小学-六年级-数学奥数-分数运算-练习题-带答案

合集下载

六年级奥数分数应用题经典例题加练习带答案

六年级奥数分数应用题经典例题加练习带答案

一.知识的回顾1.工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工人.【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为1128(1)964⨯-=人,调入后女职工占总人数的23155-=,所以现在工厂共有职工3961605÷=人.2.有甲、乙两桶油,甲桶油的质量是乙桶的52倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的43倍,乙桶中原有油 千克. 【解析】 原来甲桶油的质量是两桶油总质量的55527=+,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的44437=+,由于总质量不变,所以两桶油的总质量为545()3577÷-=千克,乙桶中原有油235107⨯=千克. 【例 2】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?【解析】 (1)设二月份产量是1,所以元月份产量为:()1011+10%=11÷,三月份产量为:110%=0.9-,因为1011>0.9,所以三月份比元月份减产了(2)设商品的原价是1,涨价后为1+15%=1.15,降价15%为:()1.15115%=0.9775⨯-,现价和原价比较为:0.9775<1,所以价格比较后是价降低了。

【巩固】 把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?【解析】 方法一:设一队的人数是“1”,那么二队人数是:131134÷=,三队的人数是:141145÷=,345114520++=,因此,一、二、三队之和是:一队人数5120⨯,因为人数是整数,一队人数一定是20的整数倍,而三个队的人数之和是51⨯(某一整数), 因为这是100以内的数,这个整数只能是1.所以三个队共有51人,其中一、二、三队各有20,15,16人.而四队有:1005149-=(人).方法二:设二队有3份,则一队有4份;设三队有4份,则一队有5份.为统一一队所以设一队有[4,5]20=份,则二队有15份,三队有16份,所以三个队之和为15162051++=份,而四个队的份数之和必须是100的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有1005149-=人(人).【例 3】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人?【解析】 条件可以化为:音乐班的人数是所有班人数的22527=+,美术班的学生人数是所有班人数的337310=+,所以体育班的人数是所有班人数的2329171070--=,所以所有班的人数为295814070÷=人,其中音乐班有2140407⨯=人,美术班有31404210⨯=人.【巩固】 甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数的45,甲加工零件数是乙、丙加工零件总数的56,则甲、丙加工的零件数分别为 个、 个.【解析】 把乙加工的零件数看作1,则丙加工的零件数为45,甲加工的零件数为453(1)562+⨯=,由于甲比乙多加工20个,所以乙加工了320(1)402÷-=个,甲、丙加工的零件数分别为340602⨯=个、440325⨯=个. 【例 4】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗?【解析】方法一:要求王先生的年龄,必须先要求出其他三人的年龄各是多少.而题目中出现了三个“另外三人”所包含的对象并不同,即三个单位“1”是不同的,这就是所说的单位“1”不统一,因此,解答此题的关键便是抓不变量,统一单位“1”.题中四个人的年龄总和是不变的,如果以四个人的年龄总和为单位“1”,则单位“1”就统一了.那么王先生的年龄就是四人年龄和的11123=+,李先生的年龄就是四人年龄和的11134=+,赵先生的年龄就是四人年龄和的11145=+(这些过程就是所谓的转化单位“1”).则杨先生的年龄就是四人年龄和的11113134560---=.由此便可求出四人的年龄和:111261*********⎛⎫÷---= ⎪+++⎝⎭(岁),王先生的年龄为:1120403⨯=(岁). 方法二:设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的,但是现在四人年龄和分别是3份、4份、5份,它们的最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.【巩固】甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的12,乙队筑的路是其他三个队的13,丙队筑的路是其他三个队的14,丁队筑了多少米?【解析】甲队筑的路是其他三个队的12,所以甲队筑的路占总公路长的11=1+23;乙队筑的路是其他三个队的13,所以乙队筑的路占总公路长的11=1+34; 丙队筑的路是其他三个队的14,所以丙队筑的路占总公路长的11=1+45,所以丁筑路为:11112001=260345⎛⎫⨯--- ⎪⎝⎭(米)【例 5】小刚给王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【解析】方法一:运完第一次后,还剩下58没运,再运来50块后,已运来的恰好是没运来的57,也就是说没运来的占全部的712,所以,第二次运来的50块占全部的:57181224-=,全部蜂窝煤有:150120024÷=(块),没运来的有:7120070012⨯=(块).方法二:根据题意可以设全部为8份,因为已运来的恰好是没运来的57,所以可以设全部为12份,为了统一全部的蜂窝煤,所以设全部的蜂窝煤共有[8,12]24=份,则已运来应是5241075⨯=+份,没运来的7241475⨯=+份,第一次运来9份,所以第二次运来是1091-=份恰好是50块,因此没运来的蜂窝煤有5014700⨯=(块).【巩固】 五(一)班原计划抽15的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余人数的13.原计划抽多少个同学参加大扫除?【解析】又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3,实际参加人数比原计划多11113520-=+.即全班共有124020÷=(人).原计划抽14085⨯=(人)参加大扫除.【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的14,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的13,这个学校有多少人?【解析】 11204003141⎛⎫÷-=⎪++⎝⎭(人).【例 6】小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少73;如果小刚给小莉24个,则小刚的玻璃球比小莉少85,小莉和小刚原来共有玻璃球多少个?【解析】小莉给小刚24个时,小莉是小刚的74(=1一73),即两人球数和的114;小刚给小莉24个时,小莉是两人球数和的118(=5888-+),因此24+24是两人球数和的118-114=114.从而,和是(24+24) ÷114=132(个).【巩固】某班一次集会,请假人数是出席人数的91,中途又有一人请假离开,这样一来,请假人数是出席人数的223,那么,这个班共有多少人?【解析】因为总人数未变,以总人数作为”1”.原来请假人数占总人数的119+,现在请假人数占总人数的3322+,这个班共有:l÷(3322+-119+)=50(人).【例7】小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数19,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的13,问题是,这本书共有多少页?”【解析】首先,可以直接运算得出,第一天小明读了全书的11911019=+,而前二天小明一共读了全书的1131413=+,所以第二天比第一天多读的14页对应全书的111241020-⨯=。

(完整word版)六年级奥数分数应用题经典例题加练习带答案

(完整word版)六年级奥数分数应用题经典例题加练习带答案

.知识的回顾11.工厂原有职工128人,男工人数占总数的 -,后来又调入男职工若干人,调入后男工人4数占总人数的2,这时工厂共有职工人.51【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为128 (1 -)96人,42 33调入后女职工占总人数的 1 2 3,所以现在工厂共有职工96 - 160人.5 552.有甲、乙两桶油,甲桶油的质量是乙桶的-倍,从甲桶中倒出 5千克油给乙桶后,甲桶 2油的质量是乙桶的 4倍,乙桶中原有油千克.3-------------55【解析】原来甲桶油的质量是两桶油总质量的— 2,甲桶中倒出 5千克后剩下的油的 5 2744质量是两桶油总质量的—4,由于总质量不变,所以两桶油的总质量为 4 3 75 4 2 5 ( ) 35千克,乙桶中原有油 35 10千克.7 7 7(1)某工厂二月份比元月份增产 10 %,三月份比二月份减产 10% .问三月份比 元月份增产了还是减产了? (2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?(1)设二月份产量是1 ,所以元月份产量为:1 1+10%二10 ,三月份产量为:111 10%=0.9,因为10 > 0.9,所以三月份比元月份减产了11(2 )设商品的原价是1 ,涨价后为1+15%=115 ,降价15%为:1.15 1 15% =0.9775,现价和原价比较为:0.9775 v 1,所以价格比较后是价【例2】【解析】降低了。

1 1【巩固】把100个人分成四队,一队人数是二队人数的1-倍,一队人数是三队人数的13 4倍,那么四队有多少个人?1 3【解析】方法一:设一队的人数是“ 1 ”,那么二队人数是:1 11-,三队的人数是:3 41 4 3 4 51 511 1 ,1 ,因此,一、二、三队之和是:一队人数,因为4 5 4 5 20 20人数是整数,一队人数一定是20的整数倍,而三个队的人数之和是51 (某一整数),因为这是100以内的数,这个整数只能是1 •所以三个队共有51人,其中一、二、三队各有20 , 15, 16人•而四队有:100 51 49(人)•方法二:设二队有3份,则一队有4份;设三队有4份,则一队有5份•为统一一队所以设一队有[4,5] 20份,则二队有15份,三队有16份,所以三个队之和为15 16 20 51份,而四个队的份数之和必须是100的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有100 51 49人(人).【例3】新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的-,美术班人数相当于另外两个班人数的3,体育班有58人,音乐班和美术班5 7各有多少人?2 2【解析】条件可以化为:音乐班的人数是所有班人数的,美术班的学生人数是所5 2 73 3 2 3 29有班人数的,所以体育班的人数是所有班人数的 1 ,所以所7 3 10 7 10 7029 2有班的人数为58 140人,其中音乐班有140 40人,美术班有1070 73140 42 人.10【巩固】 甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工 45零件数的-,甲加工零件数是乙、丙加工零件总数的-,则甲、丙加工的零件数56 分别为 __________ 个、 ____________ 个.4 【解析】把乙加工的零件数看作1 ,则丙加工的零件数为-,甲加工的零件数为54 5 3 3 (1 -),由于甲比乙多加工 20个,所以乙加工了 20 (— 1) 40个,甲、56 2234丙加工的零件数分别为 4060个、4032个.25【例4】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄11和的一,李先生的年龄是另外三人年龄和的-,赵先生的年龄是其他三人年龄2 31和的丄,杨先生26岁,你知道王先生多少岁吗 ?4【解析】方法一:要求王先生的年龄, 必须先要求出其他三人的年龄各是多少.而题目中出 现了三个“另外三人”所包含的对象并不同,即三个单位“ 1”是不同的,这就是所说的单位“T 不统一,因此,解答此题的关键便是抓不变量,统一单位“1”.题 中四个人的年龄总和是不变的, 如果以四个人的年龄总和为单位 “1”,则单位“1 就统一了•那么王先生的年龄就是四人年龄和的1 21 1人年龄和的,赵先生的年龄就是四人年龄和的1 3 4谓的转化单位“ 1 ”).则杨先生的年龄就是四人年龄和的设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的 ,但是现在四人年龄和分别是 3份、4份、5份, 它们的最小公倍数1,李先生的年龄就是四31 1(这些过程就是所 1 4 51 1 1 13 丄 1 .由3 4 5 60 26, 1 1 11 - 121314120(岁),王先生的年 龄为:120 140(岁).31份,则其他三人年龄和为2份,则四人年龄和为3份,同理此便可求出四人的年龄和:方法二:设王先生年龄是是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40【巩固】 甲、乙、丙、丁四个筑路队共筑 1200米长的一段公路,甲队筑的路是其他三个队1 1 1的,乙队筑的路是其他三个队的 3,丙队筑的路是其他三个队的 4,丁队筑了 多少米?1 11【解析】甲队筑的路是其他三个队的 一,所以甲队筑的路占总公路长的2 1+23 1乙队筑的路是其他三个队的,所以乙队筑的路占总公路长的1 1 3 1+3 4 1丙队筑的路是其他三个队的,所以丙队筑的路占总公路长的1 1—4 1+45 111所以丁筑路为:12001 =260 (米)3 4 5【例5】 小刚给王奶奶运蜂窝煤,第一次运了全部的3,第二次运了 50块,这时已运来85的恰好是没运来的 5 •问还有多少块蜂窝煤没有运来?75【解析】方法一:运完第一次后,还剩下没运,再运来50块后,已运来的恰好是没运来的8575,也就是说没运来的占全部的—,所以,第二次运来的50块占全部的:7 125 711 ,全部蜂窝煤有:501200 (块),没运来的有:8 12 24241200 — 700(块)•125方法二:根据题意可以设全部为8份,因为已运来的恰好是没运来的,所以可7以设全部为12份,为了统一全部的蜂窝煤,所以设全部的蜂窝煤共有[8,12] 2450 14 700 (块)份,则已运来应是 24 10份,没运来的2414份,第一次运来9份,所以第二次运来是109 1份恰好是50块,因此没运来的蜂窝煤有【巩固】 五(一)班原计划抽1的人参加大扫除,临时又有2个同学主动参加,实际参加扫5除的人数是其余人数的 1•原计划抽多少个同学参加大扫除?3【解析】又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3,实际参加1111 人数比原计划多—1丄•即全班共有2 —40 (人)•原计划抽1 3 5 2020140 - 8(人)参加大扫除.5小莉和小刚分别有一些玻璃球,如果小莉给小刚3 5 少3 ;如果小刚给小莉 24个,则小刚的玻璃球比小莉少 -,小莉和小刚原来共78有玻璃球多少个?【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的1,后来又有204名同学参加大扫除,实际参加的人数是未参加人数的这个学校有多少人?【解析】20— — 400 (人).3 14 1【例6】24个,则小莉的玻璃球比小刚【解析】 小莉给小刚24个时,小莉是小刚的小莉24个时,小莉是两人球数和的34),即两人球数和的;小刚给7 118(=),因此24+24是两人球数和(=1118 8 58 4 4的一-一= .从而,和是(24+24)11 11 114=132(个).111【巩固】 某班一次集会,请假人数是出席人数的丄,中途又有一人请假离开,这样一来,93请假人数是出席人数的 —,那么,这个班共有多少人?221【解析】因为总人数未变,以总人数作为”1 ”.原来请假人数占总人数的 ——,现在请假1 93、31人数占总人数的,这个班共有:I *(-)=50(人).3 22 3 22 1 9小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的1页数丄,他今天比昨天多读了 14页,这时已经读完的页数是还没读的页数的9问题是,这本书共有多少页?”1Cd首先,可以直接运算得出,第一天小明读了全书的 —-,而前二天小明一共1 - 109【例7】【解析】书共14 20 280 (页)。

六年级上册--第一单元-分数乘法-奥数题(附答案)精选全文完整版

六年级上册--第一单元-分数乘法-奥数题(附答案)精选全文完整版

可编辑修改精选全文完整版第一单元 分数乘法板块一 巧算分数乘法分数的裂项公式:①()11111+-=+n n n n ,如3121321-=⨯。

②())11(11k n n k k n n +-=+,如)(512131521-=⨯。

③()k n n k n n k +-=+11,如8131835-=⨯ ④m n m n m n 11+=⨯+,如4131437+=⨯ ⑤()⎥⎦⎤⎢⎣⎡++-+=++)2)(1(1)1(121)211n n n n n n n (,如)321211213211⨯-⨯=⨯⨯( 【例题】例1.计算:(1)201820171431321211⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(2)201820161861641421⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(3)322931183853523⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(4)90197217561542133011+-+-(5)30282611086186416421⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯+⨯⨯+⨯⨯例2.巧算。

(1) 2012×(1+21+31+……+20111)-[1+(1+21)+(1+21+31)+……+(1+21+31+……+20111)](2)200132200121432432132321221+⋅⋅⋅+++⋅⋅⋅++⨯⋅⋅⋅⨯+++++⨯+++⨯+(3))()()(()(100011100111201411)201511201611-⨯-⨯⋅⋅⋅⨯-⨯-⨯-(4))()()()(20161312120171312112016131211201713121+⋅⋅⋅++⨯+⋅⋅⋅+++-+⋅⋅⋅+++⨯+⋅⋅⋅++(5)(6)(7) 655161544151433141⨯+⨯+⨯2007120082007200620082007+-⨯⨯+)911()711()511()3111011811611411211-⨯-⨯-⨯-⨯+⨯+⨯+⨯+⨯+()()()()()((8))201321()201321())201121()201121()921()921()721()721()52-1521-⨯+⨯-⨯+⨯⋅⋅⋅⨯-⨯+⨯-⨯+⨯⨯+()((9)【练习】1.计算:(1)1+361+5121+7201+9301+11421+13561+15721+17901(2)31+151+351+631+991(3)42384411041064624⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯132132132111111212121156156156⨯(4)31+43+52+75+87+209+2110+2411+3519(5)2.巧算。

小学奥数:分数四则混合运算综合.专项练习及答案解析

小学奥数:分数四则混合运算综合.专项练习及答案解析

分数是小学阶段的关键知识点,在小学的学习有分水岭一样的阶段性标志,许多难题也是从分数的学习开始遇到的。

分数基本运算的常考题型有(1)分数的四则混合运算 (2)分数与小数混合运算,分化小与小化分的选择 (3)复杂分数的化简 (4) 繁分数的计算分数与小数混合运算的技巧 在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。

技巧1:一般情况下,在加、减法中,分数化成小数比较方便。

技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。

此时要将包括循环小数在内的所有小数都化为分数。

技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。

技巧4:在运算中,使用假分数还是带分数,需视情况而定。

技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。

分数混合运算 【例 1】 0.3÷0.8+0.2= 。

(结果写成分数形式)【考点】分数混合运算 【难度】1星 【题型】计算【关键词】希望杯,五年级,一试【解析】 310×54+15=38+15=2340。

【答案】2340【例 2】 计算:34567455667788945678⨯+⨯+⨯+⨯+⨯ 【考点】分数混合运算 【难度】2星 【题型】计算知识点拨教学目标例题精讲分数的四则混合运算综合【解析】原式34567 4(5)5(6)6(7)7(8)8(9) 45678 =⨯++⨯++⨯++⨯++⨯+ 453564675786897=⨯++⨯++⨯++⨯++⨯+245=【答案】245【例 3】412114 23167137713⨯+⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【解析】原式4124412347137713=⨯+⨯+⨯412123471313⎛⎫=⨯++⎪⎝⎭=16【答案】16【例 4】计算1488674 3914848149149149⨯+⨯+【考点】分数混合运算【难度】1星【题型】计算【解析】398624398624 148148148148()148 149149149149149149⨯+⨯+=⨯++=【答案】148【巩固】计算:1371 1391371138138⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【关键词】小数报,初赛【解析】原式1371 (1381)137(1)138138 =+⨯+⨯+137137 137137138138=+++113722(1)138=⨯+⨯-12762138=-⨯6827569=【答案】68 27569【例 5】253749517191334455÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【关键词】清华附中【解析】观察发现如果将2513分成50与213的和,那么50是除数53的分子的整数倍,213则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆.原式253749 501701901334455⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭579501701901345=÷++÷++÷+3040503=+++123=【答案】123【巩固】131415314151223344÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【解析】观察发现如果将1312分成30与112的和,那么30是除数32的分子的整数倍,112则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆.原式131415 301401501223344⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭345301401501234=÷++÷++÷+2030403=+++93=【答案】93【巩固】173829728191335577÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【解析】原式173829 702801901335577⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭789701801901357=÷++÷++÷+3050703=+++153=【答案】153【巩固】计算:1130.42(4.3 1.8)26524⎡⎤⨯÷⨯-⨯=⎢⎥⎣⎦。

六年级数学分数奥数题附答案

六年级数学分数奥数题附答案

分数乘除应用题奥数1.把甲乙丙三根木棒插入水池中;三根木棒的长度和为360厘米;甲有3/4在水外;乙有4/7在水外;丙有2/5在水外..水有多深2.小刚有若干本书;小华借走一半加一本;剩下的书小明借走一半加两本;再剩下的书小峰借走一半加三本;最后小刚还剩下两本书;那么小刚原有还剩下两本书;那么小刚原有多少本书3.甲数比乙数多1/3;乙数比甲数少几分之几4.有梨和苹果若干个;梨的个数是全体的5/3少17个;苹果的个数是全体的7/4少31个;那么梨和苹果的个数共多少5.有一个分数;它的分母比分子多4;如果把分子、分母都加上9;得到的分数约分后是9分之7;这个分数是多少6.把一根绳分别折成5股和6股;5股比6股长20厘米;这根绳子长多少米7.小萍今年的年龄是妈妈的1/3;两年前母女的年龄相差24岁..四年后小萍的年龄是多少岁8.有一篮苹果;甲取一半少一个;乙取余下的一半多一个;丙又取余下的一半;结果还剩下一个..如果每个苹果值1元9角8分;那么这篮苹果共值多少元12.把100个人分成四队;一队人数是二队人数的4/3倍;一队人数是三队人数的5/4倍;那么四队有多少人13.足球赛门票15元一张;降价后观众增加了一半;收入增加了五分之一;每张门票降价多少元14.甲、乙、丙三人共同加工一批零件..甲比乙多加工零件20个;丙加工的零件是乙加工零件的4/5;甲加工的零件是乙丙两人加工零件总数的5/6.甲、乙、丙各加工零件多少个18.某校六年级共有152人;选出男生的1/11和5名女生去参加科技小组;则剩下的男女生人数刚好相等;六年级男女生各有多少人19.林林倒满一杯纯牛奶;第一次喝了1/3;然后加入豆浆;将杯子斟满并搅拌均匀;第二次;林林又喝了1/3;继续用豆浆将杯子斟满并搅拌均匀;重复上述过程;那么第四次后;林林共喝了一杯纯牛奶总量的多少用分数表示20.有一根1米长的木条;第一次去掉它的1/5;第二次去掉余下木条的1/6;第三次又去掉第二次余下木条的1/7;这样一直下去;最后一次去掉上次余下木条的1/10..问:这根木条最后还剩下多长21.某小学一至六年级共有780人..在参加数学兴趣学习的学生中;恰有17分之8是六年级的学生;有23分之9是五年级的学生;那么;该校没有参加数学兴趣小组的学生有几人22.用甲、乙两种糖配成什锦糖;如果用3份甲种糖和2份乙种糖配成的1千克什锦糖;比用2份和3份乙种糖配成的1千克什锦糖贵1.32元;那么1千克甲种糖比1千克乙种糖贵多少元呢23.今有苹果95个;分给甲、乙两班同学吃..甲班分到的苹果有2/9是坏的;其他是好的;乙班分到的苹果有3/16是坏的;其他是好的..甲、乙两班分到的好苹果共有多少个24.一满杯水溶入10克糖;搅匀后喝去3分之2;添入6克糖;加满水;又搅匀;再喝去3分之2;添入6克糖;加满水;搅匀后;喝去3分之2;喝去之后杯里还剩下多少糖25.一份材料;甲单独打完要3小时;以单独打完要5小时;甲乙两人合作打完要多少小时26.打扫多功能教师;甲组同学1/3小时可以打扫完;乙组同学1/4小时可以打扫完;如果甲、乙合做;多少小时能打扫完整个教室27.一项工程;甲队单独做需要18天;乙独做15天完成;现决定由甲、乙二人共同完成;但中途甲有事请假四天;那么完成任务时甲实际做了多少天答案:1. 设水深xcm;则甲长4x;乙长7x/3;丙长5x/34x+7x/3+5x/3=360 x=45 水有45cm深2. 考点:逆推问题.分析:本题需要从问题出发;一步步向前推;小刚剩的2本书加上3本就是小明借走后的一半;那么就可以求出小明借走后的数量;同理可以求出小华借走后的数量;进而可求小明原有的数量.解答:解:小峰未借前有书:2+3÷1-1/2 =10本;小明未借之前有: 10+2÷1-1/2 =24本;小刚原有书: 24+1÷1-1/2 =50本.答:小明原有书50本.故答案为:50.3. 乙数是单位“1”;甲数是:1+1/3=4/3 乙数比甲数少: 1/3÷4/3=1/44. 解:设总数有35X个那么梨有35X3/5-17=21X-17个苹果有35X4/7-31=20X-31个20X-31+21X-17=35X 41X-48=35X 6X=48 X=8所以梨有21×6-17=109个苹果有20×6-31=89个5. 设分子为X;分母为X+4;则;X+9/X+13=7/9;解之;得X=5答:该分子为5/96. 这根绳子长20÷1/5-1/6=600cm7. 解:设小萍今年X岁;则妈妈今年3X岁3X-2=X-2+24 3X=X+24 2X=24 X=12最终答案:12+4=16岁8. 丙又取其余的一半;结果还剩一个;说明丙取前是1+1=2个乙取余下的一半多一个;则乙取前是2+12=6个甲取其中的一半少一个;则甲取前时6-12 = 10个因此;原来有10个下面是解题过程:设这袋苹果原来X个;则甲取走苹果的个数为X/2-1乙取走苹果的个数为X-X/2+1/2+1丙取走苹果的个数也是剩余的个数为:总数-甲取走-乙取走;即X-X/2+1-X-X/2+1/2-1/2=1 解方程得X=1012.设第一队为1;第二队为3/4;第三队为4/5;则三队和为1+3/4+4/5=51/20;可知;第一队人数应为20的倍数..第一队为20时;20+15+16+49=100;第一队为40时;40+30+32>100 舍去..所以;20+15+16+49=100为唯一解;即:第四队有49人..ps:也可将第一队设为k人;三队之和=51k / 20 ;显见;k应为20的倍数..只有k=20时有解.. 13.观众增加一倍;即原来只有一个人来看;现在是两个人来看.. 收入增加1/5;即现在两个人的总票价比原来一个人时单人票价多1/5;为151+1/5=18元平均每人18/2=9元比原来降低了15-9=6元降低了6/15=40%答:解:15-15×1+1 /5 ÷1+1 /2=15-15×6 /5 ÷3 /2=15-15×6/ 5 ×2 /3=15-15×4/ 5=15-12=3元答:一张门票降价是3元.故填:3.点评:此题关键是找准单位“1”;找准单位“1”对应的量;求单位“1”;用除法;告诉单位“1”;求单位“1”的几分之几;用乘法.降价前假设有10名观众;收入为L=15×10=150元现在有15人;降x元;15-x×15=150×1+1/5225-15x=18015x=45x=3;降价3元..14.设:甲加工x个;乙加工x-20;丙加工4/5x-205/6x-20+4/5x-20=x x=60乙加工=60-20=40丙加工=40×4/5=3218.男生有x人;女生有152-x10/11x=152-x-5 x=77男生77人;女生75人19.第一次1/3搅匀之后又是1/3;那么这次是2/31/3=2/9;剩下1-1/3-2/9=4/9再均匀之后1/3;那么这次是4/91/3=4/24;剩下4/9-4/27=8/27再均匀之后1/3;那么这次是8/271/3=8/81;剩下8/27-8/81=16/81那么一共喝了1-16/81=65/8120.11-1/51-1/61-1/7……1-1/100=4/55/66/7……99/100=4/100=1/2521.因为人数必须是整数;17和23的最小公倍数是391;所以参加兴趣小组的人数是391人没参加兴趣小组的人数=780-391=389人22.此题可以用赋值法第一次用3千克甲和2千克乙配成的什锦糖5千克第二次用2千克甲和3千克乙配成的什锦糖5千克则第一次比第二次总共贵1.32×5=6.6元第一次减去第二次;就是1kg甲种糖比1kg乙种糖贵的钱数即1kg甲种糖比1kg乙种糖贵1.32×5=6.6元23.根据“甲班分到的苹果有2/9是坏的”可以推测甲班分到苹果的个数是9的倍数;同理可推测乙班分到苹果的个数是16的倍数..设甲班分到9a个;乙班分到16b个;则;当a、b都是整数时;a=7;b=2即甲班分到9×7=63个;乙班分到16×2=32个.甲好苹果的个数:63×7/9=49个乙有好苹果的个数:32×13/16=26个甲、乙两班分到的好苹果共有:49+26=75个24.第一次喝去2/3;剩10×1-2/3=10/3克糖..再加6克糖得28/3克糖..加满水再喝去2/3;剩28/3×1-2/3=28/9克糖..再加6克糖得82/9克糖..加满水再喝去2/3;最后剩82/9×1-2/3=82/27克糖..25.甲每小时打1/3篇 1÷3=1/3乙每小时打1/5篇 1÷5=1/5一起打 1÷1/3+1/5=1÷8/15=15/8=1 7/8 小时26.设打扫多功能教室工作总量为X甲的速度为3X;乙的速度为4X共同打扫只需:X/3X+4X=1/7小时27.甲请假四天所以就相当于乙做4天;然后合作甲1天作1/18;乙是1/15;以乙4天作4/15;有1-4/15=11/15合作一天完成1/18+1/15=11/90;以甲做了11/15÷11/90=6天。

六年级数学分数奥数题(附答案)-2

六年级数学分数奥数题(附答案)-2

六年级数学分数奥数题(附答案)-2-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN六年级分数应用题竞赛题1.小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?考点:逆推问题.分析:本题需要从问题出发,一步步向前推,小刚剩的2本书加上3本就是小明借走后的一半,那么就可以求出小明借走后的数量,同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:(2+3)÷(1-1/2 )=10(本),小明未借之前有:(10+2)÷(1-1/2 )=24(本),小刚原有书:(24+1)÷(1-1/2 )=50(本).答:小明原有书50本.故答案为:50.2、甲数比乙数多1/3,乙数比甲数少几分之几?乙数是单位“1”,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/43、把一根绳分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米?这根绳子长20÷(1/5-1/6)=600cm4、有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少?5、小辉乘飞机参加世界少年奥林匹克数学金杯赛。

机窗外市一片如画的蔚蓝大海。

他看到云海占整个画面的1/2,并遮住一个海岛的1/4,露出的海岛占整个画面的1/4.求被遮住的海岛占应看见的整个海面的几分之几设海岛为x,整个画面为y,遮住海面为z,根据题意,3/4*x=1/4*yy=3x则海面为3/4*xz=1/2*3x-1/4*x=5/4*x又海面为2x …………y-x=3x-x=2x所以比例为5/86、甲从A地到B地需要5小时,乙从B地到A地,速度是甲的5/8.现在甲、乙两人分别从A,B两地同时出发,相向而行。

在途中相遇后继续前进。

分数、百分数问题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)

分数、百分数问题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)

分数、百分数问题奥数思维拓展-小学数学六年级上册人教版一.选择题(共6小题)1.一袋洗衣粉,第一周用了全部的,第二周用了全部的25%,还剩1.2千克。

这瓶洗衣粉原来有多少千克?()A.3.2B.5.6C.3.5D.5.22.汽车厂今年上半年完成计划的75%,下半年完成计划的,汽车厂今年超产()A.75%B.50%C.25%D.125%3.甲数比乙数多,乙数就比甲数少()A.12.5%B.37.5%C.60%4.体育用品商店进购一批体育器材,其中足球和篮球的总数是150个,足球的数量占两种球总数的40%.后来又进购了一些足球,此时篮球的数量占两种球总数的,后来又进购了()个足球.A.90B.70C.605.学校一次课外活动,缺勤人数是出勤人数的10%,后来又有2人因病请假,这时缺勤人数是出勤人数的,这个学校课外活动小组共有()A.99人B.90人C.100人D.190人6.某厂上半月完成计划的75%,下半月完成计划的,这个月增产()A.25%B.45%C.30%D.20%二.填空题(共8小题)7.某服装厂计划一个月生产衬衫8000件,结果上半月完成了60%,下半月完成,这个月超量生产件。

8.某超市将商品促销活动,一种书包原价是100元,先降价20%后,又提价这种书包现在的售价是元。

9.湖边种了40棵柳树,是桃树棵数的,榕树的棵数是桃树棵数的65%。

湖边种了棵榕树。

10.工地有水泥120吨,沙子的质量是水泥的40%,又是石子的,石子的质量是吨。

11.运动健身迎亚运,和谐杭州展新韵。

为迎接第十九届杭州亚运会,学校组织教师健步走,张老师已经走了全程的40%,如果再走4千米,已走路程就占全程的。

这次健步走的全程是千米。

12.明彩文具超市新购进180支钢笔,新购进的圆珠笔的数量比钢笔多,新购进的圆珠笔有支;新购进的中性笔比圆珠笔少50%。

新购进的中性笔有支。

13.一堆货物,第一天运走了总数的,第二天运走了总数的25%,剩下的按3:4分配给甲车和乙车。

小学六年级分数奥数题100道及答案(完整版)

小学六年级分数奥数题100道及答案(完整版)

小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。

思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。

2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。

思路:5×6=30(米)。

3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。

思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。

4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。

思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。

5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。

思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。

6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。

思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。

7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。

思路:设公路长x 米,1/2x-2/5x=60,解得x=300。

8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。

思路:设全书有x 页,1/5x+25=3/10x,解得x=125。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级分数运算
1.凑整法
与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数……从而使运算得到简化.
例+++×-.解:原式=+++×-1 (314623134813)(2)[(314134)(623813)](2)720720 =+×-
=×-×=-=.(515)(2)2022040733720
720 例×+÷+×.解:原式=×+×+÷÷+××=++++=.2 415253247
40.2512442525324+440.25431100583114417
157
17 2.约分法
例××××××××××××.解:原式=××××××××××××××××3 12324671421135261072135
12321237123135213571353333++++++++()()()()
=++++=
=()()()()
12312713512712313525
121314199
3333××××××××××.例×-×-×-×…×-.4 99(1)(1)(1)(1) 解:原式=××××…×=.9911223349899
3.裂项法 根据×=-其中,是自然数,在计算若干个分d n n d n n d
()++11(n d ) 数之和时,若能将每个分数都分解成两个分数之差,并且使中间的分数相互抵消,则能大大简化运算.
例+++++.解:原式=×+×+×+×+×+×.5 1216112120130142112123134145156167 =-+-+-+-=-=.1112121313141415151616171767
+-+- 例×+×+×+…+×.解:原式=××+×+×+…+×6
11(213 )3135157197991223525729799 =×-+-+-+…+-=×-=×=.121313151517197199121991298994999
(1 )(1) 例7 在自然数1~100中找出10个不同的数,使这10个数的倒数的和等于1. 分析与解:这道题看上去比较复杂,要求10个分子为1,而分母不
同的分数的和等于,似乎无从下手.但是如果巧用“-=”111111n n n n ++()
来做,就非常简单了.
因为=-+-+-+-+-…,所以可根据11 1212131314141515
题中所求,添上括号.此题要求的是10个数的倒数和为1,于是做成:
1(1)(12)(13)(14)(15)(16)(17)(18)(19)=-+-+-+-+-+-+-+-+-+1213141516171819110110 =
×+×+×+×+×+××××=.112123134145156
1671781891910110
1216112120130142156172190110+++++++++++++ 所求的10个数是2,6,12,20,30,42,56,72,90,10.
本题的解不是唯一的,例如由+=+推知,用和11013019145
945 替换答案中的10和30,仍是符合题意的解.
4.代数法
例+++×+++-++++×++.8 (1)(12)(1)(1
2)1213141314151
213
14151314
分析与解:通分计算太麻烦,不可取.注意到每个括号中都有
121314121314
++,不妨设++=,则A 原式=+×+-++×=+++---=.(1A)(A )(1A )A A A A A A A 221515
15151515
例2 计算:
分析与解 题中的每一项的分子都是1,分母不是连续相邻两个自然数之积,而是连续三个自然数的乘积.下面我们试着从前几项开始拆分,探讨解这类问题的一般方法.因为
这里n 是任意一个自然数.
利用这一等式,采用裂项法便能较快地求出例2的结果.
例3 计算:
分析与解仿上面例1、例2的解题思路,我们也先通过几个简单的特例试图找出其规律,再用裂项法求解.
这几个分数的分子都是2,分母是两个自然数的积,其中较小的那个自然数正好等于分母中自然数的个数,另一个自然数比这个自然数大3.把这个想法推广到一般就得到下面的等式:
连续使用上面两个等式,便可求出结果来.
因为第一个小括号内所有分数的分子都是1,分母依次为2,3,4,…,199,所以共有198个分数.第二个小括号内所有分数的分子也都是1,分母依次为5,6,7,…,202,所以也一共有198个分数.这样分母分别为5,6,7,…,199的分数正好抵消,
例4 求下列所有分数的和:
分析与解这是分数求和题,如按异分母分数加法法则算,必须先求1,2,3,…,1991这1991个数的最小公倍数,单是这一点就已十分麻烦,为此我们只好另找其他的方法.先计算分母分别为1,2,3,4的所有分数和各等于多少.
这四个结果说明,分母分别为1,2,3,4的上述所有分数和分别为1,2,3,4.如果这一结论具有一般性,上面所有分数的求和问题便能很快解决.下面我们来讨论一般的情况.
假定分数的分母是某一自然数k,那么分母为k的按题目要求的所有分
这说明,此题中分母为k的所有分数的和为k,利用这一结论,便可得到下面的解答.。

相关文档
最新文档