五年级长方体表面积

合集下载

五年级奥数之长方体和正方体的表面积

五年级奥数之长方体和正方体的表面积

五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。

这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。

根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。

例2:一个零件形状大小如下图,求它的表面积。

由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。

长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。

例3:有一个长方体形状的零件。

中间挖去一个正方体的孔(如下图)。

求它的表面积。

(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。

长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。

例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。

首先可以将这个立体图形分解为一个长方体和两个正方体。

长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。

正方体的边长为5,表面积为6×(5×5)=150平方厘米。

因此这个立体图形的表面积为300+150+150=600平方厘米。

例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。

五年级下册第三章长方体正方体体积表面积

五年级下册第三章长方体正方体体积表面积

关于长方体正方体的几个小问题1.长方体最多只能有4个面是正方形。

同样的最多只能有8条棱相等。

2.正方体的棱长扩大2倍,表面积会扩大4倍,体积会扩大8倍。

表面积=棱长×棱长×6体积=棱长×棱长×棱长3.长方体的高扩大2倍,表面积不会成倍增加,体积会增加2倍。

表面积=长×宽×2 + 宽×高×2 + 长×高×2体积=长×宽×高4.棱长为6的正方体表面和体积不能比较。

单位不同,没有比较的意义。

就类似1千米和1千克不能比较。

5.体积和容积的计算方式相同。

但是体积和容积不是一样的意义。

体积是占用的空间大小,容积是容纳的空间大小。

简单的说是体积是从物体的外面测量,容积是从物体的内部测量。

在有些计算题目中,体积可以等于容积。

判断易错点1、两个正方体的体积相等,表面积也一定相等。

2、两个长方体的体积相等,表面积也一定相等。

3、a3=3a(a不为0)1、关于棱长的几个考点2、长方体正方体的表面积问题(基础)关于做成一个无盖纸盒子的问题3、长、正方体切割、拼合引起的表面积体积问题4、容器里面加石块引起的问题关于棱长的问题用棱长1厘米的正方体木块摆成一个长5厘米,宽4厘米,高3厘米的长方体,共需要用多少块木块?5×4×3=60(cm3) 1×1×1=1(cm3)60÷1=60(个)一个长方体的12条棱长总和是68厘米,侧面是一个周长为18厘米的长方形,它的长是多少?(68-18×2)÷4=8 cm一个长方体和一个正方体的棱长之和相等,已知长方体的长、宽、高分别是3厘米、2厘米、1厘米,那么正方体的棱长是多少?(3+2+1)×4=24cm 24÷12=2cm一个长方体的棱长之和是60厘米,从一个顶点引出的三条棱长的和是多少?60÷4=15cm把一个正方形棱长扩大三倍,体积会扩大多少倍?表面积呢?表面积 6a2 6(3a)2=6×9a2体积 a3 (3a)3=27a32、长方体正方体的表面积问题(基础)正方体:表面积=棱长×棱长×6体积=棱长×棱长×棱长3体积棱长=长方体:表面积=(长×宽 + 长×高 + 宽×高)×2体积=长×宽×高= 底面积×高高=体积÷底面积=体积÷长÷高什么是求表面积?比如说需要贴瓷砖、贴红纸、粉刷墙面、看单位为平方。

五年级长方体和正方体巧算表面积含参考答案

五年级长方体和正方体巧算表面积含参考答案

五年级长⽅体和正⽅体巧算表⾯积含参考答案长⽅体和正⽅体(巧算表⾯积)例题讲学例1 两个棱长是2厘⽶的⼩正⽅体可以拼成⼀个长⽅体,这个长⽅体的表⾯积是多少?【40】【思路点拨】先根据题意画图:从图上可以清楚地看出:两个正⽅体原先各有当把它们拼起来时就少了2个正⽅形的⾯。

这时,求长⽅体的表⾯积只相当于求(12-2=)10个正⽅形的⾯积;还可以这样想:当两个正⽅体拼成⼀个长⽅体时,求长⽅体的表⾯积,我们可以先分别求出这个长⽅体的长、宽、⾼,再求出它的表⾯积。

当物体拼合时表⾯积之和少了,可以根据⽤原来的⾯从⽽求出拼合后物体的⾯积数量,然后求出表⾯积。

2.还可以求出拼成后⼤物体的长、宽、⾼,再根据物体形状直接求表⾯积。

同步精练1. 把两个棱长是3厘⽶的⼩正⽅体拼成⼀个长⽅体,这个长⽅体的表⾯积是多少?2.把底⾯积是36平⽅厘⽶的两个正⽅体⽊块拼成⼀个长⽅体,长⽅体的表⾯积是多少?3.把三个完全相同的正⽅体拼成⼀个长⽅体,这个长⽅体的表⾯积是350平⽅厘⽶。

每个正⽅体的表⾯积是多少平⽅厘⽶?例2 把⼀个长、宽、⾼分别是7厘⽶、6厘⽶、5厘⽶的长⽅体截成两个长⽅体,使这两个长⽅体表⾯积之和最⼤,这时表⾯积之和是多少平⽅厘⽶?【(7x6+7x5+6x5)x2+7x6x2=298】【思路点拨】把长⽅体截成两个长⽅体后,两个长⽅体表⾯积之和等于原长⽅体表⾯积再加上两个截⾯的⾯积。

这个长⽅体⼏个⾯中,上、下⾯的⾯积最⼤,所以要看哪个⾯的⾯积最⼤,于是本题就按平⾏于上、下⾯的⽅式去截,才使表⾯积之和最⼤。

每⼀种截法都会产⽣不同的⾯,所以判断怎么样截是解决问题的关键。

同步精练1. 把⼀个长10厘⽶、宽8厘⽶、⾼6厘⽶的长⽅体⽊料截成两个完全⼀样的长⽅体,怎样截才能使截成之后,得到两个长⽅体的表⾯积之和最⼤?最⼤是多少?【536】2.把两个长3厘⽶、宽2厘⽶、⾼1厘⽶的长⽅体拼成⼀个表⾯积最⼤的长⽅体,这个长⽅体的表⾯积是多少平⽅厘⽶?【40】3.把两个长6厘⽶、宽4厘⽶、⾼3厘⽶的长⽅体拼成⼀个⼤长⽅体,这个⼤长⽅体的表⾯积的最⼤值与最⼩值相差多少?【192】-【168】=【24】例3 求出下⾯⽴体图形的表⾯积。

五年级下册数学课件-第三单元2.长方体和正方体的表面积第2课时长方体和正方体表面积的计算人教版

五年级下册数学课件-第三单元2.长方体和正方体的表面积第2课时长方体和正方体表面积的计算人教版

三、梯度练习
简单练习
将下面3本词典包成一包,你能想出几种包装方案?每种包装方案至
少用多大的包装纸?哪种包装方案最省包装纸?
第四页,编辑于星期日:二十三点 三十九分。
①3本词典摞在一起:
此时需要包装成一个长为10cm、宽为4×3=
12(cm)、高为15cm的长方体,需要包装纸为:(10×12+10×15+
二、探究新知
一个正方体墨水盒,棱长6.5cm。制作这个墨水盒至少需 要多少平方厘米的硬纸板?
求至少用多少平方厘米 的硬纸板,就是要求什 么?自己试一试!
6.5×6.5×6 =42.25×6 =253.5(cm2)
答:制作这个墨水盒至少需要253.5cm2的硬纸板。
第三页,编辑于星期日:二十三点 三十九分。
是 平方厘米。 292
3. 一个正方体的棱长之和为48分米,这个正方体的表面积是
平方分米。
96
4. 一个正方体的棱长扩大为原来的3倍,表面积扩大为原来的 倍。
9
第六页,编辑于星期日:二十三点 三十九分。
拓展练习
一个长方体的木料,长是3分米,宽是2分米,厚是1分米
,现在从这块木料上截去一个尽可能大的正方体木块,剩下的 因为:900cm2<1260cm2<1340cm2,故3本词典摞在一起包装最省包装纸。
第十页,编辑于星期日:二十三点 三十九分。
谢谢!
第十一页,编辑于星期日:二十三点 三十九分。
10×45+4×45)×2=1340(cm2)
因为:900cm2<1260cm2<1340cm2,故3本词典摞在一起包装最省包装纸。
第五页,编辑于星期日:二十三点 三十九分。
中等练习
想一想,填一填。

青岛版小学数学五年级上册《长方体和正方体的表面积》课件

青岛版小学数学五年级上册《长方体和正方体的表面积》课件
1、
4
6厘米
厘 米 5厘米
可以分别求出相对面的面积再相加,也可以先求出一组相邻面的面积
1、 6×4×2+5×4×2+6×5×2 =48+40+60 = 148(平方厘米) (6×4+5×4+6×5)×2
2、 50×30×2+20×30×2+50×20×2 =3000+1200+2000
= 6200(平方厘米) (50×30+50×20+20×30)×2 =(1500+1000+600)×2 =3100×2
长方体和正方体的表面积
上 左


后 下



长方体表面积 前面 + 后面+ 上面 +下面 +左面 + 右面 宽×高 长×宽 宽×高+ 长×高+ +长×宽+ 长×高+
2、电脑包装箱的长是50厘米, 一个长6厘米,宽5厘 米,高4厘米的长方体纸盒, 宽是20厘米,高是30厘米, 它的表面积是多少平方厘米? 制作这样一个电脑包装箱至 少需要多少平方厘米的纸板?
=437.5(平方分米)
=240+160+75 =475(平方分米) 5×7.5=37.5(平方分米)
475-37.5=437.5(平方分米) 答: 至少需要用布 437.5平方分米。
提示:究竟计算哪些面的面积,
一定要审清题目,根据具体情况而定如果把一个长方体切分成两个小正方 体,这两个小正方体表面积的和与原 长方体的表面积相比是增加了还是减 少了?为什么?
3、化工厂要建一个长方体蓄水池,计划在蓄水池的外部涂蓝色的涂料, 在内壁及底面贴瓷砖,则涂颜色部分的面积是指( )的面积之和, 贴瓷砖的面积是指( )的面积之和,这个水池的占地面积是指 ( )的面积。(墙壁厚度忽略不计)

长方体正方体的表面积和体积公式

长方体正方体的表面积和体积公式
8、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?
建筑安全网 建筑安全网价格
OO4Ov8ZD4P1S
)平方厘米。
10、一个长方体长4分米,宽3分米,高2分米,它的表面积是(
)平方分米。
11、正方体的棱长之和是60分米,它的表面积是(
)平方分米。
二、判断题
1、把两个完全一样的正方体拼成一个长方体,体积和表面积都不变。( )
2、长方体的长、宽、高分别是3 cm、4 cm和4 cm,其中有两个相对的面是正方形。(
5、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、 宽7厘米的长方体框架,它的高应该是多少厘米?
6、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长 是1分米的正方形,那么至少需要这种瓷砖多少块?
7、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的 接头处是4厘米,这张商标纸的面积是多少平方厘米?
c=πd =2πr Ѕ=πr S=ch
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h 圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
A. 增加了
B .减少了
C. 没有变
10、如果把一个棱长是10厘米的正方体切成两个完全相同的长方体,这两个长方体的表面积
之和比原来的正方体表面积(
)。
A. 增加了
B. 减少了
C .没有变化

五年级数学表面积和体积的题

五年级数学表面积和体积的题

五年级数学表面积和体积的题一、题目。

1. 一个正方体的棱长为5厘米,求它的表面积和体积。

- 解析:- 正方体表面积公式为S = 6a^2(a为棱长),这里a = 5厘米,所以表面积S=6×5^2=6×25 = 150平方厘米。

- 正方体体积公式为V=a^3,所以体积V = 5^3=125立方厘米。

2. 一个长方体,长为8厘米,宽为6厘米,高为4厘米,求它的表面积和体积。

- 解析:- 长方体表面积公式S=(ab + ah+bh)×2(a为长,b为宽,h为高),这里a = 8厘米,b = 6厘米,h = 4厘米。

则S=(8×6 + 8×4+6×4)×2=(48 + 32+24)×2=(80 + 24)×2 = 104×2=208平方厘米。

- 长方体体积公式V=abh,所以体积V=8×6×4 = 192立方厘米。

3. 一个正方体的表面积是216平方厘米,求它的棱长和体积。

- 解析:- 设正方体棱长为a,由正方体表面积公式S = 6a^2,已知S = 216平方厘米,则6a^2=216,a^2=36,解得a = 6厘米。

- 正方体体积公式V=a^3,所以体积V = 6^3=216立方厘米。

4. 一个长方体的体积是360立方厘米,长是10厘米,宽是6厘米,求它的高和表面积。

- 解析:- 由长方体体积公式V = abh,已知V = 360立方厘米,a = 10厘米,b = 6厘米,则h=(V)/(ab)=(360)/(10×6)=6厘米。

- 长方体表面积公式S=(ab + ah+bh)×2=(10×6+10×6 + 6×6)×2=(60+60 + 36)×2=(120+36)×2 = 156×2 = 312平方厘米。

2020青岛版五年级下册数学长方体和正方体的表面积

2020青岛版五年级下册数学长方体和正方体的表面积

= 3.6(平方米)
底面的面积
答:至少要用木板3.6平方米.
1.2米
0.6米
1、如果把例3中木箱外面四周都刷上 油漆(底面不刷),刷油漆的面积一共有多 少平方米?
想一想:现在又要计算哪几个面的面积的和?
要算四个面的面积的和,分别是左右面面积和前后面面积
1.2×0.8×2+0.8×0.6×2
前、后面的面积
4 厘 米 6厘米
5厘米
=74×2
=148(平方厘米) 答:至少要用148平方厘米硬纸板。
根据下图填空: ①计算上面的面积是( B )。
②计算右面的面积是( C )。
③计算下面的面积是( B )。 ④计算后面的面积是( A )。
1.5 1.2
3
(单位:厘米)
A. 3×1.5
B. 3×1.2
C. 1.2×1.5
左、右面的面积
= 1.92+0.96
= 2.88(平方米)
答:一共有2.88平方米.
1.2米
0.6米
2、做一个棱长是20厘米的实物 架挂在墙上,请问要用多少平方分米 纸板?
棱长×棱长×5 202 ×5
=400×5
=2000(平方厘米)
=20(平方分米)
答:它的表面积是20平 方分米。
20厘米
3、选择题。



下 前


下 前


下 前


下 前
上 后 下 前
上上
后后
左 下下



想一想,什么叫长方体表面积?




下 前
长方体6个面的总面积,叫做长方体的表面积。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积是多少?
2.一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积是多
少?
3.有一个长方体形状的零件。

中间挖去一个正方体的孔(如下图)。

你能算出它的表面积吗?
(单位:厘米)
4.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的表面积是多少?如果把上题中挖下的小正方体粘在另一个面上(如图),那么得到的物体的表面积是多少?
5.一个正方体的棱长为4厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为1厘米的正方体做成一种玩具,求这个玩具的表面积.
6.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?
7.一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。

原正方体的表面积是多少平方厘米?
8.一个长方体,它的前面和上面的面积和是110平方厘米,且长、宽、高都是质数,那么这个长方体的表面积是多少?
9. 一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,表面积减少了125平方厘米,求原来长方体表面积?
10.用棱长是1厘米的立方块拼成如右图所示的立体图形问该图形的表面积是多少平方厘米?
11.一个正方体的表面涂满了红色,按下图切开,切开的小正方体中(1)三面涂色的有几个?
(2)两面涂色的有几个?(3)一面涂色的有几个?(4)六个面都没有涂色的有几个?
12.一个5×6×7长方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?
13.右图是3层没有缝隙的小立方块组成的.如果它的外表面(包括底面)全都被涂成红色,那么把它
们再分开成一个个小立方块时,有多少个小立方块恰有三面是红色的?
练习题
1.一个长方体用3种方法切成2个相同的长方体后表面积分别增加了20平方厘米,30平方厘米,40平方厘米,求原长方体表面积是多少平方厘米?
2.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。

要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米?
3.把若干个体积相同的小正方体堆成一个大正方体,然后在大大正方体的表面涂上颜色,已知两面被涂上颜色的小正方体有24个,那么,这些小正方体一共有多少个?
4.贝贝用硬纸板为小鸟制作了一个小房子(如右图),请你画出这个小房子的展开图,并计算硬
纸板的面积。

(无底,正面有一个高为1.5dm、宽1dm的小门)
5.每年5月份第二个星期日是母亲节,小明为妈妈挑选了一套分为4册的书,每本书长、宽、高分别为 20厘米、15厘米、5厘米。

小明想亲手将这套书用彩纸装饰起来。

请你为他设计一种最节省包装最节省包装纸的方案?算一算需要多少包装纸?(包装纸的重叠部分忽略不记)。

相关文档
最新文档