七年级上册数学常考题型归纳期末复习用
七年级上数学期末考知识点

七年级上数学期末考知识点一、整数1. 整数的概念和表示法2. 整数的大小比较3. 整数加减法的计算4. 整数乘法的计算5. 整数除法的计算6. 整数的四则运算综合练习二、有理数1. 有理数的概念和表示法2. 有理数的大小比较3. 有理数加减法的计算4. 有理数乘法的计算5. 有理数除法的计算6. 有理数的四则运算综合练习三、平面图形1. 平面图形的基本概念2. 三角形(1) 三角形的分类(2) 三角形的内角和定理(3) 三角形的外角和定理3. 四边形(1) 四边形的基本性质(2) 矩形和正方形(3) 平行四边形(4) 梯形和菱形(5) 各类四边形的面积计算方法四、代数式1. 代数式的概念和表示法2. 代数式的运算3. 代数式的值4. 一元一次方程(1) 一元一次方程的概念(2) 一元一次方程的解法(3) 一元一次方程的应用五、函数1. 函数的概念和表示法2. 函数的性质3. 函数的图象4. 一次函数(1) 一次函数的概念和表示法(2) 一次函数的图象和性质(3) 一次函数的应用六、统计与概率1. 数据和统计(1) 常见的统计图表(2) 中心值和离散程度2. 概率的基本概念和计算(1) 概率的定义和性质(2) 概率的加法原理和乘法原理(3) 独立事件和非独立事件七、几何变换1. 平面几何变换的概念2. 平移3. 旋转4. 对称以上为七年级上数学期末考必备知识点,考生可根据自身情况进行针对性复习。
实际考试中,请认真审题,仔细思考,正确答题。
初中七年级数学上册期末专项复习4套含答案

A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020
;
② 1 1 1
1
;
13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.
初一上册数学期末必考题型2021 (2)

初一上册数学期末必考题型2021
具体的初一上册数学必考题型会因学校和教材不同而有所差异。
然而,以下是一些通常会出现在初一上册数学期末考试中的重要题型:
1. 基本运算:加法、减法、乘法和除法计算。
2. 整数计算:整数的加减乘除运算及应用题。
3. 分数运算:分数的加减乘除运算及应用题。
4. 小数运算:小数的加减乘除运算及应用题。
5. 百分数:百分数的计算和应用题。
6. 比例:比例和比例的应用题。
7. 平均数:求一组数的平均数。
8. 数据统计:频数表、条形统计图、折线图、分布图等的读图和分析题。
9. 空间几何:点、线、面的判断、构造和应用题。
10. 初步代数:一元一次方程的解法和应用题。
以上是初一上册数学期末考试中常见的题型,希望能对你有所帮助。
请注意,具体的题型和内容可能会因学校和教
材的不同而有所差异,所以你还是需要根据自己的教材和老师的要求来备考。
部编数学七年级上册期末真题必刷基础60题(33个考点专练)(解析版)含答案

期末真题必刷基础60题(33个考点专练)一.正数和负数(共3小题)1.(2022秋•昌图县期末)在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+12,﹣8,+9,﹣3,+7,﹣6,+10,﹣5.(1)B地位于A地的什么方向?距离A地多少千米?(2)若冲锋舟每千米耗油0.6升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?【分析】(1)根据正数和负数的实际意义,将所有数据相加计算后根据所得结果进行判断即可;(2)由题意求得所有数据的绝对值,然后结合已知条件计算即可.【解答】解:(1)∵12﹣8+9﹣3+7﹣6+10﹣5=16(千米),∴B地在A地的东边16千米;(2)由题意可得这一天走的总路程为:|+12|+|﹣8|+|+9|+|﹣3|+|+7|+|﹣6|+|+10|+|﹣5|=60千米,那么应耗油60×0.6=36(升),故还需补充的油量为:36﹣30=6(升),即冲锋舟当天救灾过程中至少还需补充6升油.【点评】本题考查正数和负数的实际意义及绝对值,结合已知条件进行正确的计算是解题的关键.2.(2022秋•山亭区期末)某果农把自家果园的柑橘包装后放到了网上销售.原计划每天卖10箱,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某个星期的销售情况(超额记为正,不足记为负,单位:箱).星期一二三四五六日+4﹣3﹣5+7﹣8+21﹣6与计划量的差值(1)根据记录的数据可知前五天共卖出多少箱?(2)本周实际销售总量达到了计划数量没有?(3)若每箱柑橘售价为80元,同时需要支出运费7元/箱,那么该果农本周总共收入多少元?【分析】(1)将前五天的销售量相加即得结论;(2)将表格中记录的数据相加得出结果,结果的符号表示达到或不足,结果的绝对值表示达到或不足的数量;(3)利用本周的总收入减去总运费即得结论.【解答】解:(1)10×5+4﹣3﹣5+7﹣8=45 (箱),答:根据记录的数据可知前五天共卖出45箱;(2)4﹣3﹣5+7﹣8+21﹣6=10>0,答:本周实际销售总量达到了计划数量;(3)(10×7+10)×80﹣(10×7+10)×7=5840(元),答:该果农本周总共收入5840元.【点评】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.3.(2022秋•千山区期末)某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星期一二三四五六日产量+10﹣6﹣8+15﹣12+18﹣9(1)根据记录,求出前三天共生产多少个?(2)请问产量最多的一天比产量最少的一天多生产多少个?(3)该厂实行计件工资制,每生产一个玩具10元,若按周计算,超额完成任务,超出部分每个12元;若未完成任务,生产出的玩具每个只能按8元发工资,那么该厂员工这一周的工资总额是多少?【分析】(1)三天的计划总数加上三天多生产的个数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总个数,然后按照工资标准求解.【解答】解:(1)100×3+10﹣6﹣8=296(个),∴前三天共生产296个;(2)18﹣(﹣12)=18+12=30(个),∴产量最多的一天比产量最少的一天多生产30个;(3)这一周多生产的总个数是10﹣6﹣8+15﹣12+18﹣9=8(个),10×700+12×8=7096(元).答:该厂工人这一周的工资是7096元.【点评】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.二.相反数(共3小题)4.(2022秋•二七区校级期末)﹣3的相反数是( )A.﹣B.3C.﹣3D.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.5.(2022秋•宁阳县期末)2023的相反数是( )A.B.C.2023D.﹣2023【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:2023的相反数是﹣2023.故选:D.【点评】本题考查相反数,关键是掌握相反数的定义.6.(2022秋•德州期末)﹣2023的相反数是 2023 .【分析】由相反数的概念即可解答.【解答】解:﹣2023的相反数是﹣(﹣2023)=2023.故答案为:2023.【点评】本题考查相反数的概念,关键是掌握:只有符号不同的两个数叫做互为相反数,求一个数的相反数的方法就是在这个数的前边添加“﹣”.三.绝对值(共1小题)7.(2022秋•福田区校级期末)的相反数( )A.2022B.﹣2022C.D.【分析】根据绝对值、相反数的意义即可得出答案.【解答】解:∵,又∵的相反数是,∴的相反数是,故选:D.【点评】本题考查绝对值、相反数的意义,掌握绝对值、相反数的意义是解题的关键.四.倒数(共1小题)8.(2022秋•新兴县期末)的倒数是 ﹣2 .【分析】直接根据倒数的概念解答即可.【解答】解:的倒数是:,故答案为:﹣2.【点评】本题考查了倒数的概念,即当a≠0时,a与互为倒数.特别要注意的是:负数的倒数还是负数,此题难度较小.五.有理数大小比较(共2小题)9.(2022秋•海门市期末)比较大小:﹣ > ﹣.(用“>”“=”或“<”连接)【分析】先通分,再比较其绝对值的大小,进而可得出结论.【解答】解:﹣=﹣,﹣=﹣,∵<,∴﹣>﹣,∴﹣>﹣.故答案为:>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解题的关键.10.(2022秋•建邺区校级期末)有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b < 0,a+b < 0,a﹣c > 0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.【分析】观察数轴可知:c<a<0<b<﹣a<﹣c.(1)由c<a<0<b<﹣a<﹣c,可得出c﹣b<0、a+b<0、a﹣c>0,此题得解;(2)由c﹣b<0、a+b<0、a﹣c>0,可得出|c﹣b|+|a+b|﹣|a﹣c|=b﹣c+(﹣a﹣b)﹣(a﹣c),去掉括号合并同类项即可得出结论.【解答】解:观察数轴可知:c<a<0<b<﹣a<﹣c.(1)∵c<a<0<b<﹣a<﹣c,∴c﹣b<0,a+b<0,a﹣c>0.故答案为:<;<;>.(2)∵c﹣b<0,a+b<0,a﹣c>0,∴|c﹣b|+|a+b|﹣|a﹣c|=b﹣c+(﹣a﹣b)﹣(a﹣c)=b﹣c﹣a﹣b﹣a+c=﹣2a.【点评】本题考查了有理数的大小比较、数轴以及绝对值,观察数轴找出c<a<0<b<﹣a<﹣c是解题的关键.六.有理数的除法(共1小题)11.(2022秋•垫江县期末)计算(﹣6)÷(﹣)×6的结果是( )A.6B.36C.﹣1D.1【分析】将除法变为乘法,再约分计算即可求解.【解答】解:(﹣6)÷(﹣)×6=(﹣6)×(﹣6)×6=36.故选:B.【点评】本题考查了有理数的乘除法,关键是熟练掌握计算法则正确进行计算.七.有理数的乘方(共1小题)12.(2022秋•秀山县期末)把下列各数填在相应的大括号里.0.245,+7,0,﹣1.07,﹣|﹣3|,,﹣(﹣6),,(﹣2)2正数集合:{ 0.245,+7,,﹣(﹣6),(﹣2)2 …}正分数集合:{ 0.245, …}负整数集合:{ ﹣|﹣3| …}负数集合:{ ﹣1.07,﹣|﹣3|, …}非正整数集合:{ 0,﹣|﹣3| …}【分析】根据有理数的分类进行解答即可.【解答】解:﹣|﹣3|=﹣3,﹣(﹣6)=6,(﹣2)2=4;正数集合:{0.245,+7,,﹣(﹣6),(﹣2)2…},正分数集合:{0.245,…},负整数集合:{﹣|﹣3|…},负数集合:{﹣1.07,﹣|﹣3|,…},非正整数集合:{ 0,﹣|﹣3|…},故答案为:0.245,+7,,﹣(﹣6),(﹣2)2;0.245,;﹣|﹣3|;﹣1.07,﹣|﹣3|,;0,﹣|﹣3|.【点评】本题主要考查了有理数的分类,绝对值的意义,解题的关键是熟练掌握有理数的定义.八.非负数的性质:偶次方(共1小题)13.(2022秋•泉港区期末)已知|m﹣3|+(n+2)2=0,则m+2n的值为( )A.﹣7B.7C.﹣1D.1【分析】直接利用非负数的性质得出m,n的值,进而代入得出答案.【解答】解:∵|m﹣3|+(n+2)2=0,∴m﹣3=0,n+2=0,解得:m=3,n=﹣2,∴m+2n=3﹣4=﹣1.故选:C.【点评】此题主要考查了非负数的性质,正确得出m,n的值是解题关键.九.有理数的混合运算(共1小题)14.(2022秋•市中区期末)对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)= 7 .【分析】根据新定义把新运算转化为常规运算进行解答便可.【解答】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点评】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.一十.近似数和有效数字(共2小题)15.(2022秋•平谷区期末)用四舍五入法把3.1415926精确到0.01,所得到的近似数为 3.14 .【分析】把千分位上的数字1进行四舍五入即可.【解答】解:3.1415926精确到0.01,所得到的近似数为3.14.故答案为:3.14.【点评】本题考查了近似数:“精确度”是近似数的常用表现形式.16.(2022秋•叙州区期末)用四舍五入法将0.05068精确到千分位的近似值为 0.051 .【分析】把万分位上的数字6进行四舍五入即可.【解答】解:0.05068≈0.051(精确到千分位).故答案为:0.051.【点评】本题考查了近似数:“精确度”是近似数的常用表现形式.一十一.科学记数法—表示较大的数(共2小题)17.(2022秋•西岗区校级期末)中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,数据67500用科学记数法表示为( )A.6.75×103B.6.75×104C.67.5×105D.67.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:67500=6.75×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(2022秋•罗湖区期末)从提出北斗建设工程开始,北斗导航卫星研制团队攻坚克难,突破重重关键技术,建成独立自主,开放兼容的全球卫星导航系统,成为世界上第三个独立拥有全球卫星导航系统的国家,现在每分钟200多个国家和地区的用户访问使用北斗卫星导航系统超70000000次.其中70000000用科学记数法表示为( )A.7×103B.7×105C.7×106D.7×107【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:70000000=7×107.故选:D.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.一十二.代数式(共1小题)19.(2022秋•罗湖区期末)下列结论中正确的是( )A.对乘坐高铁的乘客进行安检,适宜采用普查的方式B.单项式的系数是C.a2+b2的意义是表示a,b两数的和的平方D.将弯曲的道路改直的数学道理是“过两点有且只有一条直线”【分析】根据抽样调查,单项式的定义,代数式的意义,线段的性质判断即可.【解答】解:A、对乘坐高铁的乘客进行安检,适宜采用普查方式,故符合题意;B、单项式的系数是π,故不符合题意;C、a2+b2的意义是表示a,b两数平方的和,故不符合题意;D、将弯曲的道路改直的数学道理是“两点之间,线段最短”,故不符合题意;故选:A.【点评】本题考查了抽样调查,单项式的定义,代数式的意义,线段的性质,熟练掌握抽样调查,单项式的定义,代数式的意义,线段的性质是解题的关键.一十三.代数式求值(共3小题)20.(2022秋•伊川县期末)若a+2b=3,则7+4b+2a= 13 .【分析】根据a+2b=3,可知2a+4b的值,进一步求解即可.【解答】解:∵a+2b=3,∴2a+4b=2(a+2b)=2×3=6,∴7+4b+2a=7+6=13,故答案为:13.【点评】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.21.(2022秋•平江县期末)如图是一个简单的数值运算程序框图,如果输入x的值为﹣1,那么输出的数值是 27 .【分析】根据程序框图计算即可求出答案.【解答】解:﹣1+(﹣2)=﹣3,(﹣3)3=﹣27,﹣27×(﹣1)=27,故答案为:27.【点评】本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.22.(2022秋•连云港期末)根据如图所示的计算程序,若输入的值x=﹣2,则输出的值y= 5 .【分析】根据程序图即可求出y的值.【解答】解:∵x=﹣2<0,∴把x=﹣2代入y=x2+1,得y=(﹣2)2+1=5.故答案为:5.【点评】本题考查代数式求值,解题的关键是正确理解程序图,本题属于基础题型.一十四.同类项(共2小题)23.(2022秋•紫金县期末)下列各组中两项属于同类项的是( )A.﹣x2y和xy2B.x2y和x2zC.﹣m2n3和﹣3n3m2D.﹣ab和abc【分析】根据同类项的定义逐个判断即可.【解答】解:A.﹣x2y和xy2,相同字母的指数分别不相等,不是同类项,故本选项不符合题意;B.x2y和x2z的字母不相同,不是同类项,故本选项不符合题意;C.﹣m2n3和﹣3n3m2的字母相同,相同字母的指数也分别相等,是同类项,故本选项符合题意;D.﹣ab和abc的字母不完全相同,不是同类项,故本选项不符合题意;故选:C.【点评】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项叫同类项,常数项是同类项.24.(2022秋•南海区校级期末)单项式x m﹣1y3与﹣4xy n是同类项,则m n的值是( )A.1B.3C.6D.8【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:根据题意得:m﹣1=1,n=3,解得:m=2,所以m n=23=8.故选:D.【点评】本题主要考查了同类项的定义,根据相同字母的指数相同列出方程是解题的关键.一十五.合并同类项(共1小题)25.(2022秋•建昌县期末)若多项式a3b m﹣2a n b4+3可以进一步合并同类项,则m,n的值分别是( )A.m=4,n=3B.m=3,n=4C.m=3,n=3D.m=4,n=4【分析】据同类项的定义(所含字母相同,相同字母的指数相同),即可求得m、n的值.【解答】解:∵多项式a3b m﹣2a n b4+3可以进一步合并同类项,∴a3b m和﹣2a n b4是同类项,∴m=4,n=3.故选:A.【点评】本题考查了同类项的定义,掌握同类项定义中相同字母的指数相同是关键.一十六.去括号与添括号(共1小题)26.(2022秋•海丰县期末)去括号:﹣(2a﹣3b)= ﹣2a+3b .【分析】根据去括号法则求解即可.【解答】解:﹣(2a﹣3b)=﹣2a+3b.故答案为:﹣2a+3b.【点评】本题主要考查了去括号,熟知去括号法则是解题的关键,如果括号前面是“+”号,去括号时不变号,如果括号前是“﹣”,去括号时要变号.一十七.单项式(共2小题)27.(2022秋•息县期末)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A.﹣2xy2B.3x2C.2xy3D.2x3【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,故本选项错误;B、3x2系数是3,故本选项错误;C、2xy3次数是4,故本选项错误;D、2x3符合系数是2,次数是3,故本选项正确;故选:D.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.28.(2022秋•万柏林区期末)单项式的系数是 .【分析】直接利用单项式的系数的确定方法分析得出答案.【解答】解:单项式的系数是:.故答案为:.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.一十八.多项式(共1小题)29.(2022秋•铁锋区期末)多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.【解答】解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.一十九.整式的加减(共1小题)30.(2022秋•甘肃期末)教材中“整式的加减”一章的知识结构如图所示,则A和B分别代表的是( )A.整式,合并同类项B.单项式,合并同类项C.系数,次数D.多项式,合并同类项【分析】根据整式的定义,整式的加减,可得答案.【解答】解:单项式和多项式统称作整式,整式的加减就是去括号,合并同类项,故选:D.【点评】本题考查了整式的相关概念,解题的关键是掌握单项式和多项式统称作整式,整式的加减就是去括号,合并同类项.二十.整式的加减—化简求值(共3小题)31.(2022秋•罗湖区期末)先化简,再求值:2(a2﹣2a)﹣(2a2﹣3a)+1,其中a=﹣3.【分析】直接去括号,进而合并同类项,再把已知数据代入求出答案.【解答】解:原式=2a2﹣4a﹣2a2+3a+1=﹣a+1,当a=﹣3时,原式=﹣a+1=﹣(﹣3)+1=4.【点评】此题主要考查了整式的加减——化简求值,注意括号前是“﹣”时,去括号后括号内各项要变号是解题关键.32.(2022秋•东丽区期末)先化简,再求值:,其中a=﹣3,.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:==﹣3a+b2,当时,原式=.【点评】此题考查了整式的加减——化简求值,熟练掌握运算法则是解本题的关键.33.(2022秋•永定区期末)计算:已知A=b2﹣a2+5ab,B=3ab+2b2﹣a2.(1)化简:2A﹣B;(2)当a=1,b=2时,求2A﹣B的值.【分析】(1)根据整式的加减运算进行化简即可求出答案.(2)将a与b的值代入原式即可求出答案.【解答】解:(1)原式=2(b2﹣a2+5ab)﹣(3ab+2b2﹣a2)=2b2﹣2a2+10ab﹣3ab﹣2b2+a2=﹣a2+7ab,(2)当a=1,b=2时,原式=﹣1+7×1×2=﹣1+14=13.【点评】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,属于基础题型.二十一.方程的解(共2小题)34.(2022秋•罗湖区期末)定义一种新的运算“⊗”,它的运算法则为:当a、b为有理数时,a⊗,比如:6⊗4==1,则方程x⊗2=1⊗x的解为x= .【分析】根据定义直接求解即可.【解答】解:∵x⊗2=1⊗x,∴x﹣,解得x=,故答案为:.【点评】本题考查一元一次方程的解,理解定义,结合新定义,能将所求问题转化为一元一次方程的解是解题的关键.35.(2022秋•思明区校级期末)如果关于m的方程2m+b=m﹣1的解是﹣4,求b的值 3 .【分析】把m=﹣4代入方程,求出b的值即可.【解答】解:∵关于m的方程2m+b=m﹣1的解是﹣4,∴2×(﹣4)+b=﹣4﹣1,∴b=3.故答案为:3.【点评】本题考查方程的解,关键是掌握方程解的定义.二十二.等式的性质(共1小题)36.(2022秋•陵城区期末)下列运用等式的性质,变形不正确的是( )A.若x=y,则x+5=y+5B.若x=y,则=C.若x=y,则1﹣3x=1﹣3y D.若a=b,则ac=bc【分析】直接利用等式的基本性质进而判断得出即可.【解答】解:A、若x=y,则x+5=y+5,正确,不合题意;B、若x=y,则=,a≠0,故此选项错误,符合题意;C、若x=y,则1﹣3x=1﹣3y,正确,不合题意;D、若a=b,则ac=bc,正确,不合题意.故选:B.【点评】此题主要考查了等式的性质,正确把握相关性质是解题关键.二十三.一元一次方程的定义(共1小题)37.(2022秋•新泰市期末)如果(4﹣m)x|m|﹣3﹣16=0是关于x的一元一次方程,那么m 的值为( )A.±4B.4C.2D.﹣4【分析】依据一元一次方程的定义可知|m|﹣3=1且m﹣4≠0,从而可求得m的值.【解答】解:∵(4﹣m)x|m|﹣3﹣16=0是关于x的一元一次方程,∴|m|﹣3=1且m﹣4≠0,解得m=﹣4.故选:D.【点评】本题主要考查的是一元一次方程的定义,由一元一次方程的定义得到|m|﹣3=1且m﹣4≠0是解题的关键.二十四.一元一次方程的解(共6小题)38.(2022秋•黄埔区校级期末)若x=1是关于x的方程2x+a=0的解,则a的值为( )A.﹣1B.﹣2C.1D.2【分析】根据一元一次方程的解的定义解决此题.【解答】解:由题意得:当x=1时,2+a=0.∴a=﹣2.故选:B.【点评】本题主要考查一元一次方程的解,熟练掌握一元一次方程的解的定义是解决本题的关键.39.(2022秋•兴隆县期末)方程mx+2x﹣12=0是关于x的一元一次方程,若此方程的解为正整数,则正整数m的值有几个( )A.2个B.3个C.4个D.5个【分析】根据方程的解是正整数,可得(m+2)是12的约数,根据12的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx+2x﹣12=0,得,∵方程mx+2x﹣12=0是关于x的一元一次方程,此方程的解为正整数,m是正整数,∴m+2=3或4或6或12,解得m=1或2或4或10,∴正整数m的值有4个.故选:C.【点评】本题考查了一元一次方程的解,正确理解m+2=3或4或6或12是关键.40.(2022秋•沙依巴克区校级期末)如果x=3是关于x的方程3m﹣2x=6的解,则m的值是( )A.0B.C.﹣4D.4【分析】把x的值代入方程计算即可求出m的值.【解答】解:把x=3代入方程得:3m﹣6=6,解得:m=4,故选:D.【点评】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.41.(2022秋•孝南区期末)关于x的一元一次方程mx+1=2的解为x=﹣1,则m= ﹣1 .【分析】将x=﹣1代入方程mx+1=2,得到关于m的一元一次方程,解方程即可求出m 的值.【解答】解:∵关于x的一元一次方程mx+1=2的解为x=﹣1,∴﹣m+1=2,解得m=﹣1.故答案为:﹣1.【点评】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.42.(2022秋•兴化市校级期末)小王同学在解方程3x﹣2=☆x﹣5时,发现“☆”处的数字模糊不清,但察看答案可知该方程的解为x=3,则“☆”处的数字为 4 .【分析】根据方程的解满足方程,设☆=a,可得关于a的方程,根据解方程,可得a的值.【解答】解:设☆=a,由x=3是3x﹣2=ax﹣5的解,得3×3﹣2=3a﹣5,解得a=4.故答案为:4.【点评】本题考查解一元一次方程的解和解方程,解题的关键是掌握解一元一次方程.43.(2022秋•沅江市期末)若x=3是关于x的方程ax+4=1的解,则a= ﹣1 .【分析】根据方程解的定义,把x=3代入方程即可得出a的值.【解答】解:∵x=3是关于x的方程ax+4=1的解,∴3a+4=1,∴a=﹣1,故答案为:﹣1.【点评】本题考查了一元一次方程的解,掌握方程解的定义,以及一元一次方程的解法是解题的关键.二十五.解一元一次方程(共5小题)44.(2022秋•交口县期末)下列方程的变形中,正确的是( )A.由﹣2x=9,得x=﹣B.由x=0,得x=3C.由7=﹣2x﹣5,得2x=5﹣7D.由3=x﹣2,得x=3+2【分析】应用等式的性质进行计算即可得出答案.【解答】解:A.由﹣2x=9,得x=﹣,所以A变形不正确,故A选项不符合题意;B.由x=0,得x=0,所以A变形不正确,故A选项不符合题意;C.由7=﹣2x﹣5,得2x=﹣5﹣7,所以C变形不正确,故C选项不符合题意;D.由3=x﹣2,得x=3+2所以D变形正确,故D选项不符合题意.故选:D.【点评】本题主要考查了等式的性质,熟练掌握等式的性质是解决本题的关键.45.(2022秋•南开区校级期末)定义运算法则:a⊕b=a2+ab,例如3⊕2=32+3×2=15.若2⊕x=10,则x的值为 3 .【分析】根据题意列出关于x的一元一次方程,求出x的值即可.【解答】解:∵2⊕x=10,∴22+2x=10,即4+2x=10,解得x=3.故答案为:3.【点评】本题考查的是解一元一次方程,根据题意得出关于x的一元一次方程是解题的关键.46.(2022秋•平桥区期末)解方程:.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项、合并同类项,系数化为1,从而得到方程的解.【解答】解:去分母得:2(x+3)=12﹣3(3﹣2x)去括号得:2x+6=12﹣9+6x移项得:2x﹣6x=12﹣9﹣6合并同类项得:﹣4x=﹣3系数化为1得:x=.【点评】注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.47.(2022秋•新泰市期末)解方程(1)4x﹣6=2(3x﹣1);(2)y﹣=3﹣【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣6=6x﹣2,移项合并得:﹣2x=4,解得:x=﹣2;(2)去分母得:10y﹣5(y﹣1)=30﹣2(y+2),去括号得:10y﹣5y+5=30﹣2y﹣4,移项合并得:7y=21,解得:y=3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.48.(2022秋•望城区期末)解下列方程:(1)4x﹣3=2﹣5x;(2).【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号、移项、合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,4x+5x=2+3,合并同类项得,9x=5,x的系数化为1得,x=;(2)去分母得,2(2x﹣1)﹣(10x+1)=12,去括号得,4x﹣2﹣10x﹣1=12,移项得,4x﹣10x=12+2+1,合并同类项得,﹣6x=15,x的系数化为1得,x=﹣.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.二十六.由实际问题抽象出一元一次方程(共1小题)49.(2022秋•罗湖区期末)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x【分析】题目已经设出分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),故B答案正确,故选:B.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.二十七.认识立体图形(共1小题)50.(2022秋•泗阳县期末)在一个六棱柱中,共 18 有条棱.【分析】根据六棱柱的特点可得答案.【解答】解:在一个六棱柱中,共有3×6=18条棱,故答案为:18.【点评】此题主要考查了认识立体图形,关键是认识常见的立体图形,掌握棱柱、棱锥、圆柱、圆锥的特点.二十八.点、线、面、体(共1小题)51.(2022秋•市南区期末)下面现象说明“线动成面”的是( )A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【解答】解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选:D.【点评】本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.二十九.专题:正方体相对两个面上的文字(共1小题)52.(2022秋•新都区期末)一个正方体的平面展开图如图所示,将它折成正方体后“时”字对面的字是 分 .【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“时”字相对的面上的字是“分”.故答案为:分.。
初中数学七年级上册知识点与常考题型梳理

七年级上册知识点与题型归纳讲次01 有理数的分类及数轴考点一、有理数分类按照整数和分数的分类【注意】0既不是正数也不是负数。
按正数、负数、和零的关系分类有理数分类注意事项:1.无限不循环的小数不是有理数,比如:圆周率。
2.无限循环的小数是有理数,比如:0.6666666…3.如200%,6/3能约分成整数的数不能算做分数考点二、数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度(重点)画数轴步骤:画直线-取原点-规定正方向-单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数. 实心点表示包括本数,空心点表示不包括本数。
命题角度一 正负数在实际生活中的应用例题1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -【解析】若向东走2m 记作+2m ,则向西走3m 记作-3m ,选C .变式1.如果+20%表示增加20%,那么﹣6%表示( )A .增加14%B .增加6%C .减少6%D .减少26%【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.选C .变式2.四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是( )A .+10B .﹣20C .﹣3D .+5【解析】最符合规定的是﹣3,选C .变式3.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置( )A .在书店B .在花店C .在学校D .不在上述地方【解析】根据题意:小明从书店沿街向东走了20米,接着又向西走了–30米,即向东走了50米,而学校位于书店东边50米处,故此时小明的位置在学校.选C .命题角度二 有理数的分类例题2.把下列各数填入它所在的数集的括号里. ﹣12,+5,﹣6.3,0,﹣1213,245,6.9,﹣7,210,0.031,﹣43,﹣10% 正数集合:{ …};整数集合:{ …}非负数集合:{ …};负分数集合:{ …}.【解析】正数集合:{+5,245,6.9,210,0.031 …}; 整数集合:{+5,0,﹣7,210,﹣43 …};非负数集合:{+5,0,245,6.9,210,0.031 …}; 负分数集合:{﹣12,﹣6.3,﹣1213,﹣10% …}.故答案为{+5,245,6.9,210,0.031…};{+5,0,﹣7,210,﹣43…};{+5,0,245,6.9,210,0.031 …};{﹣12,﹣6.3,﹣1213,﹣10%…}.变式1.所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:-2.5,3.14,-2,+72,-0.6,0.618,0,-0.101正数集合:{ …};负数集合:{ …};分数集合:{ …};非负数集合:{ …}.【解析】正数集合:{3.14,+72,0.618,…};负数集合:{-2.5,-2,-0.6,-0.101,…};分数集合:{-2.5,3.14,-0.6,0.618,-0.101,…};非负数集合:{3.14,+72,0.618,0,…}.变式2.(1)如图,下面两个圈分别表示负数集和分数集,请你把下列各数填入它所在的数集的圈里;2016,﹣15%,﹣0.618,712,﹣9,﹣23,0,3.14,﹣72(2)上图中,这两个圈的重叠部分表示什么数的集合?(3)列式并计算:在(1)的数据中,求最大的数与最小的数的和.【解析】(1)根据题意如图:(2)这两个圈的重叠部分表示负分数集合;-,(3)最大数是2016,最小数是72+-=.∴最大的数与最小的数之和2016(72)1944命题角度三数轴的三要素及画法例题3.下列数轴画正确的是()A.B.C.D.【解析】A、没有单位长度,故错误;B、没有正方向,故错误;C、原点、正方向、单位长度都符合数轴的条件,故正确;D、数轴的左边单位长度的表示有错误.选C.变式1.下列图中数轴画法不正确...的有().(1)(2)(3)(4)(5)A.2个B.3个C.4个D.5个【解析】(1)没有正方向,数轴画法不正确;(2)单位不统一,数轴画法不正确;(3)缺少单位长度,数轴画法不正确;(4)单位不统一,数轴画法不正确;(5)符合数轴的定义,数轴画法正确.选C.变式2.下列各图表示数轴正确的是()A.B.C.D.【解析】各图表示数轴正确的是:.选C.命题角度四用数轴上的点表示有理数例题4.如图,在数轴上,小手遮挡住的点表示的数可能是()A.﹣1.5 B.﹣2.5 C.﹣0.5 D.0.5【解析】由数轴可知小手遮挡住的点在-1和0之间,而选项中的数只有-0.5在-1和0之间,所以小手遮挡住的点表示的数可能是-0.5,选C.变式1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.-1【解析】数轴上蝴蝶所在点表示的数可能为-1,选D.变式2.如图,25倒数在数轴上表示的点位于下列两个点之间( )A.点E和点F B.点F和点G C.点F和点G D.点G和点H【解析】25的倒数是52,∴52在G和H之间,选D.变式3.若|a|=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧【解析】∵|a|=-a,∴a一定是非正数,∴实数a在数轴上的对应点一定在原点或原点左侧,选B.命题角度五利用数轴表示有理数的大小例题5.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【解析】根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即得出答案.∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,变式1.,在数轴上位置如图所示,则,,,的大小顺序是( )A.B.C.D.【解析】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,选D.变式2.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【解析】试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.选D.变式3.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是( )A.m<-1B.n>3C.m<-n D.m>-n【解析】由数轴可得,-1<m<0<2<n<3,选项A错误,选项B错误,∴m>-n,选项C错误,选项D正确命题角度六数轴上的动点问题例题6.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是()A.m B.n C.p D.q【解析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,-1,-2,-3,则分别与圆周上表示字母为m ,q ,p ,n 的点重合.2019÷4=504...3,故-2016与n 点重合. 变式1.在数轴上,把表示﹣4的点移动1个单位长度后,所得到的对应点表示的数为( ) A .﹣2 B .﹣6 C .﹣3 或﹣5 D .无法确定【解析】把表示﹣4的点向左移动1个单位长度为-5,向右移动1个单位长度为-3.选C . 变式2.已知数轴上的三点A 、B 、C ,分别表示有理数a 、1、﹣1,那么|a +1|表示为( ) A .A 、B 两点间的距离 B .A 、C 两点间的距离C .A 、B 两点到原点的距离之和D .A 、C 两点到原点的距离之和【解析】因为1(1)a a +=--,所以1a +表示A 点与C 点之间的距离,选B变式3.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A 与表示1的点重合,滚动一周后到达点B ,点B 表示的数是( )A .﹣2πB .1﹣2πC .﹣πD .1﹣π【解析】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴AB 之间的距离为圆的周长=2π,A 点在数轴上表示1的点的左边.∴A 点对应的数是1﹣2π.选B .讲次02 绝对值与相反数考点一 相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数) 注意:1、通常a 与-a 互为相反数;2、a 表示任意一个数,可以是正数、负数,也可以是0;3、特别注意,0的相反数是0.考点二 绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
人教版七年级数学上册期末复习必刷基础题型

人教版七年级数学上册期末复习必刷基础题型一、选择题1.2020-的相反数是( )A .2020-B .2020C .12020-D .120202.-5的绝对值是( )A .15B .15- C .5 D .-53.52-的倒数是( ) A .52- B .52 C .25 D .25- 4.下列四个数中,是负分数的是( )A .32B .4C .-5D .13- 5.如果向左走3米记作3+米,那么向右走了5米可以记作( )A .3+米B .3-米C .5+米D .5-米6.如图,在数轴上点M 表示的数可能是( )A . 3.2-B . 1.5-C . 2.4-D .2.47.某天早晨的气温是5℃,到中午时下降了8℃,则中午的气温是( )A .13℃B .3℃C .-7℃D .-3℃8.新冠肺炎疫情肆虐全球.截至北京时间11月28日零时全球新冠肺炎累计确诊病例已超6400万例,将数6400万用科学记数法表示为( )A .6.4×106B .6.4×107C .6.4×108D .6.4×1099.下列各组数中,互为相反数的一组是( )A .()23-与23-B .23-与23C .()23-与23D .23--与23- 10.单项式223xy π-的系数和次数分别是( ) A .2,33 B .﹣2,33 C .2,33π- D .﹣2,211.下列各运算中,计算正确的是( )A .4xy +xy =5xyB .x +2x =2x 2C .5xy ﹣3xy =2D .x +y =xy12.下列方程为一元一次方程的是( )A .﹣x ﹣3=4B .x 2+3=x +2C .1x ﹣1=2D .2y ﹣3x =213.下列各式中,变形正确的是( )A .如果a=b ,那么a+c=b-cB .如果a 2=4,那么a=2 C .如果2a 3a =,那么a=3D .如果a b c c =,那么a=b 14.方程231x -=的解为( )A .2x =B .1x =C .1x =-D .2x =- 15.已知两个有理数m ,n 满足()2320m n -++=,则n m -的值为( )A .5B .5-C .1D .1-16.下列图形中,经过折叠不能围成一个正方体的是( )A .B .C .D .17.下列图形中,不是柱体的是( )A .B .C .D .18.平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( )A .2条B .3条C .4条D .1条或3条19.已知∠A =3045'︒,∠B =30.45°,则∠A ( )∠BA .>B .<C .=D .无法确定20.下列图形中,表示南偏东60°的射线是( )A .B .C .D .21.已知一个角是30°,那么这个角的补角的度数是( )A .120°B .150°C .60°D .30°22.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,125=∠,2∠的大小是( )A .25°B .35°C .55°D .65°二、填空题 23.某种零件,标明要求是Φ:20±0.02mm(Φ表示直径).经检查,一个零件的直径是19.9mm ,该零件_______(填“合格”或“不合格”).24.把在数轴上表示2-的点移动3个单位长度后,所得到对应点的数是__________.25.已知|2a-3|=4,则a =_______.26.计算:13()33-÷-⨯=_______.27.比较大小: -(+8)____ (- 2)3(填“>”,“=”, 或“<” ).28.如果把6.4872按四舍五入法精确到百分位为_______.29.多项式2x -2x 3+是_____次_____项式30.若x 27a b 与3y a b -的和为单项式,则xy =______.31.已知(m ﹣3)x |m|-2+4=18是关于x 的一元一次方程,则m=___________.32.方程23x x =-的解为____.33.一个直角三角形绕它的一条直角边旋转一周得到的几何体是________.34.要在墙上钉牢一根木条至少需要_____根铁钉,其数学道理是_____35.已知α∠和β∠互补,且3512α'∠=︒,则β∠=__________.36.42.34︒=_________°_________′_________″. 37.已知∠α=36°14′,则∠α的余角的度数是_____.38.如图,C 是线段BD 的中点,3AD =,7AC =,则线段AB 的长等于________.三、解答题39.计算:(1)14-(-12)+(-25)-7 (2)313()24468-+-⨯ (3)233122(2)()22--⨯+-÷-.40.化简(1)(73)(85)y z y z --- (2)()()2244122k k k k +--+41.解方程(1)23(1)1x x --= (2)11125x x +--=42.先化简,再求值:()2222322a b ab a b ab+--,其中2a =-,3b =.43.如图所示,已知平面上有四个点A 、B 、C 、D .(1)连结AB ,并画出AB 的中点P ;(2)作射线AD ;(3)作直线BC 与射线AD 交于点E .44.某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库):+26,-32,-15,+34,-33,-20.(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存200吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨15元,那么这3天要付多少装卸费?45.如图,O 为直线DA 上的一个点,130AOB ∠=︒,OE 是AOB ∠的平分线,90COB ∠=︒,求AOC ∠和COE ∠的度数.46.如图,已知线段AB=14cm,C是线段AB上一点,且BC=8cm,(1)求线段AC的长;(2)若M是AB的中点,N是AC的中点,求线段MN的长.学海迷津:数学学习十大方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
七年级上册数学常考题型归纳

七年级上册数学常考题型归纳
一、数学运算题
1、基本运算:要求熟练掌握加减乘除的运算,正确率控制在100%以上。
2、综合运算:要求能够将课上学过的计算方法运用至实际综合问题的求解中。
3、运算能力:要求能够在规定的范围内,特殊情况下或其它时候能够运用相应的运算方法,把复杂问题变为简单问题。
二、分析题
1、假设分析:要求能够从假设证明的角度出发,分析与解决问题。
2、计算分析:要求能够去解决一些特殊的数学问题,根据给出的数据作出相应的数据分析。
3、综合分析:要求能够根据所提供的一系列数据作出判断,做出正确的综合分析,推出正确的结论。
三、图形题
1、几何图形:要求能够识别几何图形,进行快速分析;形状分析;结论推导,形成最佳解决方案。
2、几何运算:要求能够运用几何图形运算,如:斜率求解,直线求斜率,圆的运算等。
3、几何变换:要求能够使用几何变换,如旋转,平移,缩放,翻转等
来解决几何图形位置及大小等问题。
四、代数题
1、代数方程:要求能够解决一元二次方程、一次不定方程、不等式等各类代数方程。
2、函数计算:要求有一定的数学基本运算能力,能够规范计算函数图像以及函数在特定点值。
3、解析几何:要求能够正确把握几何几率与代数几何的区别,在解决坐标几何、原点几何等问题中有所施展。
五、数论题
1、数列数组:要求熟练掌握等差数列、等比数列、级数等数列的特点与计算,能够迅速求解数组。
2、等式的比较:要求能够熟练掌握数论计算中的比较大小规律,知道如何快速判断含有未知数的等式的真假。
3、质数:要求能够判断哪些是质数,哪些是合数,并且能够列出某个定范围内的质数表。
(新)人教版七年级数学上册期末常考题型总结

ab 0七年级数学上册期末常考题型总结第一章有理数一、正负数的运用1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适. A .18℃~20℃ B .20℃~22℃ C .18℃~21℃ D .18℃~22℃2、我县2011年12月21日至24日每天的最高气温与最低气温如下表:日期 12月21日12月22日12月23日12月24日最高气温 8℃ 7℃ 5℃ 6℃ 最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【 】A .12月21日B .12月22日C .12月23日D .12月24日二、数轴 (在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【 】A .-1B .-2C .-3D .-4 (思考:如果没有图,结果又会怎样?)4、若数轴上表示2的点为M ,那么在数轴上与点M 相距4个单位的点所对应的数是______.5、如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>6、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( )A .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a -7、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( )A .0ab >B .0a b +<C .1a b <D .0a b -<8、有理数a 、b 、c 在数轴上的位置如图3所示,且 a 与b 互为相反数,则c b c a +--= .9、如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是 .B 02A-1 a 01 b图3ao cb 图3三、相反数 (相反的两数相加等于0,相反数与数轴的联系) 10、下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与1四、倒数 (互为倒数的两数的积为1) 11、-3的倒数是________.五、绝对值 (|a |≥0,即非负数;化简|a+b |类式子时关键看a+b 的符号;如果|a |=b ,则a =±b ) 12、2-等于( )A .-2B .12-C .2D .1213、若ab≠0,则等式a b a b+=+成立的条件是______________14、若有理数a, b 满足(a-1)2+|b+3|=0, 则a-b=15、有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是_____________.六、乘方运算[理解乘方的意义;(-a)2与-a 2的区别;(-1)奇与(-1)偶的区别] 16、下列计算中正确的是( )A .532a a a =+ B .22a a -=- C .33)(a a =- D .22)(a a --七、科学计数法 (表示形式a ×10n)17、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法) 18、由四舍五入法得到的近似数3108.8×,下列说法中正确的是【 】A .精确到十分位B .精确到个位C .精确到百位D .精确到千位 19、下面说法中错误的是( ). A .368万精确到万位 B .2.58精确到百分位C .0.0450有精确到千分位D .10000精确到万位表示为“1万”或“1×104” 九、有理数的运算(运算顺序;运算法则;运算定律;简便运算) 20、计算:(1)-2123+334-13-0.25 (2)22+2×[(-3)2-3÷12](3))23(24)32(412)3(22---×++÷÷ (4)24)75.337811()1()21(25.032×++×÷----(5)(-1)3-14×[2-(-3)2] .(6)计算:()2431(2)453⎡⎤-+-÷⨯--⎣⎦十、综合应用21、已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有().A.1 B.2 C.3 D.422、下列说,其中正确的个数为()①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a-一定在原点的左边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ab 0七年级上册数学常考题型归纳第一章有理数一、正负数的运用 :1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适; A .18℃~20℃ ; B .20℃~22℃ ; C .18℃~21℃ ; D .18℃~22℃;2、我县2011年12月21日至24日每天的最高气温与最低气温如下表: 日期 12月21日12月22日12月23日12月24日最高气温 8℃ 7℃ 5℃ 6℃ 最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【 】;A .12月21日;B .12月22日;C .12月23日;D .12月24日 ;二、数轴: (在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【 】;A .-1;B .-2 ;C .-3 ;D .-4; (思考:如果没有图,结果又会怎样?)4、若数轴上表示2的点为M ,那么在数轴上与点M 相距4个单位的点所对应的数是______;5、如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( );;A .a +b>0 ;B .ab >0;C .110a b -<;D .110a b +>6、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( ); A .a <a -<b <b -; B .b -<a <a -<b ;C .a -<b <b -<a ;D .b -<a <b <a -;7、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( );A .0ab >B .0a b +<C .1ab <D .0a b -<8、有理数a 、b 、c 在数轴上的位置如图3所示,且 a 与b 互为相反数,则c b c a +--= ;9、如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是 .三、相反数 :(相反的两数相加等于0,相反数与数轴的联系)B 02A-1 a 01 b 图3ao cb 图310、下列各组数中,互为相反数的是( );A .)1(--与1 ;B .(-1)2与1; C .1-与1; D .-12与1;四、倒数 :(互为倒数的两数的积为1)11、-3的倒数是________;五、绝对值 (|a |≥0,即非负数;化简|a+b |类式子时关键看a+b 的符号;如果|a |=b ,则a=±b )12、2-等于( ); A .-2 ; B .12- ; C .2 ;D .12; 13、若ab ≠0,则等式a b a b+=+成立的条件是______________;14、若有理数a, b 满足(a-1)2+|b+3|=0, 则a-b= ;15、有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是_____________;六、乘方运算[理解乘方的意义;(-a)2与-a 2的区别; (-1)奇与(-1)偶的区别]16、下列计算中正确的是( );A .532a a a =+ ;B .22a a -=- ; C .33)(a a =- ; D .22)(a a --;七、科学计数法 (表示形式a ×10n )17、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法)18、由四舍五入法得到的近似数3108.8×,下列说法中正确的是【 】;A .精确到十分位 ;B .精确到个位;C .精确到百位;D .精确到千位; 19、下面说法中错误的是( );A .368万精确到万位 ;B .2.58精确到百分位;C .0.0450有精确到千分位 ;D .10000精确到万位表示为“1万”或“1×104”;九、有理数的运算(运算顺序;运算法则;运算定律;简便运算)20、计算:(1)-2123+334-13-0.25 (2)22+2×[(-3)2-3÷12] (3))23(24)32(412)3(22---×++÷÷ (4)24)75.337811()1()21(25.032×++×÷----(5)(-1)3-14×[2-(-3)2] .(6)计算:()2431(2)453⎡⎤-+-÷⨯--⎣⎦十、综合应用:21、已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有();A.1 ; B.2; C.3 ; D.4;22、下列说,其中正确的个数为();①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a-一定在原点的左边。
A.1个 ; B.2个 ; C.3个 ; D.4个;23、出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-2,+5,-1,+1,-6,-2,问:(1)将最后一位乘客送到目的地时,小李在什么位置?若汽车耗油量为 0.21L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(2)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?24、最大的负整数是,绝对值最小的有理数是;25、你会玩“二十四点”游戏吗?请你在“2,-4,12,1”这四个数中利用有理数的混合运算,使四个数的运算结果为24(每个数只能用一次),写出你的算式 ;26、尊师重教.教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?第二章整式一、单项式与多项式的定义、项、系数、次数、升降幂排列:1、多项式3x 2-2xy 3-21y -1是( ); A .三次四项式 ; B .三次三项式 ; C .四次四项式; D .四次三项式;2、单项式12-xy 2的系数是_________;3、下列结论中,正确的是( );A .单项式732xy 的系数是3,次数是2 ; B .单项式m 的次数是1,没有系数;C .单项式z xy 2-的系数是1-,次数是4 ; D .多项式322++xy x 是三次三项式;4、请写出一个系数为5,且含有x 、y 两个字母的三次单项式 ;5、下列式子中是单项式的是( ); A .2x 2-3x-1 ;B .32y x 37-; C .zxy2 ; D .)y x (212-;6、若单项式1275+n y ax 与457y ax m -的差仍是单项式,则m-2n=_____.二、同类项:7、下面不是同类项的是( ); A .-2与21; B .2m 与2n; C .b a 22-与b a 2; D .22y x -与2221y x ;8、下列各组单项式中,为同类项的是( ); A .a 3与a 2; B .12a 2与2a 2 ; C .2xy 与2x ; D .-3与a; 9、若-2X m+1y 2与3x 3y n-1是同类项,则m+n 的值( ); A. 3 ; b. 4 ; C. 5 ; D. 6; 10、若-5a n b n-1与21m b a 31+是同类项,则(-n )m的值为( );三、整式的化简与求值:11、先化简,再求值,222963()3y x y x -++-,其中12-==y x ,.12、化简)3232)21(x --x (+的结果是【 】; A .317+x - ; B .315+x -; C .6115x -- ; D .6115+x -;13、先化简再求值:)2(3)2(4)2(2)2(522b a b a -b a -b a +++++,其中21=a ,9=b ;14、先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.四、综合应用:15、多项式223368x kxy y xy --+-不含xy 项,则k = ; 16、已知:22321A x xy x =+--,21B x xy =-+- (1)求3A +6B 的值;(2)若3A +6B 的值与x 的值无关,求y 的值。
17、已知()0212=++-y x ,求()()16322222++--y x xyxyy x 的值.18、18、小王家购买了一套经济适用房,他家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:1)写出用含x 、y 的代数式表示地面总面积;2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?第三章一元一次方程一、一元一次方程的定义:1、下列方程为一元一次方程的是( )A .y +3= 0 ;B .x +2y =3 ;C .x 2=2x ; D .21=+y y; 2、若方程(a -1)x a-2=3是关于x 的一元一次方程,则a 的值为_______;3、若(m+3)x︱m ︱-2+2=1是关于x 的一元一次方程,则m 的值为 .;二、方程的解:4、若x =3是方程a -x =7的解,则a 的值是( ); A .4 ; B .7 ; C .10 ; D .73; 5、请你写出一个解为x =2的一元一次方程 ; 6、若x=-2是方程3x-4m=2的解,则m 的值为( ) A .1; B .-1; C .2; D .-2; 三、方程的解法: 7、在解方程123123x x -+-=时,去分母正确的是( ); A .3(x -1)-2(2+3x )=1 B .3(x -1)+2(2x +3)=1 C .3(x -1)+2(2+3x )=6 D .3(x -1)-2(2x +3)=6 8、解下列方程:(1)231x x -=+ (2)13312x x --=-9、解方程:(1)513x +-216x -=1. (2)13421+=-x x (3)0.10.20.02x --10.5x += 3.四、列方程解应用题:10、甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程( );A .98+x =x -3;B .98-x =x -3;C .(98-x )+3=x ;D .(98-x )+3=x -3; 11、如图4,宽为50cm 的长方形图案由10个大小相等的小 长方形拼成,其中一个小长方形的面积为【 】;A.4000cm 2; B. 600cm 2; C. 500cm 2; D. 400cm 2;12、一件夹克衫先按成本提高50%标价,再以8折(标价的80%利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ); A .(1+50%)x ×80%=x -28 ; B .(1+50%)x ×80%=x +28; C .(1+50%x)×80%=x -28 ; D .(1+50%x)×80%=x +28;13、轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ); A .32428-=x x ; B .32428+=x x ; C .3262262+-=+x x ; D .3262262-+=-x x ; 14、已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5; 15、根据图中提供的信息,可知一个杯子的价格是________元;16、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。