初一数学七下不等式所有知识点总结和常考题型练习题
(文末带答案)七年级数学下册不等式与不等式组常考必考知识点总结

(文末带答案)七年级数学下册不等式与不等式组常考必考知识点总结单选题1、已知关于x 的分式方程m−2x+1=1的解是负数,则m 的取值范围是( )A .m≤3B .m≤3且m≠2C .m <3D .m <3且m≠22、若关于x 的一元一次不等式组{x −2m <0x +m >2无解,则m 的取值范围是( ) A .m ≤23B .m <23C .m ≥23D .m >23 3、若a <b ,则下列不等式变形正确的是( )A .ac 2<bc 2B .a b >1C .-ca >-cbD .3a -c <3b -c 4、ax >b 的解集是( )A .x >b aB .x <b aC .x =b aD .无法确定 5、“x 的2倍与3的和是非负数”列成不等式为( )A .2x +3≥0B .2x +3>0C .2x +3≤0D .2x +3<06、不等式﹣2x >12的解集是( )A .x <﹣14B .x <﹣1C .x >﹣14D .x >﹣17、不等式3x +6≤0的解集是( )A .x ≤−2B .x ≤2C .x ≥12D .x ≥−28、已知关于x 的不等式2x +a ≤1与−2x ≥2的解集相同,则a 的值为( )A .3B .2C .1D .无法确定填空题9、已知x 为不等式组{2−x <12(x −1)<x +1的解,则|x −3|+|x −1|的值为______.10、不等式−5x >11的解集是__________.11、定义:[x]表示不大于x 的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a ﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a ,使得a 2=2[a].其中正确的是_____.(写出所有正确结论的序号)12、“b 的12与c 的和是负数”用不等式表示为_________.13、已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____. 解答题14、若关于x 、y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x+y >﹣32,求出满足条件的m 的所有正整数值. 15、某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?(文末带答案)七年级数学下册不等式与不等式组_009参考答案1、答案:D解析:解方程得到方程的解,再根据解为负数得到关于m 的不等式结合分式的分母不为零,即可求得m 的取值范围. m−2x+1=1,解得:x=m ﹣3,∵关于x 的分式方程m−2x+1=1的解是负数,∴m ﹣3<0,解得:m <3,当x=m ﹣3=﹣1时,方程无解,则m≠2,故m 的取值范围是:m <3且m≠2,故选D .小提示:本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.2、答案:A解析:分别求出各不等式的解集,再根据不等式组无解即可得出m 的取值范围.解:{x −2m <0①x +m >2②解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得m≤23.故选A.小提示:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.3、答案:D解析:根据不等式的基本性质逐一分析即可.A.当c=0时,ac2=bc2,故该项变形不正确;B.当b<0时,ab >1;当b>0时,ab<1,故该项变形不正确;C.当c=0时,−ca=−cb,故该项变形不正确;D.若a<b,则3a−c<3b−c,故该项变形正确;故选:D.小提示:本题考查不等式的基本性质,正确把握不等式基本性质是解题关键.4、答案:D解析:根据不等式的性质,先确定a的符号,再确定不等号的方向即可解答.解:由于a的符号不能判断,所以不等号的方向也不确定,所以解集无法确定.故选D.小提示:本题考查了不等式的性质:在不等式两边同加或减一个数或式子,不等号方向不变;在不等式两边同乘或除以一个正数或式子,不等号的方向不变;在不等式两边同乘或除以一个负数或式子不等号方向改变.5、答案:A解析:非负数就是大于或等于零的数,再根据x的2倍与3的和是非负数列出不等式即可.解:“x的2倍与3的和是非负数”列成不等式为:2x+3≥0,故选:A.小提示:本题考查的是列不等式,掌握“非负数是正数或零,用不等式表示就是大于或等于零”是解题的关键.6、答案:A解析:解:根据不等式的基本性质3,不等式两边同除以-2,即可得x<-14故选A.小提示:此题主要考查了不等式的性质,利用不等式的基本性质3解题,关键是注意两边同时乘以或除以同一个负数,不等式的符号改变.7、答案:A解析:利用不等式的性质即可得到不等式的解集.解:3x+6≤03x≤-6x≤-2故选:A.小提示:本题考查了解一元一次不等式:根据不等式的性质先去分母,有括号的再去括号,然后移项、合并,最后得到不等式的解集.8、答案:A解析:求出不等式−2x≥2的解集,对应2x+a≤1即可得出答案.解:2x+a≤1,,解得x≤1−a2−2x≥2,解得x≤−1,∴1−a=−1,2∴a=3,故选:A.小提示:本题考查了解一元一次不等式以及解一元一次方程,解题的关键是根据两不等式解集相同得出关于a的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,能够熟练的运用解不等式的知识解出不等式是关键.9、答案:2解析:解不等式组得到x的范围,再根据绝对值的性质化简.解:{2−x<1①2(x−1)<x+1②,解不等式①得:x>1,解不等式②得:x<3,∴不等式组的解集为:1<x<3,∴|x−3|+|x−1|=−(x−3)+(x−1)=−x+3+x−1=2所以答案是:2.小提示:本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.10、答案:x<−115解析:根据不等式的性质求出不等式的解集即可.∵−5x >11,两边同除以-5,不等式方向改变,得x <−115.故填:x <−115.小提示:本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.11、答案:①②③.解析:根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.①[﹣1.2]=﹣2,故①正确;②[a ﹣1]=[a]﹣1,故②正确;③[2a]<[2a]+1,故③正确;④当a =0时,a 2=2[a]=0;当a =√2时,a 2=2[a]=2;原题说法是错误的.故答案为①②③.小提示:本题考查新定义,解答本题的关键是明确题目中的新定义,可以判断出各个小题中的结论是否正确.12、答案:12b +c<0解析:“b 的12与c 的和是负数”用不等式表示为:12b +c <0.故答案为12b +c <0.13、答案:16解析:解不等式组得-3≤x≤4,根据两点间的距离的公式知当-1≤x≤1时,S=|x-1|+|x+1|取得最小值;当x=4时,S=|x-1|+|x+1|取得最大值,继而可得答案.解不等式5(x+1)≥3x﹣1,得:x≥﹣3,解不等式12x−1≤7−32x,得:x≤4,则﹣3≤x≤4,当﹣1≤x≤1时,S=|x﹣1|+|x+1|取得最小值,最小值n=2,当x=4时,S=|x﹣1|+|x+1|取得最大值,最大值m=8,∴mn=2×8=16,所以答案是:16.小提示:本题主要考查解一元一次不等式组,解题的关键是掌握熟练掌握解不等式组的能力和数轴上两点间的距离公式.14、答案:1、2、3.解析:方程组两方程相加表示出x+y,代入已知不等式求出m的范围,确定出正整数值即可.解:{2x+y=−3m+2①x+2y=4②,①+②得:3(x+y)=﹣3m+6,即x+y=﹣m+2,∵x+y>0,∴﹣m+2>﹣32,解得:m <72, 则满足条件m 的正整数值为1,2,3.15、答案:(1)甲种文具需要20元,一个乙种文具需要10元(2)20解析:(1)设购买一个甲种文具需要x 元,一个乙种文具需要y 元,然后根据若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元,列出方程组求解即可;(2)设需要购买m 个甲种文具,则购买(30﹣m )个乙种文具,然后根据购买甲、乙两种文具的总费用不超过500元,列出不等式求解即可.(1)解:设购买一个甲种文具需要x 元,一个乙种文具需要y 元,依题意得:{12x +18y =42016x +14y =460, 解得:{x =20y =10, 答:购买一个甲种文具需要20元,一个乙种文具需要10元.(2)解:设需要购买m 个甲种文具,则购买(30﹣m )个乙种文具,依题意得:20m +10(30﹣m )≤500,解得:m ≤20.答:至多需要购买20个甲种文具.小提示:本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意列出式子求解.11。
(完整版)人教版七年级数学下不等式与不等式组知识点与试题

不等式与不等式组本章知识点:1、不等式:用>或<号表示大小关系的式子叫做不等式。
Shu 532、不等式的解:把使不等式成立的未知数的值叫做不等式的解。
3、解集:使不等式成立的x 的取值范围叫做不等式解的集合,简称解集。
4、不等式的性质:1、不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。
a+c>b+c,a-c>b-c2、不等式两边同乘(或除以)同一个正数,不等号的方向不变。
如果a>b,并且c>0,ac>bc,a/c<b/c3、不等式两边同乘(或除以)同一个负数,不等号的方向改,a>b,c<0,ac<bc a/c<b/c5、一元一次不等式:含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式。
6、一元一次不等式组:把几个不等式合起来,组成一个一元一次不等式组。
7、不等式组的解集:不等式组中每一个解集的公共部分叫做不等式组的解集。
记:同大取大,同小取小,大小小大取中间,大大小小无解。
练习:1.用不等号填空:(1)若b a -<π,则a π- b (2)若b a >,当bc ac <时,c 0(3)若b a >,则c a - c b - (4)若b a -<2,则a 2- b(5)若0,0<>a ab ,则b 0 (6)a b a >-,则b 0(7)若a b a ><,0,则ab 2a (8)若b a <,则3a b a 2一、画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x (2)x ≥-4. (3)⋅≤51x (4) -2x<5 解下列不等式,并把它们的解集在数轴上表示出来。
1、3(x+2)>4(x-1)+72、 312-x ≤643-x二、选择1、下列数中是不等式x 32>50的解的有( )76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a π,则下列不等式中正确的是( )A、b a +-+-33φ B、0φb a - C、b a 3131φ D、b a 22--φ 4、用不等式表示与的差不大于2-,正确的是( )A、2--φe d B、2--πe d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22πφx x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-2A 、x 3φB 、32ππx -C 、 2-φxD 、32φφx -1.下列各数,,3,2.50421,,,,π-其中使不等式2-x >1成立有( ). A.–4,2.5,πB.3,2.5,πC.3,0,21 D.2.5,π 2.在下列数学表达式中,–3<0.4,32,5,,1,0322+>+≠+=>+y x x xy x x y x 其中不等式 有( ).A.1个B.3个C.4个D.5个3.“y 的2倍与3的差小于或等于4”,以下各式中表示正确的是( ).A.432<-yB.2y –3=4C.2y –3≤4D.2y –3>44.下列按要求列出的不等式中正确的是( ).A.“a 不是负数”即a >0B.“b 是不大于零的数”即b<0C.“m 是不小于–2的数”即m>–2D.“P+Q 是正数”即P+Q>05.有下列数字表达式,(1),2)4(,32)3(,3)2(,04322y xy x y a y y x ++<+≠<+其中属于不等式的有( ).A.1个B.2个C.3个D.4个6.“a 的3倍与21的和不大于4”,以下各式表示正确的是( ). A.4213≤+a B.4213<+a C.4213≥+a D.4213>+a7.下列按要求列出的不等式中不正确的是( ).A.“b 的相反数是正数”即–b>0B.“a 是不小于零的数”即a >0C.“k 不大于3”即k ≤3D.“m+n 是正数”即m+n>0三、填空题9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42φ-x ②105πx -③ ⎩⎨⎧-21πφx x 13、不等式03φ+-x 的最大整数解是四、解下列不等式,并把解集在数轴上表示出来: 1.2231061-+>-x x 2.17)10(2283--≤--x x x 3.4238171->--x x 4.)23(6)1(3)1(2+-≥+--x x x 5.413121+>+--y y y 6.1257433-≤--y y y 五、解答题19、代数式2131--x 的值不大于321x -的值,求x 的范围 五、解答题:1.x 取何值时,3)34(2-x 的值不大于6)125(5+x 的值. 2.已知)1(645)25(3+-<++x x x ,化简:x x 3113--+.3.已知0)24(1832=--++k y x x ,当k 为何值时,y 的值为非负数.七、求不等式95)1(3-≥+x x 的正整数解?4.求不等式25+>x kx 的解集.5.有个两位数的十位数字与个位数字的和大于11,如果这个两位数减去18后得到的数是原两位数的数字位置互换的两位数,求这个两位数.6.在爆破时,如果导火索燃烧的速度是每秒钟0.8厘米,人跑开的速度是每秒钟4米,为了使点导火索的人在爆破时跑到100米以外的安全地区,这个导火索的长度应有什么限制?六、列不等式(组)解应用题某次数学测验,共16个选择题,评分标准为:对一题给6分,错一题扣2分,不答不给分。
不等式及其解集(3个知识点+4类热点题型讲练+习题巩固)(解析版)七年级数学下册

第01讲不等式课程标准学习目标①不等式②不等式的解与解集③不等式解集的表示方法1.理解不等式及其解的概念,能熟练判断不等式与不等式的解集。
2.学会用不等式表示熟练关系,形成数形结合的思想。
3.了解不等式解集的表示方法,能够熟练的在数轴上表示不等式的解集。
知识点01不等式与不等号1.不等式的定义:用不等号表示大小关系或不等关系的式子叫做不等式。
表示的不等关系必须成立。
2.常见的不等号:①小于:符号表示为<;实际意义为小于,不足等。
②大于:符号表示为>;实际意义为大于,超过等。
③小于或等于:符号表示为≤;实际意义为不大于,不超过,至多等。
④大于或等于:符号表示为≥;实际意义为不小于,不低于,至少等。
⑤不等于:符号表示为≠;实际意义为不相等。
3.列不等式:审清题意,弄清关键词的含义,找出已知量与未知量以及他们之间存在的关系,然后用不等式将不等关系表示出来。
4.常见的不等式基本语言与符号表示:若a 是正数表示为0>a ;若a 是负数表示为0<a ;若a 是非正数表示为0≤a ;若a 是非负数表示为0≥a ;若b a ,是同号表示为0>ab ;若b a ,是异号表示为<ab ;【即学即练1】1.下列数学式子:①﹣3<0;②2x +3y ≥0;③x =1;④x 2﹣2xy +y 2;⑤x +1≠3;其中是不等式的有()A .5个B .4个C .3个D .2个【分析】根据不等式的定义:用不等号连接的式子是不等式,逐个进行判断即可.【解答】解:①﹣3<0,是不等式,符合题意;②2x +3y ≥0,是不等式,符合题意;③x =1,是等式,不符合题意;④x 2﹣2xy +y 2,是多项式,不符合题意;⑤x +1≠3,是不等式,符合题意;综上:是不等式的有①②⑤,共3个.故选:C .【即学即练2】2.“x 为正数”的表达式是()A .x <0B .x >0C .x ≥0D .x ≤0【分析】正数即为大于0的数,据此可列出不等式.【解答】解:∵正数是指大于0的数,∴x 是正数,即x >0,故选:B .【即学即练3】3.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少13元.”乙说:“至多10元.”丙说:“至多8元.”小明说:“你们三个人都说错了”.则这本书的价格x (元)所在的范围为()A.8<x<10B.10<x<12C.x>10D.10<x<13【分析】根据甲说:“至少13元.”乙说“至多10元.”丙说“至多8元.”小明说:“你们三个人都说错了.”可以得到相应的不等式组,从而可以得到x的取值范围.【解答】解:∵甲说:“至少13元.”乙说“至多10元.”丙说“至多8元.”∴,可得无解,∵三人都说错了,∴10<x<13.故选:D.知识点02不等式的解与解集1.不等式的解的定义:能使不等式成立的未知数的值,叫做不等式的解。
人教版七年级数学下册不等式与不等式组知识点及习题

三 不等式与不等式组1. 不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。
不等式的解集:1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数 的值,都叫做这个不等式的解。
2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式 的解的集合,简称这个不等式的解集。
3)求不等式的解集的过程,叫做解不等式。
用数轴表示不等式的方法,2.不等式基本性质1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
3. {4. 一元一次不等式➢ 一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
➢ 解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为14. 一元一次不等式组➢ 一元一次不等式组:1)几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2)几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不 等式组的解集。
[如果a >b, 那么a ±c >b ±c < 如果a >b, c >0,那么ac >bc (或b >a ) 如果a >b, c <0,那么ac <bc (或cb c <a )3)求不等式组的解集的过程,叫做解不等式组。
当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
➢一元一次不等式组的解法:1)分别求出不等式组中各个不等式的解集2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
四不等式与不等式组1.全面调查:考察全体对象的调查方式叫做全面调查。
—2.抽样调查:一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
经典不等式例题汇总

□▲○○○《不等式》考点及题型总结第一节 不等式一、知识要点:(一)不等式的定义:用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。
(二)不等式的解:使不等式成立的未知数的值,叫做不等式的解。
(三)不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
(四)不等式的性质:1、不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变2、不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
,3、不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
二、题型分析:题型一: 不等式的概念和表达例1: x 的21与5的差不小于3,用不等式可表示为__________. 答案:1532x -≥例2:设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小的顺序排列为( )…A 、○□△B 、○△□C 、□○△D 、△□○ 答案:A题型二:不等式性质的考察]A 、1个B 、2个C 、3个D 、4个分析:由a﹤b﹤0得,a、b同为负数并且︱a︱﹥︱b︱。
可取特殊值代入,如取a=-2,b=-1代入式子中。
答案:C例2:若a﹥b,则下列式子一定成立的是()。
A、a+3﹥b+5,B、a-9﹥b-9,C、-10a﹥-10b,D、a2c﹥b2c分析:由于不等式的两边乘除同一个数时存在变号的问题,因此需要对a,b的符号进行分类讨论。
或者此题也可以取特殊值代入验证,通过排除法来求解。
A、C取0,-1即可排除,D将常数取0也可排除。
答案:B例3:下列结论:①若a﹤b,则a2c﹤b2c;②若a c﹥b c,则a﹥b;③若a﹥b且若c=d,则a c﹥b d;④若a2c﹤b2c,则a﹤b。
正确的有()。
'A、4个B、3个C、2个D、1个分析:①2c=0,即可排除;②若a、b、c都为负数即可否定;③任用前两种方法都可以排除;只有④正确。
七年级数学下册不等式与不等式组常考必考知识点总结

七年级数学下册不等式与不等式组常考必考知识点总结单选题1、已知关于x 的分式方程m−2x+1=1的解是负数,则m 的取值范围是( )A .m≤3B .m≤3且m≠2C .m <3D .m <3且m≠2答案:D解析:解方程得到方程的解,再根据解为负数得到关于m 的不等式结合分式的分母不为零,即可求得m 的取值范围. m−2x+1=1,解得:x=m ﹣3,∵关于x 的分式方程m−2x+1=1的解是负数,∴m ﹣3<0,解得:m <3,当x=m ﹣3=﹣1时,方程无解,则m≠2,故m 的取值范围是:m <3且m≠2,故选D .小提示:本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.2、若关于x 的一元一次不等式组{x −2m <0x +m >2无解,则m 的取值范围是( ) A .m ≤23B .m <23C .m ≥23D .m >23答案:A解析:分别求出各不等式的解集,再根据不等式组无解即可得出m 的取值范围.解:{x −2m <0①x +m >2②解不等式①,得x <2m .解不等式②,得x >2-m .因为不等式组无解,∴2-m ≥2m .解得m ≤23. 故选A.小提示:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.3、若a <b ,则下列不等式变形正确的是( )A .ac 2<bc 2B .a b >1C .-ca >-cbD .3a -c <3b -c答案:D解析:根据不等式的基本性质逐一分析即可.A .当c =0时,ac 2=bc 2,故该项变形不正确;B .当b <0时,a b >1;当b >0时,a b <1,故该项变形不正确;C .当c =0时,−ca =−cb ,故该项变形不正确;D.若a<b,则3a−c<3b−c,故该项变形正确;故选:D.小提示:本题考查不等式的基本性质,正确把握不等式基本性质是解题关键.4、ax>b的解集是()A.x>ba B.x<baC.x=baD.无法确定答案:D解析:根据不等式的性质,先确定a的符号,再确定不等号的方向即可解答.解:由于a的符号不能判断,所以不等号的方向也不确定,所以解集无法确定.故选D.小提示:本题考查了不等式的性质:在不等式两边同加或减一个数或式子,不等号方向不变;在不等式两边同乘或除以一个正数或式子,不等号的方向不变;在不等式两边同乘或除以一个负数或式子不等号方向改变.5、“x的2倍与3的和是非负数”列成不等式为()A.2x+3≥0B.2x+3>0C.2x+3≤0D.2x+3<0答案:A解析:非负数就是大于或等于零的数,再根据x的2倍与3的和是非负数列出不等式即可.解:“x的2倍与3的和是非负数”列成不等式为:2x+3≥0,故选:A.小提示:本题考查的是列不等式,掌握“非负数是正数或零,用不等式表示就是大于或等于零”是解题的关键.6、不等式﹣2x >12的解集是( )A .x <﹣14B .x <﹣1C .x >﹣14D .x >﹣1 答案:A解析:解:根据不等式的基本性质3,不等式两边同除以-2,即可得x <-14故选A .小提示:此题主要考查了不等式的性质,利用不等式的基本性质3解题,关键是注意两边同时乘以或除以同一个负数,不等式的符号改变.7、不等式3x +6≤0的解集是( )A .x ≤−2B .x ≤2C .x ≥12D .x ≥−2 答案:A解析:利用不等式的性质即可得到不等式的解集.解:3x +6≤03x ≤-6x ≤-2故选:A .小提示:本题考查了解一元一次不等式:根据不等式的性质先去分母,有括号的再去括号,然后移项、合并,最后得到不等式的解集.8、已知关于x的不等式2x+a≤1与−2x≥2的解集相同,则a的值为()A.3B.2C.1D.无法确定答案:A解析:求出不等式−2x≥2的解集,对应2x+a≤1即可得出答案.解:2x+a≤1,解得x≤1−a2,−2x≥2,解得x≤−1,∴1−a2=−1,∴a=3,故选:A.小提示:本题考查了解一元一次不等式以及解一元一次方程,解题的关键是根据两不等式解集相同得出关于a的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,能够熟练的运用解不等式的知识解出不等式是关键.填空题9、已知x为不等式组{2−x<12(x−1)<x+1的解,则|x−3|+|x−1|的值为______.答案:2解析:解不等式组得到x的范围,再根据绝对值的性质化简.解:{2−x<1①2(x−1)<x+1②,解不等式①得:x>1,解不等式②得:x<3,∴不等式组的解集为:1<x<3,∴|x−3|+|x−1|=−(x−3)+(x−1)=−x+3+x−1=2所以答案是:2.小提示:本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.10、不等式−5x>11的解集是__________.答案:x<−115解析:根据不等式的性质求出不等式的解集即可.∵−5x>11,两边同除以-5,不等式方向改变,得x<−115.故填:x<−115.小提示:本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.11、定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a ﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a ,使得a 2=2[a].其中正确的是_____.(写出所有正确结论的序号)答案:①②③.解析:根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.①[﹣1.2]=﹣2,故①正确;②[a ﹣1]=[a]﹣1,故②正确;③[2a]<[2a]+1,故③正确;④当a =0时,a 2=2[a]=0;当a =√2时,a 2=2[a]=2;原题说法是错误的.故答案为①②③.小提示:本题考查新定义,解答本题的关键是明确题目中的新定义,可以判断出各个小题中的结论是否正确.12、“b 的12与c 的和是负数”用不等式表示为_________.答案:12b +c<0 解析:“b 的12与c 的和是负数”用不等式表示为:12b +c <0.故答案为12b +c <0.13、已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____. 答案:16解析:解不等式组得-3≤x≤4,根据两点间的距离的公式知当-1≤x≤1时,S=|x-1|+|x+1|取得最小值;当x=4时,S=|x-1|+|x+1|取得最大值,继而可得答案.解不等式5(x+1)≥3x ﹣1,得:x≥﹣3,解不等式12x −1≤7−32x ,得:x≤4, 则﹣3≤x≤4,当﹣1≤x≤1时,S =|x ﹣1|+|x+1|取得最小值,最小值n =2,当x =4时,S =|x ﹣1|+|x+1|取得最大值,最大值m =8,∴mn =2×8=16,所以答案是:16.小提示:本题主要考查解一元一次不等式组,解题的关键是掌握熟练掌握解不等式组的能力和数轴上两点间的距离公式. 解答题14、若关于x 、y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x+y >﹣32,求出满足条件的m 的所有正整数值. 答案:1、2、3.解析:方程组两方程相加表示出x+y ,代入已知不等式求出m 的范围,确定出正整数值即可.解:{2x +y =−3m +2①x +2y =4② , ①+②得:3(x+y )=﹣3m+6,即x+y=﹣m+2,∵x+y >0,∴﹣m+2>﹣32,解得:m <72,则满足条件m 的正整数值为1,2,3.15、某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?答案:(1)甲种文具需要20元,一个乙种文具需要10元(2)20解析:(1)设购买一个甲种文具需要x 元,一个乙种文具需要y 元,然后根据若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元,列出方程组求解即可;(2)设需要购买m 个甲种文具,则购买(30﹣m )个乙种文具,然后根据购买甲、乙两种文具的总费用不超过500元,列出不等式求解即可.(1)解:设购买一个甲种文具需要x 元,一个乙种文具需要y 元,依题意得:{12x +18y =42016x +14y =460, 解得:{x =20y =10, 答:购买一个甲种文具需要20元,一个乙种文具需要10元.(2)解:设需要购买m 个甲种文具,则购买(30﹣m )个乙种文具,依题意得:20m +10(30﹣m )≤500,解得:m ≤20.答:至多需要购买20个甲种文具.小提示:本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意列出式子求解.。
(完整版)初一数学七下不等式所有知识点总结和常考题型练习题

不等式知识点1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。
6.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
不等式练习一、选择题1. 若m>n,下列不等式不一定成立的是()(A )m +2>n +2 (B )2m >2n (C ) (D )2.把不等式组⎩⎨⎧x+1>0,x -1≤0的解集在数轴上表示,正确的是( )A B C D3.不等式组1011x x +>⎧⎨-⎩≤的解集是: ( ) A 、2x ≤ B 、1x >- C 、1x -<≤2 D 、无解4. 下列说法不一定成立的是( )A .若,则B .若,则C .若,则D .若,则 5.关于x 的不等式组⎩⎨⎧1a x >>x 的解集为x >1 ,则a 的取值范围是( ) A . a >1 B . a <1 C . a ≥1 D . a ≤16.已知:y 1=2x -5,y 2=-2x +3.如果y 1<y 2,则x 的取值范围是( )A .x >2B .x <2C .x >-2D .x <-27. 不等式组的整数解的个数是( ) A . 3 B . 5 C . 7 D . 无数个8. 已知点P (1-m ,2-n ),如果m >1,n <2,那么点P 在第( )象限A .一B .二C .三D .四9.不等式组的解集在数轴上表示正确的是( )A .B .C .D .10.在一次“人与自然”知识竞赛中,竞赛题共25道,每题4个答案,其中只有一个正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应答对题( )A .18题B .19题C .20题D .21题11. 某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A .11B .8C .7D .5二、填空题 1-100-110-110-111. 已知a >b ,用“<”或“>”填空: (1)1-a 1-b ; (2)m 2a m 2b (m ≠0). 2. 不等式组的解集是 .3.不等式组⎩⎨⎧x -1≤0,-2x <3的整数解...是 . 4. 不等式组的所有整数解的积为 .5. 关于x 的方程kx -1=2x 的解为正实数,则 k 的取值范围是_______________.三、解答题1. 解不等式组:⎩⎪⎨⎪⎧3x -7<2(1-3x ),x -32+1≤3x -14 ,并把它的解集在数轴上表示出来.2. 已知不等式组:⎩⎪⎨⎪⎧3(2x -1)<2x +8,2+3(x +1)8 >3-x -14 . (1)求此不等式组的整数解;(2)若上述的整数解满足方程ax +6=x -2a , 求a 的值.3.已知A =﹣(1)化简A ; (2)当x 满足不等式组,且x 为整数时,求A 的值.4.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?5. 每年的5月20日是中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如表).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?6. “六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.7. 某幼儿园在六一儿童节购买了一批牛奶.如果给每个小朋友分5盒,则剩下38盒,如果给每个小朋友分6盒,则最后小朋友不足5盒,但至少分得1盒.问:该幼儿园至少有多少名小朋友?最多有多少名小朋友?。
人教版七年级数学下册 第九章 不等式与不等式组 知识点总结及典型例题 (25张PPT)

知识点 4 不等式的性质2,3
不0等式的性质2 9
不等式两边乘(或除以)同一 个正数,不等号的方向不变
字母表示:(1)如果a>b,c>0,那么ac>bc(或
a c
b c
);
(2)如果a<b,c>0,那么ac<bc(或
a c
b c
).
不等式的性质3
0
9
不等式两边乘(或除以)同一 个负数,ห้องสมุดไป่ตู้等号的方向改变
故x=3是不等式的解,同理可知,x=π也是不等式的解;把X=0代入不等
知识点 2 不等式的解、解集与解不等式
式的左边,得3x-1=-1<2,所以不等式不成立,故x=0不是不等式的解。 同理可知,x=-2,x= 1 也不是不等式的解。
2
(2)根据不等关系,易知不等式的解集为x>3,在数轴上表示时,要 注意表示3的点上画空心圆圈。 答案:(1)A (2)x>3 如图:
知识点 3 不等式的性质1
解析:(1)已知a>b,根据不等式的性质1,不等式两边加1,不等号的方向不 变,得到a+1>b+1; (2)已知a<b,根据不等式的性质1,不等式两边减3,不等号的方向不变,得 到a-3>b-3; (3)已知a>b,根据不等式的性质1,不等式两边加a,不等号的方向不变,得 到2a>a+b. 总结:不等式的性质1是对不等式的两边同时进行加减,所加或所减的数(或式 子)要相同,不等号的方向不变.
2.一元一次不等式与一元一次方程的异同点
相同点 不同点
两者都只含有一个未知数,且含未知数的项的最高次数 是1,左、右两边都是整式 一元一次不等式表示的是不等关系,用不等号连接;一 元一次方程表示的是相等关系,用等号连接
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式知识点
1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
6.了一个一元一次不等式组。
6.不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
不等式练习
一、选择题
1. 若m>n,下列不等式不一定成立的是()
(A)m+2>n+2 (B)2m>2n(C)(D)
2.把不等式组⎩⎨⎧x+1>0,x -1≤0
的解集在数轴上表示,正确的是( )
A B C D
3.不等式组1011x x +>⎧⎨-⎩
≤的解集是: ( ) A 、2x ≤ B 、1x >- C 、1x -<≤2 D 、无解
4. 下列说法不一定成立的是( )
A .若,则
B .若,则
C .若,则
D .若,则 5.关于x 的不等式组⎩
⎨⎧1a x >>x 的解集为x >1 ,则a 的取值范围是( ) A . a >1 B . a <1 C . a ≥1 D . a ≤1
6.已知:y 1=2x -5,y 2=-2x +3.如果y 1<y 2,则x 的取值范围是( )
A .x >2
B .x <2
C .x >-2
D .x <-2
7. 不等式组
的整数解的个数是( ) A . 3 B . 5 C . 7 D . 无数个
8. 已知点P (1-m ,2-n ),如果m >1,n <2,那么点P 在第( )象限
A .一
B .二
C .三
D .四
9.不等式组的解集在数轴上表示正确的是( )
A .
B .
C .
D .
10.在一次“人与自然”知识竞赛中,竞赛题共25道,每题4个答案,其中只有一个正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应答对题( )
A .18题
B .19题
C .20题
D .21题
11. 某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )
A .11
B .8
C .7
D .5
二、填空题
1. 已知a >b ,用“<”或“>”填空: (1)1-a 1-b ; (2)m 2a m 2
b (m ≠0). 1-100-110-110-11
2. 不等式组的解集是 .
3.不等式组⎩⎨⎧x -1≤0,-2x <3
的整数解...是 . 4. 不等式组的所有整数解的积为 .
5. 关于x 的方程kx -1=2x 的解为正实数,则 k 的取值范围是_______________.
三、解答题
1. 解不等式组:⎩⎪⎨⎪⎧3x -7<2(1-3x ),
x -32
+1≤3x -14 ,并把它的解集在数轴上表示出来.
2. 已知不等式组:⎩
⎪⎨⎪⎧3(2x -1)<2x +8,
2+3(x +1)8 >3-x -14 . (1)求此不等式组的整数解;
(2)若上述的整数解满足方程ax +6=x -2a , 求a 的值.
3.已知A =﹣
(1)化简A ; (2)当x 满足不等式组
,且x 为整数时,求A 的值.
4.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?
5. 每年的5月20日是中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如表).
若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?
6. “六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:
(1)小张如何
进货,使进货款恰好为1300元?
(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.
7. 某幼儿园在六一儿童节购买了一批牛奶.如果给每个小朋友分5盒,则剩下38盒,如果给每个小朋友分6盒,则最后小朋友不足5盒,但至少分得1盒.问:该幼儿园至少有多少名小朋友?最多有多少名小朋友?。