高三数学不等式题型总结全

高三数学不等式题型总结全
高三数学不等式题型总结全

不等式的解题归纳

第一部分 含参数不等式的解法 例1解关于x 的不等式022

≤-+k kx x

例2.解关于x 的不等式:(x-2

x +12)(x+a)<0.

例3、若不等式13

64222

2<++++x x k

kx x 对于x 取任何实数均成立,求k 的取值范围.

例4若不等式ax 2+bx+1>0的解集为{x ︱-3

例5 已知关于x 的二次不等式:a 2

x +(a-1)x+a-1<0的解集为R ,求a 的取值范围.

例6、1.定义在R 上的函数()x f 既是奇函数,又是减函数,且当??

?

??∈2,

0πθ时,有 ()

()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.

【课堂练习】

1、已知(2a -1) 2

x -(a-1)x-1<0的解集为R ,求实数a 的取值范围.

2、解关于x 的不等式:.0)2(2

>+-+a x a x

3、解关于x 的不等式:.012

<-+ax ax

【课后练习】

1.如果不等式x 2-2ax +1≥2

1

(x -1)2对一切实数x 都成立,a 的取值范围是

2.如果对于任何实数x ,不等式kx 2-kx +1>0 (k>0)都成立,那么k 的取值范围是

3.对于任意实数x ,代数式 (5-4a -2a )2

x -2(a -1)x -3的值恒为负值,求a 的取值范围

4.设α、β是关于方程 2x -2(k -1)x +k +1=0的两个实根,求 y=2α +2

β关于k 的解析式,并求y 的取值范围

第二部分 绝对值不等式

1.(2010年高考福建卷)已知函数f (x )=|x -a |.

(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;

(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.

2.设函数()|1|||f x x x a =-+-,

(1)若1a =-,解不等式()3f x ≥; (2)如果x R ?∈,()2f x ≥,求a 的取值范围

3.设有关于x 的不等式()a x x >-++73lg

(1)当1a =时,解此不等式; (2)当a 为何值时,此不等式的解集为R

4.已知()|1||2|g x x x =---。 (1)化简()g x ,并求()g x 的值域;

【课堂练习】

1.已知关于x 的不等式|x +a |+|x -1|+a <2 011(a 是常数)的解是非空集合,则a 的取值范围是( )

A .(-∞,2 011)

B .(-∞,1 005)

C .(2 011,+∞)

D .(2 010,+∞) 2.若不等式|x +1

x |>|a -2|+1对于一切非零实数x 均成立,则实数a 的取值范围是( )

A .(1,3)

B .(2,4)

C .(5,6)

D .(-2,4)

3.若不等式5-x >7|x +1|和不等式ax 2+bx -2>0的解集相同,则实数a ,b 的值为( )

A .a =-8,b =-10

B .a =-1,b =9

C .a =-4,b =-9

D .a =-1,b =2

4.已知a ∈R ,若关于x 的方程x 2+x +|a -1

4|+|a |=0有实数根,则a 的取值范围是________.

【课后练习】

1.函数y=|x+1|+|x+3|的最小值为()

A.2 B. 2 C.4 D.6

2.不等式|5x-x2|<6的解集为()

A.(-1,2) B.(3,6) C.(-1,2)∪(3,6] D.(-1,2)∪(3,6) 3.不等式|2x-1|-x<1的解集是()

A.(0,2) B.(0,2] C.(-2,0) D.(-2,0]

4.不等式|x|+|x-1|<2的解集是()

A.(-∞,-1

2)∪(

1

2,+∞) B.(-∞,-

1

2] C.(-

1

2,

3

2) D.[

3

2,+∞)

第三部分线性规划与不等式

一、求线性目标函数的取值范围

例1、若x、y满足约束条件

2

2

2

x

y

x y

?

?

?

?+≥

?

,则z=x+2y的取值范围是()

A、[2,6]

B、[2,5]

C、[3,6]

D、(3,5]

二、求可行域的面积

例2、不等式组

260

30

2

x y

x y

y

+-≥

?

?

+-≤

?

?≤

?

表示的平面区域的面积为()

A、4

B、1

C、5

D、无穷大

三、求可行域中整点个数

例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()

A、9个

B、10个

C、13个

D、14个

四,求非线性目标函数的最值

例4、已知x、y满足以下约束条件

220

240

330

x y

x y

x y

+-≥

?

?

-+≥

?

?--≤

?

,则z=x2+y2的最大值和最小值分别

是()

A、13,1

B、13,2

C、13,4

5

D

5

例5, 已知变量x ,y 满足约束条件?????x -y +2≤0,x ≥1,x +y -7≤0,

则 y

x 的取值范围是( ).

(A )[95,6] (B )(-∞,9

5]∪[6,+∞)(C )(-∞,3]∪[6,+∞) (D )[3,6]

四、求线性目标函数中参数的取值范围

例6、已知x 、y 满足以下约束条件5

503x y x y x +≥??

-+≤??≤?

,使z=x+ay(a>0)

取得最小值的最优解有无数个,则a 的值为( ) A 、-3 B 、3 C 、-1 D 、1

例7、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范

围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

【课后练习题】1.设x ,y 满足约束条件则目标函数z=x+y 的最大值是( )

A .3

B .4

C .6

D .8

2.若实数x ,y 满足不等式组且x+y 的最大值为9,则实数m=( )

A .﹣2

B .﹣1

C .1

D .2

3.若2m +4n <2,则点(m ,n )必在( ) A .直线x+y=1的左下方 B .直线x+y=1的右上方 C .直线x+2y=1的左下方 D .直线x+2y=1的右上方

4.在平面直角坐标系中,若不等式组(a 为常数)所表示的平面区域的面积等于2,则a 的

值为( ) A .﹣5 B .1

C .2

D .3

5.若x ,y 满足约束条件目标函数z=ax+2y 仅在点(1,0)处取得最小值,则a 的取值范围是

( ) A .(﹣1,2)

B .(﹣4,2)

C .(﹣4,0]

D .(﹣2,4)

6.如果点P 在平面区域

上,点Q 在曲线x 2+(y+2)2=1上,那么|PQ|的最小值为( )

7. A .﹣1 B .﹣1 C .2﹣1 D .﹣1

8.已知约束条件若目标函数z=x+ay (a ≥0)恰好在点(2,2)处取得最大值,则a 的取值范

围为( )

A .0<a <

B .a ≥

C .a >

D .0<a <

第四部分 均值不等式 一.均值不等式

1.(1)若R b a ∈,,则ab b a 22

2

≥+ (2)若R b a ∈,,则2

2

2b a ab +≤(当且仅当b a =时取“=”)

2. (1)若*

,R b a ∈,则ab b a ≥+2

(当且仅当b a =时取“=”

) (2)若*

,R b a ∈,则2

2?

?

? ??+≤b a ab (当且仅当

b a =时取“=”) 3.若R b a ∈,,则2

)2(2

22b a b a +≤

+(当且仅当b a =时取“=”) 注:(1)两个正数 “积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三等” 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34

x y +=,则41

x y +的最小值为 .

【变式1】已知0,0x y >>,且34

x y +=,则4x

x y +的最小值为 .

【变式2】(2013年天津)设2,0a b b +=>, 则1||

2||a a b

+

的最小值为 .

【例2】(2012河西)已知正实数,a b 满足21

1a b

+=,则2a b +的最小值为 .

【变式】已知正实数,a b 满足21

1a b

+=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 .

【例4】已知正数,x y 满足21x y +=,则8x y

xy

+的最小值为 .

【例5】已知0,0a b >>,若不等式212m

a b a b

+≥

+总能成立,则实数m 的最大值为 .

【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆22

1x y +=相交于,A B 两

点,O 为坐标原点,且△AOB 为直角三角形,则2

212

a b

+的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆22

2410x y x y ++-+=的

周长,则11

a b

+的最小值为 .

【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足

120PF PF ?=u u u r u u u u r ,则2

22

14e e +的最小值为

【例9】已知0,0,lg 2lg 4lg 2x

y

x y >>+=,则

11

x y

+的最小值是( )

A .6

B .5

C .3+.

【例10】已知函数()41

41

x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值

为 .

【模块二】“和”与“积”混合型

【例1】(2012年天津)设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A,与y 轴相交于B ,且l 与

圆22

4x y +=相交所得弦的长为2,O 为坐标原点,则AOB ?面积的最小值为 .

【例2】设,x y R ∈,1,1a b >>,若2x y a b ==,28a b +=,则11

x y

+的最大值为_______.

【例3】若实数,x y 满足22

1x y xy ++=,则x y +的最大值为 .

【例4】(2013年南开一模)已知正实数,a b 满足21a b ab ++=,则a b +的最小值为 .

【例5】设,m n R ∈,若直线()()1120m x n y +++-=与圆()()2

2

111x y -+-=相切,则m n +的取值范围是( )

(A )1?? (B )(),11?-∞?+∞?

(C )2?-+?

(D )(),22?-∞-?++∞?

【例6】已知1,1x y >>,且11

ln ,,ln 44

x y 成等比数列,则xy 的最小值为 .

【例7】(2015天津)已知0,0,8,a b ab >>= 则当a 的值为 时()22log log 2a b ?取得最大值.

【例8】(2011年天津)已知22log log 1a b +≥,则39a

b

+的最小值为 .

【例9】下列说法正确的是( )

A .函数x

x y 2

+=的最小值为22 B .函数)0(sin 2

sin π<<+=x x

x y 的最小值为22

C .函数x

x y 2

+

=的最小值为22 D .函数x

x y lg 2

lg +=的最小值为22

【例10】设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A .10 B .63 C .46 D .183

【课堂练习】 1:已知5

4x <,求函数14245

y x x =-+-的最大值。

2. 当时,求(82)y x x =-的最大值。

3. 求2710

(1)1

x x y x x ++=

>-+的值域。

4:求函数22

4

y x =

+的值域。

5:正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是

6:正数x ,y 满足x +3y =5xy ,求xy 的最小值

【课后练习】

1.求下列函数的最小值,并求取得最小值时,x 的值.

(1)231

,(0)x x y x x ++=> (2)

12,33

y x x x =+>-

(3)1

2sin ,(0,)sin y x x x π=+

∈ (4)若+∈R y x ,且12=+y x ,求y

x 11+的最小值

(4)44log log 2x y +=,求11

x y

+的最小值

2.2

03

x <<,求函数y =.

不等式知识点与题型总结

不等式 一、知识点: 1. 实数的性质: 0>-?>b a b a ;0<-??<,a b b a . 传递性 a b >且b c a c >?>. 加法性质 a b a c b c >?+>+;a b >且c d a c b d >?+>+. 乘法性质 ,0a b c ac bc >>?>;0a b >>,且00c d ac bd >>?>>. 乘方、开方性质 0,n n a b n N a b *>>∈?>;0,n n a b n N a b *>>∈?>. 倒数性质 11,0a b ab a b >>? <. 3. 常用基本不等式: 条 件 结 论 等号成立的条件 a R ∈ 20a ≥ 0a = ,a R b R ∈∈ 2 2 2a b ab +≥,2()2 a b ab +≤, 22 2()22a b a b ++≥ a b = 0,0>>b a 基本不等式: 2a b ab +≥ 常见变式: 2≥+b a a b ; 21 ≥+a a a b = 0,0>>b a 22112 2 2b a b a ab b a +≤ +≤≤+ a b = 4.利用重要不等式求最值的两个命题: 命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b= 时,和a +b 有最小值2 . 命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2 s 时,积ab 有最大值42s . 注意:运用重要不等式求值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或积 为定值,取最值时等号能成立,以上三个条件缺一不可. 5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

《不等式》常见题型归纳和经典例题讲解

? x + 1 ?? 2 3 《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 定义类 1.下列不等式中,是一元一次不等式的是( ) A. 1 x +1>2 B.x 2>9 C.2x +y ≤5 D. 1 2 (x -3)<0 2.若 (m - 2) x 2m +1 - 1 > 5 是关于 x 的一元一次不等式,则该不等式的解集为 . 用不等式表示 a 与 6 的和小于 5; x 与 2 的差小于-1; 数轴题 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a . 2.已知实数 a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、 a > b C 、a -b >0 D 、a +b >0 同等变换 1.与 2x <6 不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 借助数轴解不等式(组): (这类试题在中考中很多见) ?1 - ≥ 0 1.(2010 湖北随州)解不等式组 ? 3 ??3 - 4( x - 1) < 1 D.-2x <-6 2.(2010 福建宁德)解不等式 2 x - 1 - 5x + 1 3 2 ?1 - 2( x -1) > 1, ? 3.(2006 年绵阳市) ? x 1 - ≥ x. 含参不等式: 此类试题易错知识辨析 ≤1,并把它的解集在数轴上表示出来.

基本不等式题型总结

基本公式 (1)R b a ab a a ∈≥+、,222(2)ab b a 2≥+,一定二正三相等(3 )b a a b b a b a 1122222+≥≥+≥+,当b a =时,等号成立(4)33abc c b a ≥++推广: n n n x x x n x x x 2121≥+++,0>i x 题型 (1)对勾函数:x b ax y +=当x b ax =时,函数取得极值点 (2)1的代换 当题目中有b a b a 11、、、时。例1:正数n m 、满足12=+n m ,求m n 11+的最小值解:223212)21111+≥+++=+?+=+m n n m n m m n m n ()(

(3)xy y x 、、型 例2:已知2=++xy y x ,求y x +最小值①因式分解(提取公因式)2 3232113 )1)(1(2 -≥+∴≥+++=++∴=++y x y x y x xy y x 又②求谁留谁 22208)(4)())(2(4)())(2(44)(2222-≥+≥-+++∴+-≥+∴+-=≥+∴≥+y x y x y x y x y x y x xy y x xy y x 解得: ③?判别法:0 ≥?2 320 )2(40 22 )(,22-≥≥--=?=-+-∴=-+∴-=+=z z z z zy y z y y z z y x y x z 解得则令④技巧、完全对称为最值 解得:原式完全对称和式子中2322 22-==+=∴=∴x x x y x y x

(4)xy y x 、、22型①完全对称 ②求谁留谁 ③?判别法:0≥?④配方,三角换元例3:已知1422=++xy y x 求y x +2的最大值配方: 1)2(41522=++x y x ;则:12(21522=++x y x )(换元: ]2,0[cos 2;sin 215πθθθ∈=+=。x y x θθθsin 15 1cos ,sin 152-==∴y x )sin(58cos sin 15 32?θθθ+=+=+∴y x 510 22≤+∴y x

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

不等式常见题型归纳和经典例题讲解

《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 . a 与6的和小于5; x 与2的差小于-1; 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a - b __________0; a +b __________a -b ; ab __________a . 2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、a b > C 、a -b >0 D 、a +b > 0 1.与2x <6不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 D.-2x <-6 ): (这类试题在中考中很多见) 1.(2010湖北随州)解不等式组110334(1)1 x x +?-???--???-≥?? : 此类试题易错知识辨析

(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <) 当0a <时,b x a <(或b x a >) 当0a <时,b x a <(或b x a >) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠2 7.如果不等式(a -3)x <b 的解集是x < 3-a b ,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个 2.不等式4x - 41141+

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

高三数学不等式选讲 知识点和练习

不等式选讲 一、绝对值不等式 1.绝对值三角不等式 定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立。 注:(1)绝对值三角不等式的向量形式及几何意义:当a,b不共线时,|a+b|≤|a|+|b|,它的几何意义就是三角形的两边之和大于第三边。 (2)不等式|a|-|b|≤|a±b|≤|a|+|b|中“=”成立的条件分别是:不等式|a|-|b|≤|a+b|≤|a|+|b|,在侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|。 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立。 2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a的解集 注:|x|以及|x-a|±|x-b|表示的几何意义(|x|表示数轴上的点x到原点O的距离;| x-a |±|x-b|)表示数轴上的点x到点a,b的距离之和(差) (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法 ①|ax+b|≤c?-c≤ax+b≤c; ②| ax+b|≥c? ax+b≥c或ax+b≤-c. (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 方法二:利用“零点分段法”求解,体现了分类讨论的思想; 方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab b a +≤ +≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 已知,,a b c R + ∈,且1a b c ++=,求证:1111118a b c ??????---≥ ??????????? 6、选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 2 23322-≥- 题型二:利用不等式求函数值域

高三数学不等式题型总结全

不等式的解题归纳第一部分含参数不等式的解法 例1解关于x的不等式2x2? kx _ k岂0 例2 .解关于x的不等式:(x-x2+12)(x+a)<0. 2x2+2k x +k 例3、若不等式2x 2 2kx 1 :::1对于x取任何实数均成立,求k的取值范围. 4x +6x +3 例4若不等式ax2+bx+1>0的解集为{x | -3 (x- 1)2对一切实数x都成立,a的取值范围是____________________ 2 .如果对于任何实数x,不等式kx2—kx+ 1>0 (k>0)都成立,那么k的取值范围是 3.对于任意实数x,代数式(5 —4a—a2)x2—2(a —1)x—3的值恒为负值,求a的取值范围+ 2 2 口 2 4 .设a、B是关于方程x —2(k —1)x + k+仁0的两个实根,求y=> + ■关于k的解析式,并求y 的取值范围. 第二部分绝对值不等式

1. (2010年高考福建卷)已知函数f(x) = |x —a|. (1)若不等式f(x)w 3的解集为{x|—K x< 5},求实数a的值; ⑵在(1)的条件下,若f(x) + f(x+ 5)> m对一切实数x恒成立,求实数m的取值范围. 2. 设函数f (x) =|x-1| |x-a|, (1 )若a = -1,解不等式f(x)_3 ;(2)如果- x R , f(x) —2,求a的取值范围 3. 设有关于x的不等式lg(j x + 3+|x-7?a

(完整版)高中数学基本不等式题型总结

The shortest way to do many things is 专题 基本不等式 编者:高成龙 专题 基本不等式 【一】基础知识 基本不等式:) 0,0a b a b +≥>>(1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1);(2);()24a b ab +≤(),a b R ∈)+0,0a b a b ≥>>【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知,且,则的最小值为 .0,0x y >>34x y +=41x y +【变式1】已知,且,则的最小值为 .0,0x y >>34x y +=4x x y +【变式2】(2013年天津)设, 则的最小值为 .2,0a b b +=>1||2||a a b +【例2】(2012河西)已知正实数满足,则的最小值为 . ,a b 211a b +=2a b +【变式】已知正实数满足,则的最小值为 . ,a b 211a b +=2a b ab ++

【例3】已知,且,则的最小值为 . 0,0x y >>280x y xy +-=x y +【例4】已知正数满足,则的最小值为 .,x y 21x y +=8x y xy +【例5】已知,若不等式总能成立,则实数的最大值为 . 0,0a b >>212m a b a b +≥+m 【例6】(2013年天津市第二次六校联考)与圆相交于两点,()1,0by a b +=≠22 1x y +=,A B 为坐标原点,且△为直角三角形,则的最小值为 . O AOB 22 12a b +

【例7】(2012年南开二模)若直线始终平分圆的周长,()2200,0ax by a b -+=>>22 2410x y x y ++-+=则的最小值为 . 11a b +【例8】设分别为具有公共焦点的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足 12,e e 12,F F P ,则的最小值为 120PF PF ?= 22214e e +【例9】已知,则的最小值是( )0,0,lg 2lg 4lg 2x y x y >>+=11x y + A .6 B .5 C . D .3+【例10】已知函数,若,且,则的最小值为 .()4141 x x f x -=+120,0x x >>()()121f x f x +=()12f x x +

高三数学(理科)二轮复习-不等式

2014届高三数学第二轮复习 第3讲 不等式 一、本章知识结构: 实数的性质 二、高考要求 (1)理解不等式的性质及其证明。 (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。 (3)分析法、综合法、比较法证明简单的不等式。 (4)掌握某些简单不等式的解法。 (5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。 三、热点分析 1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注. 2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点. 3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点. 4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识. 不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。高考试题中有以下几个明显的特点: (1)不等式与函数、数列、几何、导数,实际应用等有关内容综合在一起的综合试题多,单独考查不等式的试题题量很少。

一元一次不等式题型归纳总结经典

一元一次不等式和一元一次不等式组题型归纳 201509 姓名: 授课时间: 一.对一元一次不等式定义的理解 1.下列各式中,是一元一次不等式的是( ) A、5+4>8 B、12-x C、x 2≤5 D、x x 31 -≥0 2.下列式子①3x =5;②a >2;③3m -1≤4;④5x +6y ;⑤a +2≠a -2;⑥-1>2中,不等式有( )个 A 、2 B 、3 C 、4 D 、5 3.下列说法,错误的是( ) A、33-πx 的解集是1-πx B、-10是102-πx 的解 C、2πx 的整数解有无数多个 D、2πx 的负整数解只有有限多个 4.下列不等关系中,正确的是( ) A 、 a 不是负数表示为a >0; B 、x 不大于5可表示为x >5 C 、x 与1的和是非负数可表示为x +1>0; D 、m 与4的差是负数可表示为m -4<0 二.已知范围,求正确的结论 5.若a 为有理数,则下列结论正确的是( ) A. a >0 B. -a ≤0 C. a 2>0 D. a 2+1>0

6.若a >b ,且c 是有理数,则下列各式正确的是( ) ①ac >bc ②ac <bc ③ac 2>bc 2 ④ac 2≥bc 2 A.1个 B. 2个 C. 3个 D. 4个 7.若a b C、2a <2b D 、a 3>b 2 8.如果0ππn m ,那么下列结论不正确的是( ) A 、99--n m π B 、n m --φ C 、m n 1 1 φ D 、 1φm n 9.m 为任意实数,下列不等式中一定成立的是( ) A、π3m m B、π2-m 2+m C、m m -φ D、a a 35φ 10.已知πππb a 1,0-0,则a,ab,ab 2之间的大小关系是( ) A 、2ab ab a φφ B、a ab ab φφ2C、φab 2ab a φ D、2ab a ab φφ 11.若x x -=-44,则x 的取值范围是( ) A、4πx B、4≤x C、4φx D、4≥x 12.b a ,表示的数如图所示,则11---b a 的的值是( ) A、b a - B、2-+b a C、b a --2 D、b a +- 13.下列表达中正确的是() A 、若x 2>x ,则x <0 B 、若x 2>0,则x >0 C 、若x <1则x 2<x D 、若x <0,则x 2>x 14.如果不等式ax <b 的解集是x <a b ,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0 15.如果a <-2,那么a 与a 1 的大小关系是_______ 三.根据绝对值性质解不等式 16.如果x x 2121-=-,则x 的取值范围是 ( ) A 、21 >x B 、21≥x C 、21≤x D 、21

专题:基本不等式常见题型归纳

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2 +b 2 ≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R , a 2+ b 2 2 ≤( a +b 2 )2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2 +b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤( a +b 2 )2 ),当且仅当a =b 时 取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数,x y 满足0x y >>,且22log log 1x y +=,则22 x y x y +-的最小值 为 . 2.若实数,x y 满足1 33(0)2 xy x x +=<< ,则313x y + -的最小值为 . 3.已知0,0,2a b c >>>,且2a b +=,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________

高三数学不等式题型总结全

不等式的解题归纳 第一部分 含参数不等式的解法 例1解关于x 的不等式022 ≤-+k kx x 例2.解关于x 的不等式:(x-2 x +12)(x+a)<0. 例3、若不等式13 64222 2<++++x x k kx x 对于x 取任何实数均成立,求k 的取值范围. 例4若不等式ax 2+bx+1>0的解集为{x ︱-3--++m f m f θθ恒成立,求实数m 的取值范围.

【课堂练习】 1、已知(2a -1) 2 x -(a-1)x-1<0的解集为R ,求实数a 的取值范围. 2、解关于x 的不等式:.0)2(2 >+-+a x a x 3、解关于x 的不等式:.012 <-+ax ax 【课后练习】 1.如果不等式x 2-2ax +1≥2 1 (x -1)2对一切实数x 都成立,a 的取值范围是 2.如果对于任何实数x ,不等式kx 2-kx +1>0 (k>0)都成立,那么k 的取值范围是 3.对于任意实数x ,代数式 (5-4a -2a )2 x -2(a -1)x -3的值恒为负值,求a 的取值范围 4.设α、β是关于方程 2x -2(k -1)x +k +1=0的两个实根,求 y=2α +2 β关于k 的解析式,并求y 的取值范围 第二部分 绝对值不等式 1.(2010年高考福建卷)已知函数f (x )=|x -a |. (1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值; (2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.

相关文档
最新文档