - (1/6) = _______10.(7/8) × (4/9) ÷ (2/3) = _______答案及解析1.答案:(2/3) - (1/4) = (8/12) - (3/12) = (5/12)解析:将分数转换为具有相同分母的形式,然后进行减法运算。

2.答案:(5/6) + (1/2) - (3/4) = (10/12) + (6/12) - (9/12) = (16/12) - (9/12) =(7/12)解析:将分数转换为具有相同分母的形式,然后进行加减运算。

3.答案:1 - (2/5) + (1/3) = (15/15) - (6/15) + (5/15) = (14/15)解析:将1转换为分数形式,然后进行加减运算。

4.答案:(4/7) × (3/2) = (12/14) = (6/7)解析:将分数相乘,然后简化结果。

5.答案:(5/8) ÷ (5/12) = (5/8) × (12/5) = (15/20) = (3/4)解析:将除法转换为乘法运算,然后进行计算。

6.答案:(1/2) + (2/3) × (3/4) = (1/2) + (1/2) = 1解析:先进行乘法运算,再进行加法运算。

小学奥数--分数裂项-精选练习例题-含答案解析(附知识点拨及考点)

小学奥数--分数裂项-精选练习例题-含答案解析(附知识点拨及考点)

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

,本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- 、(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

$知识点拨教学目标分数裂项计算二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

小学六年级奥数练习题3套(附解答)

小学六年级奥数练习题3套(附解答)

小学六年级奥数练习题3套(附解答)姓名:分数:班级:卷一【一】每题10分1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?解:速度和=(40-4)/4=9千米/小时那么还需要4/9小时相遇5、甲、乙两车分别从ab两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?解:甲车到达终点时,乙车距离终点40×1=40千米甲车比乙车多行40千米那么甲车到达终点用的时间=40/(50-40)=4小时两地距离=40×5=200千米6、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲7、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时8、甲每小时行驶9千米,乙每小时行驶7千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级分数运算
1.凑整法
与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数……从而使运算得到简化.
例+++×-.
解:原式=+++×-1 (314623134813)(2)[(314134)(623813)](2)
720
7
20
=+×-
=×-×=-=.(515)(2)20220407337
207
20
例×+÷+×.
解:原式=×+×+÷÷+××=++++=.
2 41525324
7
40.2512442525324+4
40.2543110058311441
7157
17
2.约分法
例××××××××××××.
解:原式=
××××××××××××××××3
12324671421
135261072135
12321237123135213571353333++++++++()()
()()
=
++++=
=()()()()
1231271351271231352
5
1213141
993333××××××××××.例×-×-×-×…×-.
4 99(1)(1)(1)(1)
解:原式=××××…×=.99112233498
99
3.裂项法
根据
×=-其中,是自然数,在计算若干个分d n n d n n d
()++11
(n d )
数之和时,若能将每个分数都分解成两个分数之差,并且使中间的分数相互抵消,则
能大大简化运算.
例+++++.
解:原式=×+×+×+×+×+×.
5 1216112120130142
1121231341451561
67
=-+-+-+-=-=.
111212131314141515161617
1767
+-+-
例×+×+×+…+×.解:原式=××+×+×+…+×6
11(213 )
313515719799
122352572
9799
=×-+-+-+…+-=×-=×=.121313151517197199
121991298994999
(1 )(1)
例7 在自然数1~100中找出10个不同的数,使这10个数的倒数的和等于1.
分析与解:这道题看上去比较复杂,要求10个分子为1,而分母不
同的分数的和等于,似乎无从下手.但是如果巧用“-=”11111
1n n n n ++()
来做,就非常简单了.
因为=-+-+-+-+-…,所以可根据11 121213131414151
5
题中所求,添上括号.此题要求的是10个数的倒数和为1,于是做成:
1(1)(12)(13)(14)(15)
(16)(17)(18)(19)=-+-+-+-+-+-+-+-+-+121314151
6
171819110110

×+×+×+×+×+××××=.11212313414515616717818919101
101216112120130142156172190110++++
+++++++++ 所求的10个数是2,6,12,20,30,42,56,72,90,10.
本题的解不是唯一的,例如由+=+推知,用和110130191
45
945
替换答案中的10和30,仍是符合题意的解.
4.代数法
例+++×+++-
++++×++.
8 (1)(12)(1)(12)12131413141
5
121314151314
分析与解:通分计算太麻烦,不可取.注意到每个括号中都有
12131412131
4
++,不妨设++=,则A 原式=+×+-++×=+++---=.
(1A)(A )(1A )A
A A A A A A 22151
5
15151515
例2 计算:
分析与解 题中的每一项的分子都是1,分母不是连续相邻两个自然数之积,而是连续
三个自然数的乘积.下面我们试着从前几项开始拆分,探讨解这类问题的一般方法.因为
这里n是任意一个自然数.
利用这一等式,采用裂项法便能较快地求出例2的结果.
例3 计算:
分析与解仿上面例1、例2的解题思路,我们也先通过几个简单的特例试图找出其规律,再用裂项法求解.
这几个分数的分子都是2,分母是两个自然数的积,其中较小的那个自然数正好等于分母中自然数的个数,另一个自然数比这个自然数大3.把这个想法推广到一般就得到下面的等式:
连续使用上面两个等式,便可求出结果来.
因为第一个小括号内所有分数的分子都是1,分母依次为2,3,4,…,199,所以共有198个分数.第二个小括号内所有分数的分子也都是1,分母依次为5,6,7,…,202,所以也一共有198个分数.这样分母分别为5,6,7,…,199的分数正好抵消,
例4 求下列所有分数的和:
分析与解这是分数求和题,如按异分母分数加法法则算,必须先求1,2,3,…,1991这1991个数的最小公倍数,单是这一点就已十分麻烦,为此我们只好另找其他的方法.先计算分母分别为1,2,3,4的所有分数和各等于多少.
这四个结果说明,分母分别为1,2,3,4的上述所有分数和分别为1,2,3,4.如果这一结论具有一般性,上面所有分数的求和问题便能很快解决.下面我们来讨论一般的情况.
假定分数的分母是某一自然数k,那么分母为k的按题目要求的所有分
这说明,此题中分母为k的所有分数的和为k,利用这一结论,便可得到下面的解答.。

相关文档
最新文档