北师大版数学高二 回归分析 学案
数学北师大版高中选修1-2选修1-2第一章 统计案例 §1.1.1回归分析导学案

word 格式整理参考资料 学习帮手 第一章 统计案例§1.1.1回归分析预习案【学习目标】1. 理解并掌握用回归分析处理两个变量之间的不确定关系的统计方法。
2. 了解回归分析的意义。
3. 以极度的热情,自动自发、如痴如醉,投入到学习中,充分享受学习的快乐。
【使用说明与学法指导】1. 课前(前一天晚自习)自学课本并完成导学案,要求限时完成,书写规范;2. 带“★”的C 层可以选做,带“★★”的B,C 层可以选做.3. 自主探究先行一步,遇到难以理解的地方先做好标记,然后再通过小组讨论解决,如果小组不能解决的问题第二天在课堂上讨论解决。
一、预习自学: 基础知识梳理 问题导引知识点一:两个变量的关系与回归分析函数关系是一种 关系,而相关关系是一种 关系。
回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。
知识点二:线性回归方程1.求线性回归直线方程的步骤:(1) 作出散点图,将问题所给的数据在平面直角坐标系中描点,这样表示出的具有相关关系的两个变量的一组数据的图形就是散点图,从散点图中我们可以看出样本点是否呈条状分布,来判断两个量是否具有线性相关关系;(2) 求回归系数a ,b ,其中∑∑∑∑====--=---=n i i n i i i n i i n i i i xn x y x n y x x xy y x x b 121121)())((,x b y a -= (3) 写出回归直线方程a bx y +=,并用回归直线方程进行预测。
2. 回归直线a bx y +=过点),(y x ,这个点称为样本的中心.【预习自测】(大约10分钟,包括预习自学)1. 设有一个回归方程为22.5y x ∧=-,当变量x 增加一个单位时,( ) A 、y 平均增加2.5个单位 B 、y 平均增加2个单位C 、y 平均减少2.5个单位D 、y 平均减少2个单位2. 在一次试验中,测得),(y x 的四组数据值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的线性回归方程为 ( ) A.1+=x y B.2+=x y C.12+=x y D.1-=x y3.为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是( )A. 1l 与2l 一定平行B. 1l 与2l 相交于点),(y xC.1l 与2l 重合D. 无法判断1l 和2l 是否相交【我的疑惑】(将在预习中不能理解的问题写下来,供课堂上处理)1.2.3.。
北师大版数学高二学案 3.1.3 可线性化的回归分析

3.1.3可线性化的回归分析[学习目标] 1.进一步体会回归分析的基本思想.2.通过非线性回归分析,判断几种不同模型的拟合程度.知识点一非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.知识点二非线性回归方程题型一线性回归分析例1某产品的广告费用x与销售额y的统计数据如下表:(1)由数据易知y与a+bx;(2)据此模型预报广告费用为4万元时的销售额.解 (1)x =4+2+3+54=3.5,y =49+26+39+544=42,∴a =y -b x =42-9.4×3.5=9.1, ∴回归直线方程为y =9.1+9.4x . (2)当x =4时,y =9.1+9.4×4=46.7, 故广告费用为6万元时销售额为46.7万元.跟踪训练1 为了研究3月下旬的平均气温(x )与4月20日前棉花害虫化蛹高峰日(y )的关系,某地区观察了2006年到2011年的情况,得到了下面的数据:(1)对变量x ,(2)据气象预测,该地区在2012年3月下旬平均气温为27 ℃,试估计2012年4月化蛹高峰日为哪天. 解 制表.(1)r =∑i =16x i y i -6x y(∑i =16x 2i -6x 2)(∑i =16y 2i -6y 2)≈-0.949 8.故变量y 和x 存在很强的线性相关关系.(2)b =1 222.6-6×29.13×7.55 130.92-6×29.132≈-2.3,a =y -b x ≈74.5.所以,线性回归方程为y =74.5-2.3x.当x=27时,y=74.5-2.3×27=12.4.据此,可估计该地区2012年4月12日或13日为化蛹高峰日.题型二可线性化的回归分析例2在一化学反应过程中,化学物质的反应速度y(g/min)与一种催化剂的量x(g)有关,现收集了8组观测数据列于表中:解根据收集的数据,作散点图(如图),根据已有的函数知识,可以发现样本点分布在某一条指数函数曲数y=c1e c2x的周围,其中c1和c2是待定的参数.令z=ln y,则z=ln y=ln c1+c2x,即变换后的样本点应该分布在直线z=a+bx(a=ln c1,b=c2)的周围.由y与x的数据表可得到变换后的z与x的数据表:作出z与x的散点图(如图).由散点图可观察到,变换后的样本点分布在一条直线的附近,所以可用线性回归方程来拟合.由z与x的数据表,可得线性回归方程:z=0.848+0.81x,所以y与x之间的非线性回归方程为y=e0.848+0.81x.反思与感悟可线性化的回归分析问题,画出已知数据的散点图,选择跟散点拟合得最好的函数模型进行变量代换,作出变换后样本点的散点图,用线性回归模型拟合.跟踪训练2电容器充电后,电压达到100 V,然后开始放电,由经验知道,此后电压U随时间t变化的规律用公式U=A e bt(b<0)表示,现测得时间t(s)时的电压U(V)如下表:归分析问题)解对U=A e bt两边取对数得ln U=ln A+bt,令y=ln U,a=ln A,x=t,则y=a+bx,得y与x的数据如下表:根据表中数据作出散点图,如下图所示,从图中可以看出,y与x具有较强的线性相关关系,由表中数据求得x=5,y≈3.045,进而可以求得b≈-0.313,a=y-b x=4.61,所以y对x的线性回归方程为y=4.61-0.313x.由y=ln U,得U=e y,U=e4.61-0.313x=e4.16·e-0.313x,因此电压U对时间t的回归方程为U=e4.61·e-0.313x.题型三非线性回归模型的综合应用例3某地区不同身高的未成年男性的体重平均值如下表:试建立y解根据题干表中数据画出散点图如图所示.由图看出,样本点分布在某条指数函数曲线y=c12e c x2e c x的周围,于是令z=ln y.画出散点图如图所示.由表中数据可得z与x之间的线性回归方程:z=0.663+0.020x,则有y=e0.663+0.020x.e c x 反思与感悟根据已有的函数知识,可以发现样本分布在某一条指数型函数曲线y=c12的周围,其中c1和c2是待定参数;可以通过对x进行对数变换,转化为线性相关关系.跟踪训练3在试验中得到变量y与x的数据如下表:试求y与x之间的回归方程,并预测x=40时,y的值.解作散点图如图所示,从散点图可以看出,两个变量x,y不呈线性相关关系,根据学过的函数知识,样本点分布的曲线符合指数型函数y=c12e c x,通过对数变化把指数关系变为线性关系,令z=ln y,则z=bx+a(a=ln c1,b=c2).列表:作散点图如图所示,从散点图可以看出,两个变量x ,z 呈很强的线性相关关系.由表中的数据得到线性回归方程为:z =0.277x -3.998.所以y 关于x 的指数回归方程为:y =e 0.277x -3.998. 所以,当x =40时,y =0.27740 3.998e -≈1 190.347.1.在一次试验中,当变量x 的取值分别为1,12,13,14时,变量y 的值分别为2,3,4,5,则y与1x 的回归方程为( ) A .y =1x +1B .y =2x +3C .y =2x +1D .y =x -1答案 A解析 由数据可得,四个点都在曲线y =1x+1上.2.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:A .0.819B .0.919C .0.923D .0.95答案 B3.根据统计资料,我国能源生产发展迅速.下面是我国能源生产总量(单位:亿吨标准煤)的几个统计数据:归模型是下列四种模型中的哪一种()A.y=ax+b(a≠0)B.y=ax2+bx+c(a≠0)C.y=a x(a>0且a≠1)D.y=log a x(a>0且a≠1)答案A4.某种产品的广告费支出x与销售额y之间有下表关系,现在知道其中一个数据弄错了,则最可能错的数据是__________.答案(6,50)。
1.1回归分析-北师大版选修2-3教案

1.1 回归分析-北师大版选修2-3教案一、教学目标1.理解回归分析的基本概念。
2.掌握最小二乘法求解一元线性回归方程的方法。
3.能够利用回归分析解决实际问题。
4.培养学生运用数学知识分析问题和解决问题的能力。
二、教学重点1.回归分析的定义和基本原理。
2.最小二乘法求解一元线性回归方程的步骤。
3.运用回归分析解决实际问题。
三、教学难点1.最小二乘法求解一元线性回归方程的方法。
2.运用回归分析解决实际问题的能力。
四、教学方法1.讲授法2.示例法3.练习法五、教学资源1.北师大版选修2-3教材2.教学投影仪3.计算器六、教学过程6.1 导入1.引入回归分析的概念,让学生了解回归分析的应用场景。
2.引入最小二乘法的基本概念。
3.引入一元线性回归方程的概念。
6.2 讲授1.讲解回归分析的定义和基本原理。
2.讲解最小二乘法求解一元线性回归方程的步骤。
6.3 示例演练1.通过一个实际问题,示范如何利用回归分析解决问题。
2.带领学生一步一步跟随示例演练。
6.4 训练1.提供多个实际问题,让学生自己运用回归分析解决问题。
2.提供必要的支持和指导。
6.5 总结1.回顾回归分析的基本概念和最小二乘法求解方法。
2.总结回归分析的应用场景和作用。
七、课后作业1.完成教材相关思考题和练习题。
2.自选一道实际问题,利用回归分析解决。
3.总结回归分析的基本原理、方法和应用场景。
八、教学评估1.教师检查学生完成的练习和作业情况。
2.教师记录课堂表现优秀的学生,有针对性地给予表扬或加分。
九、教学反思经过这次教学,我发现学生对于最小二乘法和一元线性回归方程的理解还比较浅,需要在教学时细化概念,加强示范和练习,以便他们更好地吸收掌握。
此外,针对应用场景的演示需更丰富,让学生在现实问题上获得更多的直观感受。
北师大版数学高二选修1-2学案第一章第1节回归分析(第3课时)

1.3 可线性化的回归分析1.进一步了解回归分析的基本思想,明确建立回归模型的基本步骤.2.了解回归模型与函数模型的区别,体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决问题中寻找更好的模型的方法.1.在具体问题中,我们首先应该作出原始数据(x ,y)的________,从______中看出数据的大致规律,再根据这个规律选择适当的函数进行拟合.2.对于非线性回归模型一般可转化为______________,从而得到相应的回归方程. 3.几种常见模型 (1)幂函数曲线y =ax b .其散点图在如下图所示曲线附近.设__________________,则转化为线性关系:u =c +bv. (2)指数曲线y =ae bx .其散点图在如下图所示曲线附近.设______________,则转化为线性关系:u =c +bx. (3)倒指数曲线xb ae y .其散点图在如下图所示曲线附近.设____________,则转化为线性关系:u =c +bv. (4)对数曲线y =a +b ln x.其散点图在如下图所示曲线附近.设________,则转化为线性关系:y =a +bv.【做一做1】 如图中曲线所表示的函数最有可能是( ).A .y =ln xB .y =e xC .xe y 13=D .xey 13-=【做一做2】 若一函数模型为y =2+3log 2x ,则作变换u =__________,才能转化为y 是u 的线性回归方程.答案:1.散点图 散点图 2.线性回归模型3.(1)u =ln y ,v =ln x ,c =ln a (2)u =ln y ,c =ln a (3)u =ln y ,c =ln a ,v =1x (4)v=ln x【做一做1】 D 【做一做2】 log 2x1.实际问题中非线性相关的函数模型的选取剖析:(1)要先作散点图;(2)选取所有符合的可能类型;(3)将非线性关系转变为线性关系后,可再作线性相关的散点图来进一步辨别,也可通过计算线性相关系数作比较.2.常见的几种模型在转化为线性关系时应注意的问题剖析:常见的几种函数模型的解析式在转变为线性相关关系时,要根据函数式的特点,灵活地换元转变为线性函数关系.常见的几种模型在使用时要注意散点图的形状符合哪一种类型曲线的形状,有时不太容易辨别,可采用多种模型拟合,并转变为线性回归关系.利用线性相关系数来判断检验用哪一种拟合效果较好,就用哪一种模型.3.利用线性回归拟合曲线的一般步骤剖析:(1)绘制散点图.一般根据数据性质结合专业知识便可确定数据的曲线类型.不能确定时,可在方格坐标纸上绘制散点图,根据散点的分布,选择接近的、合适的曲线类型.(2)进行变量替换.令y′=f(y),x′=g(x),使变换后的两个变量呈线性相关关系.(3)按最小二乘法原理求线性回归方程并进行检验.(4)将线性回归方程转换为关于原始变量x,y的回归方程.题型一已知模拟函数类型确定解析式若y与t之间满足y=a e b(t 1 950)的关系,求函数解析式.若按此增长趋势,问我国2012年人口将达到多少亿?分析:本题中已知函数模型的类型,可通过变形转化为线性关系,从而求出.反思:本题中已知函数模型,可通过恰当的变换将函数转化为线性函数关系u=c+bt′,然后通过变换公式计算出相应的u与t′之间的数据关系表,根据求线性回归直线的公式计算出u与t′之间的函数关系,并将u与t′之间的关系再转回到y与t之间的函数关系.题型二通过数据探寻函数关系模型【例题2】某种书每册的成本费y(元)与印刷册数x(千册)有关,经统计得到数据如下检验每册书的成本费y 与印刷册数的倒数1x 之间是否具有线性相关关系,如有,求出y对x 的回归方程.分析:本题中y 与x 不具有线性相关关系,而y 与1x可能具有线性相关关系,故先把x转化为1x ,不妨设u =1x,建立y 与u 的回归分析即可,最后转化为y 与x 的关系.反思:在拿不准y 与1x 之间是否具有线性相关关系时,可以通过变换u =1x 找y 与u 之间的关系,并通过画散点图或计算线性相关系数来进一步判断y 与u 之间是否具有线性相关关系,从而进一步完成运算.答案:【例题1】 解:设u =ln y ,c =ln a ,t ′=t -1 950,则u =c +bt ′. u 与t ′之间的关系数据如下表:由此可得:∑i =110t i ′2=285,∑i =110t i ′u i =497.593 6,t ′=4.5,u =11.016 7,进而可以得b =∑∑=='-''-'1012210110 10i i i i i t t ut u t=497.593 6-10×4.5×11.016 7285-10×4.52≈0.022 3,∴c =u -b t ′=11.016 7-0.022 3×4.5≈10.916 4. ∴u =10.916 4+0.022 3t ′.∴y =e 10.916 4+0.022 3(t -1 950)=e 10.916 4·e 0.022 3(t -1 950).当t =2 012时,u =10.916 4+0.022 3×(2 012-1 950)=12.299, ∴y =e 12.299≈219 476.40(万人),即如果按此增长趋势,到2012年将达到21.947 640亿人. 【例题2】 解:设u =1x ,则y 与u 的数据关系如下表:由此可得:∑i =110u 2i =1.412 989,∑i =110y 2i =171.803,∑i =110u i y i =15.208 78,u=0.224 8,y =3.14,则线性相关系数r =∑i =110u i y i -10u y∑i =110u 2i -10u2∑i =110y 2i -10y2=15.208 78-10×0.224 8×3.141.412 989-10×0.224 82×171.803-10×3.142≈0.999 8.这表明u 与y 之间有较强的线性相关关系,从而求y 与u 的线性回归方程是有意义的.∵b =∑i =110u i y i -10u y∑i =110u 2i -10u2≈8.98,a =y -b u =3.14-8.98×0.224 8≈1.12, ∴y =1.12+8.98u .∴x 与y 之间的回归方程为y =1.12+8.98x .1幂函数曲线y =x b ,当b >1时的图像为( ).答案:A 当b >1时,图像为选项A ;当0<b <1时,图像为选项B ;当b <0时,图像为选项C ;当b =1时,图像为选项D.2倒指数曲线xb ae y ,当a >0,b >0时的图像为( ).答案:A3某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)根据统计资料,居民家庭年平均收入的中位数是__________万元,家庭年平均收入与年平均支出有__________线性相关关系.答案:13 正 根据中位数的定义,居民家庭年平均收入的中位数是13,家庭年平均收入与年平均支出有正线性相关关系.则x ,y 之间符合的函数模型为__________.答案:y =x 2 通过数据发现y 的值与x 的平方值比较接近,所以x ,y 之间的函数模型为y =x 2.5 某地今年上半年患某种传染病的人数y(人)与月份x(月)之间满足函数关系,模型为y =a e bx分析:函数模型为指数函数,可转化为线性相关关系,从而求解. 解:设u =ln y ,c =ln a ,得u =c +bx , 则u 与x 的数据关系如下表:由上表,得∑==6121i i x ,∑==613595.25i i u ,∑==61291i i x ,∑==612334.107i i u ,∑==613413.90i i i u x ,5.3=x ,u ≈4.226 58,∴b ≈2612616 6∑∑==--i i i i i xx ux u x=25.369122658.45.363413.90⨯-⨯⨯-≈0.09, c =u -b x ≈4.226 58-0.09×3.5=3.911 58, ∴u =3.911 58+0.09x . ∴y =e 3.911 58·e 0.09x .。
高中数学:1.1回归分析 学案 (北师大选修1-2)

1.1回归分析自学目标(1)通过实例引入线性回归模型,感受产生随机误差的原因;(2)通过对回归模型的合理性等问题的研究,渗透线性回归分析的思想和方法;(3)能求出简单实际问题的线性回归方程.重点,难点线性回归模型的建立和线性回归系数的最佳估计值的探求方法.学习过程一.问题情境1.情境:对一作直线运动的质点的运动过程观测了8次,得到如下表所示的数据,试估计当x=9时的位置y的值.时刻x/s1*******位置观测值5.547.5210.0211.7315.6916.1216.9821.06y/cm根据《数学3(必修)》中的有关内容,解决这个问题的方法是:先作散点图,如下图所示:从散点图中可以看出,样本点呈直线趋势,时间x与位置观测值y之间有着较好的线性关系.因此可以用线性回归方程来刻画它们之间的关系.根据线性回归的系数公式,1221()ni i i ni i x y nx y b x n x a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 可以得到线性回归方为 3.5361 2.1214y x =+,所以当9x =时,由线性回归方程可以估计其位置值为22.6287y =2.问题:在时刻9x =时,质点的运动位置一定是22.6287cm 吗? 二.学生活动思考,讨论:这些点并不都在同一条直线上,上述直线并不能精确地反映x 与y 之间的关系,y 的值不能由x 完全确定,它们之间是统计相关关系,y 的实际值与估计值之间存在着误差. 三.建构数学1.线性回归模型的定义:我们将用于估计y 值的线性函数a bx +作为确定性函数;y 的实际值与估计值之间的误差记为ε,称之为随机误差;将y a bx ε=++称为线性回归模型.说明:(1)产生随机误差的主要原因有:①所用的确定性函数不恰当引起的误差; ②忽略了某些因素的影响; ③存在观测误差.(2)对于线性回归模型,我们应该考虑下面两个问题: ①模型是否合理(这个问题在下一节课解决); ②在模型合理的情况下,如何估计a ,b ? 2.探求线性回归系数的最佳估计值:对于问题②,设有n 对观测数据(,)iix y (1,2,3,,)i n =,根据线性回归模型,对于每一个ix ,对应的随机误差项()ii i y a bx ε=-+,我们希望总误差越小越好,即要使21ni i ε=∑越小越好.所以,只要求出使21(,)()ni i i Q y x αββα==--∑取得最小值时的α,β值作为a ,b 的估计值,记为a ,b .注:这里的iε就是拟合直线上的点(),iix a bx +到点(),iiiP x y 的距离.用什么方法求a ,b ?回忆《数学3(必修)》“2.4线性回归方程”P71“热茶问题"中求a ,b 的方法:最小二乘法.利用最小二乘法可以得到a ,b 的计算公式为1122211()()()()nni i iii i nni ii i x x y y x ynx yb x x xn x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑,[来源:Z #xx #k 。
高二数学北师大版选修2-3同步导学案:3.1.1 回归分析 1.2 相关系数 1.3 可线性化的回归分析

§1 回归分析 1.1 回归分析 1.2 相关系数 1.3 可线性化的回归分析1.了解回归分析的思想和方法.(重点)2.掌握相关系数的计算和判断线性相关的方法.(重点)3.了解常见的非线性回归模型转化为线性回归模型的方法.(难点)[基础·初探]教材整理1 回归分析阅读教材P 73~P 75,完成下列问题.设变量y 对x 的线性回归方程为y =a +bx ,由最小二乘法知系数的计算公式为:b =l xy l xx=∑i =1ni-xi-y∑i =1ni-x2=∑i =1nx i y i -n xy∑i =1nx 2i -n x 2,a =y -b x .教材整理2 相关系数阅读教材P 76~P 78,完成下列问题. 1.相关系数r 的计算假设两个随机变量的数据分别为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则变量间线性相关系数r =l xy l xx l yy=∑i =1ni-xi-y∑i =1ni-x2∑i =1ni-y2=∑i =1nx i y i -n xy∑i =1nx 2i -nx2∑i =1ny 2i -n y 2.2.相关系数r 与线性相关程度的关系 (1)r 的取值范围为[-1,1];(2)|r|值越大,误差Q 越小,变量之间的线性相关程度越高; (3)|r|值越接近0,误差Q 越大,变量之间的线性相关程度越低. 3.相关性的分类(1)当r>0时,两个变量正相关; (2)当r<0时,两个变量负相关; (3)当r =0时,两个变量线性不相关.判断(正确的打“√”,错误的打“×”)(1)两个变量的相关系数r >0,则两个变量正相关.( ) (2)两个变量的相关系数越大,它们的相关程度越强.( ) (3)若两个变量负相关,那么其回归直线的斜率为负.( ) 【答案】 (1)√ (2)× (3)√ 教材整理3 可线性化的回归分析 阅读教材P 79~P 82,完成下列问题.1.非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型. 2.非线性回归方程下列数据x ,y 符合哪一种函数模型( )A.y =2+3xB .y =2e xC .y =2e 1xD .y =2+ln x【解析】 分别将x 的值代入解析式判断知满足y =2+ln x. 【答案】 D[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑:[小组合作型]i i 311①,对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图②.由这两个散点图可以判断( )图311A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关(2)(2016·上饶高二检测)两个变量x,y与其线性相关系数r有下列说法:①若r>0,则x增大时,y也随之相应增大;②若r<0,则x增大时,y也相应增大;③若r=1或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上,其中正确的有( )A.①②B.②③C.①③D.①②③(3)有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;④正方形的边长和面积;⑤汽车的重量和百公里耗油量.其中两个变量成正相关的是( ) A.①③B.②④C.②⑤D.④⑤【精彩点拨】可借助于线性相关概念及性质作出判断.【自主解答】(1)由这两个散点图可以判断,变量x与y负相关,u与v正相关,故选C.(2)根据两个变量的相关性与其相关系数r之间的关系知,①③正确,②错误,故选C.(3)其中①③成负相关关系,②⑤成正相关关系,④成函数关系,故选C.【答案】(1)C (2)C (3)C1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r 来检验线性相关显著性水平时,通常与0.75作比较,若r>0.75,则线性相关较为显著,否则为不显著.[再练一题]1.下列两变量中具有相关关系的是( )【导学号:62690052】A .正方体的体积与边长B .人的身高与体重C .匀速行驶车辆的行驶距离与时间D .球的半径与体积【解析】 选项A 中正方体的体积为边长的立方,有固定的函数关系;选项C 中匀速行驶车辆的行驶距离与时间成正比,也是函数关系;选项D 中球的体积是43π与半径的立方相乘,有固定函数关系.只有选项B 中人的身高与体重具有相关关系.【答案】 By(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:(1)(2)气象部门预测下个月的平均气温约为6 ℃,据此估计该商场下个月毛衣的销售量. 【精彩点拨】 (1)可利用公式求解; (2)把月平均气温代入回归方程求解.【自主解答】 (1)由散点图易判断y 与x 具有线性相关关系. x =(17+13+8+2)÷4=10, y =(24+33+40+55)÷4=38,∑4i=1x i y i=17×24+13×33+8×40+2×55=1 267,∑4i=1x2i=526,b=∑4i=1x i y i-4x y∑4i=1x2i-4x2=1 267-4×10×38526-4×102≈-2.01,a=y-b x≈38-(-2.01)×10=58.1,所以线性回归方程为y=-2.0x+58.1.(2)气象部门预测下个月的平均气温约为6 ℃,据此估计,该商场下个月毛衣的销售量为y=-2.0 x+58.1=-2.0×6+58.1≈46(件).1.回归分析是定义在具有相关关系的两个变量基础上的,因此,在作回归分析时,要先判断这两个变量是否相关,利用散点图可直观地判断两个变量是否相关.2.利用回归直线,我们可以进行预测.若回归直线方程y=a+bx,则x=x0处的估计值为y0=a+bx0.3.线性回归方程中的截距a和斜率b都是通过样本估计而得到的,存在着误差,这种误差可能导致预报结果的偏差,所以由线性回归方程给出的是一个预报值而非精确值.4.回归直线必过样本点的中心点.[再练一题]2.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:(1)(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力. 【解】 (1)如图:(2) ∑ 4i =1x i y i =6×2+8×3+10×5+12×6=158,x =6+8+10+124=9,y =2+3+5+64=4, ∑ 4i =1x 2i =62+82+102+122=344,b =158-4×9×4344-4×92=1420=0.7, a =y -b x =4-0.7×9=-2.3, 故线性回归方程为y =0.7x -2.3.(3)由(2)中线性回归方程得当x =9时,y =0.7×9-2.3=4,预测记忆力为9的同学的判断力约为4.[探究共研型]探究1 【提示】 非线性回归问题有时并不给出经验公式.这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量变换,把问题化为线性回归分析问题,使之得到解决.其一般步骤为:探究2 已知x和y之间的一组数据,则下列四个函数中,模拟效果最好的为哪一个?①y2③y=4x; ④y=x2.【提示】观察散点图中样本点的分布规律可判断样本点分布在曲线y=3×2x-1附近.所以模拟效果最好的为①.某地区不同身高的未成年男性的体重平均值如下表:(2)如果一名在校男生身高为168 cm,预测他的体重约为多少?【精彩点拨】先由散点图确定相应的拟合模型,再通过对数变换将非线性相关转化为线性相关的两个变量来求解.【自主解答】(1)根据表中的数据画出散点图,如下:由图看出,这些点分布在某条指数型函数曲线y=c1ec2x的周围,于是令z=ln y,列表如下:由表中数据可求得z 与x 之间的回归直线方程为z ^=0.693+0.020x ,则有y =e 0.693+0.020x. (2)由(1)知,当x =168时,y =e 0.693+0.020×168≈57.57,所以在校男生身高为168 cm ,预测他的体重约为57.57 kg.两个变量不具有线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型,如y =c 1ec 2x,我们可以通过对数变换把指数关系变为线性关系,令z =ln y ,则变换后样本点应该分布在直线z =bx +=ln c 1,b =c 2的周围.[再练一题]3.在一次抽样调查中测得样本的5个样本点,数据如下表:【解】 作出变量y 与x 之间的散点图如图所示.由图可知变量y 与x 近似地呈反比例函数关系.设y =k x ,令t =1x,则y =kt.由y 与x 的数据表可得y 与t 的数据表:作出y由图可知y 与t 呈近似的线性相关关系.又t =1.55,y =7.2,∑i =15t i y i =94.25,∑i =15t 2i =21.312 5,b =∑i =15t i y i -5ty ∑i =15t 2i -5t 2=94.25-5×1.55×7.221.312 5-5×1.552≈4.134 4,a =y-b t =7.2-4.134 4×1.55≈0.8, ∴y =4.134 4t +0.8.所以y 与x 的回归方程是y =4.134 4x+0.8.[构建·体系]1.下列结论正确的是( )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A .①②B .①②③C .①②④D .①②③④【解析】 函数关系和相关关系的区别是前者是确定性关系,后者是非确定性关系,故①②正确;回归分析是对具有相关关系的两个变量进行统计分析的一种方法,故③错误,④正确.【答案】 C2.下表是x 和y 之间的一组数据,则y 关于x 的线性回归方程必过点( )C .(2.5,4)D .(2.5,5)【解析】 线性回归方程必过样本点的中心(x ,y ), 即(2.5,4),故选C. 【答案】 C3.对具有线性相关关系的变量x 和y ,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为________.【导学号:62690053】【解析】 由题意知x =2,y =3,b =6.5,所以a =y -b x =3-6.5×2=-10,即回归直线的方程为y =-10+6.5x.【答案】 y =-10+6.5x4.部门所属的10个工业企业生产性固定资产价值与工业增加值资料如下表(单位:百万元):【解析】 x =3+3+5+6+6+7+8+9+9+1010=6.6.y =15+17+25+28+30+36+37+42+40+4510=31.5.∴r =∑ 10i =1i-xi-y∑ 10i =1i-x2∑ 10i =1i-y2=0.991 8.【答案】 0.991 85.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)【解】 (1)x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80,∵b =-20,a =y -b x , ∴a =80+20×8.5=250, ∴回归直线方程为y =-20x +250.(2)设工厂获得的利润为L 元,则L =x(-20x +250)-4(-20x +250)=-20⎝⎛⎭⎪⎫x -3342+361.25,∴该产品的单价应定为334元时,工厂获得的利润最大.我还有这些不足:(1) (2)我的课下提升方案: (1) (2)学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.为了考查两个变量x 和y 之间的线性相关性,甲、乙两名同学各自独立地做了10次试验和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2.已知两个人在试验中发现对变量x 的观测数据的平均数都为s ,对变量y 的观测数据的平均数都为t ,那么下列说法中正确的是( )A .直线l 1和l 2都过点(s ,t)B .直线l 1和l 2相交,但交点不一定是(s ,t)C .直线l 1和l 2必平行D .直线l 1和l 2必重合【解析】 线性回归方程y =bx +a 恒过点(x ,y ),故直线l 1和l 2都过点(s ,t). 【答案】 A2.已知人的年龄x 与人体脂肪含量的百分数y 的回归方程为y =0.577x -0.448,如果某人36岁,那么这个人的脂肪含量( )A .一定是20.3%B .在20.3%附近的可能性比较大C .无任何参考数据D .以上解释都无道理【解析】 将x =36代入回归方程得y =0.577×36-0.448≈20.3.由回归分析的意义知,这个人的脂肪含量在20.3%附近的可能性较大,故选B.【答案】 B3.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .线性相关系数可以是正的或负的 C .回归模型中一定存在随机误差 D .散点图表明确反映变量间的关系【解析】 用散点图反映两个变量间的关系时,存在误差,故D 错误. 【答案】 D4.某学校开展研究性学习活动,某同学获得一组实验数据如下表:) A .y =2x -2B .y =⎝ ⎛⎭⎪⎫12xC .y =log 2xD .y =12(x 2-1)【解析】 代入检验,当x 取相应的值时,所得y 值与已知数据差的平方和最小的便是拟合程度最高的.【答案】 D5.某产品的广告费用x 与销售额y 的统计数据如下表:6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元【解析】 样本点的中心是(3.5,42),则a =y -b x =42-9.4×3.5=9.1,所以回归直线方程是y =9.4x +9.1,把x =6代入得y =65.5.【答案】 B 二、填空题6.回归分析是处理变量之间________关系的一种数量统计方法.【导学号:62690054】【解析】 回归分析是处理变量之间相关关系的一种数量统计方法. 【答案】 相关7.已知某个样本点中的变量x ,y 线性相关,相关系数r <0,则在以(x ,y )为坐标原点的坐标系下的散点图中,大多数的点都落在第________象限.【解析】 ∵r <0时b <0, ∴大多数点落在第二、四象限. 【答案】 二、四8.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm,170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.【解析】 儿子和父亲的身高可列表如下:设线性回归方程y =a +bx ,由表中的三组数据可求得b =1,故a =y -b x =176-173=3,故线性回归方程为y =3+x ,将x =182代入得孙子的身高为185 cm.【答案】 185 三、解答题9.(2016·包头高二检测)关于某设备的使用年限x 和所支出的维修费用y(万元),有如下的统计资料:如由资料可知y 对(1)线性回归方程:⎝ ⎛⎭⎪⎪⎫a =y -b x -,b =∑i =1nx i y i -n x -y -∑i =1nx 2i-x 2(2)估计使用年限为10年时,维修费用是多少? 【解】 (1)x =2+3+4+5+65=4,y =2.2+3.8+5.5+6.5+7.05=5,∑i =15x 2i=90,∑i =15x i y i =112.3,b =∑i =15x i y i -5x-y-∑i =15x 2i -5x 2=112.3-5×4×590-5×42=1.23. 于是a =y -bx =5-1.23×4=0.08. 所以线性回归方程为y =1.23x +0.08.(2)当x =10时,y =1.23×10+0.08=12.38(万元), 即估计使用10年时维修费用是12.38万元.10.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对比表.【解】 画出散点图如图所示.x =16(26+18+13+10+4-1)≈11.7,y =16(20+24+34+38+50+64)≈38.3,∑i =16xx i y i =26×20+18×24+13×34+10×38+4×50-1×64=1 910,∑i =16xx 2i =262+182+132+102+42+(-1)2=1 286, ∑i =16xy 2i =202+242+342+382+502+642=10 172,由r =∑ hi =1x i y i -n x y ∑ ni =1x 2i-n x 2∑ ni =1y 2i-n y 2,可得r ≈0.97.由于r 的值较大,所以x 与y 具有很强的线性相关关系.[能力提升]1.经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间x 与数学成绩y 进行数据收集如表:x +18y =100的位置关系是( )A .a +18b <100B .a +18b >100C .a +18b =100D .a +18b 与100的大小无法确定【解析】 x =15(15+16+18+19+22)=18,y =15(102+98+115+115+120)=110,所以样本数据的中心点为(18,110), 所以110=18b +a ,即点(a ,b)满足a +18b =110>100. 【答案】 B2.已知x 与y 之间的几组数据如下表:数据(1,0)和(2,2)求得的直线方程为y =b′x+a′,则以下结论正确的是( )A .b>b′,a>a′B .b>b′,a<a′C .b<b′,a>a′D .b<b′,a<a′【解析】 由(1,0),(2,2)求b′,a′. b′=2-02-1=2,a′=0-2×1=-2. 求b ,a 时,∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136, ∑i =16x 2i =1+4+9+16+25+36=91, ∴b =58-6×3.5×13691-6×3.52=57, a =136-57×3.5=136-52=-13,∴b<b′,a>a′. 【答案】 C3.(2016·江西吉安高二检测)已知x ,y 的取值如下表所示,由散点图分析可知y 与x线性相关,且线性回归方程为y =0.95x +2.6,那么表格中的数据m 的值为________.【解析】 x =0+1+4=2,y =4=11.3+m 4,把(x -,y -)代入回归方程得11.3+m4=0.95×2+2.6,解得m =6.7.【答案】 6.74.某商店各个时期的商品流通率y(%)和商品零售额x(万元)资料如下:散点图显示出x 流通率y 决定于商品的零售额x ,体现着经营规模效益,假定它们之间存在关系式:y =a +b x .试根据上表数据,求出a 与b 的估计值,并估计商品零售额为30万元时的商品流通率.【解】 设u =1x,则y≈a+bu ,得下表数据:进而可得n =10,u ≈0.060 4,y =3.21,∑i =110uu 2i -10u 2≈0.004 557 3, ∑i =110u i y i -10u y ≈0.256 35,b≈0.256 350.004 557 3≈56.25, a =y -b·u ≈-0.187 5,所求的回归方程为y =-0.187 5+56.25x.当x =30时,y =1.687 5,即商品零售额为30万元时,商品流通率为1.687 5%.。
北师大版高中数学导学案《回归分析》

§1.1回归分析一、学习目标1、理解两个变量间的函数关系与相关关系的区别;(重点)2、通过对案例的探究,会对两个随机变量进行线性回归分析;(重点)3、理解相关系数的含义,户计算两个随机变量的线性相关系数,会通过线性相关系数判断它们之间的线性相关程度;(重点)4、通过对数据之间的散点图的观察,能够对两个随机变量进行可线性化的回归分析。
(难点)二、自主学习(预习教材,找出疑惑之处)复习:1.相关关系概念: . 2.回归分析的相关概念:回归分析是处理两个变量之间的一种统计方法.若两个变量之间具有线性相关关系,则称相应的回归分析为.3. 回归直线方程 其中=∧b,=∧a,恒过定点新课:4.平均值的符号表示:假设样本点为()(),,,,2211y x y x …()n n y x , ,在统计上,用x 表示一组数据,,21x x …n x 的平均值,即x = = ,用y 表示一组数据,,21y y …n y 的平均值,即y = = 。
5. 参数a ,b 的求法:==xxxy l l b =。
=a 。
6.相关系数的计算:假设两个随机变量的数据分别为()(),,,,2211y x y x …()n n y x , ,则变量间线性相关系数==yyxx xy l l l r= 。
7.相关系数的性质:① r 的取值范围: ;② |r|值越大,误差Q 越小,变量之间的线性相关程度越 ; ③ |r|值越接近0,误差Q 越大,变量之间的线性相关程度越 ; ④ 相关性的分类: , , 。
8.可线性化的回归分析:Ⅰ 幂函数曲线如何做变化?变换公式?变换后的线性函数为什么? Ⅱ 指数曲线,倒指数曲线,对数曲线呢?三、典例分析例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:生的体重.提示:第一步:作散点图第二步:求回归方程 第三步:代值计算探究一 如何理解回归直线方程中的系数b ∧,a ∧?探究二 身高为172cm 的女大学生的体重一定是60.316kg 吗?例2 为分析学生初中升高中的数学成绩对高一数学学习的成绩,在高一年级随机抽取10(1) 画出散点图;(2)对变量x 与y 进行相关性检验,如果x 与y 之间具有线性相关关系求出回归直线方程;(3)若某学生入学的数学成绩为80分,试估计他在高一期末考试中的数学成绩。
北师大版高中数学选修回归分析学案

回归分析知识引入你知道日常生活中的天气预报是如何实现的吗?气象学家根据既往的温度、湿度以及降雨等资料,就可以预报未来一段时间某地的天气变化情况。
这要求对这些变量之间的关系有精确的掌握。
前面的学习中,我们知道相关分析可用来帮助我们分析变量之间关系的强度;而倘若要确定变量之间数量关系的可能形式也即数量模型,则通常可采用回归分析法。
回归分析的应用十分广泛,它不但适用于实验数据,还可以分析未作实验控制的观测数据或历史资料。
有人可能会好奇,为什么叫“回归”这个名称,它有什么具体含义?实际上,回归这种现象最早由英国生物统计学家高尔顿在研究父母亲和子女的遗传特性时所发现的一种有趣的现象:身高这种遗传特性表现出“高个子父母,其子代身高也高于平均身高;但不见得比其父母更高,到一定程度后会往平均身高方向发生‘回归’”。
这种效应被称为“趋中回归”。
现在的回归分析则多半指源于高尔顿工作的那样一整套建立变量间数量关系模型的方法和程序。
本章以回归分析中最简单的一元线性回归为例介绍回归分析基本原理,接着概括一元线性回归的主要过程,最后介绍多元线性回归。
第一节回归分析基本原理两变量间的相关关系可以用散点图来反映,图中的每个点都代表一个变量配对样本点,它是自变量与因变量间关系的一个具体代表。
在相关分析中,我们详细地分析过相关关系的几何意义和数量特点。
显然,若这些散点都落在一条直线上(完全相关),则该条直线当然能够代表变量间的数量关系——一次函数关系。
但在回归分析中,我们要解决的是一般情况下(不完全相关),如何寻找一条最恰当的直线能代表呈线性关系的两个变量间的直线关系趋势,也就是能够最大程度拟合这些散点的直线。
最小二乘法原理我们将那条要找的直线用= a + bx 来表示,这个方程称为回归方程。
这里之所以用而不用y,是因为(x,y) 是实际观测的值,而直线上的点(x, )不一定在实际中会出现,也就是说是估计值。
线性回归的目的就是去确定回归方程中的系数a 和b,这些系数称为回归系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学回归分析学案一.随机抽样1.随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:⑴简单随机抽样:从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.抽出办法:①抽签法:用纸片或小球分别标号后抽签的方法.②随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表.表中每一位置出现各个数字的可能性相同.随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法.简单随机抽样是最简单、最基本的抽样方法.⑵系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整除,设Nkn=,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作为起始数,然后顺次抽取第2(1)s k s k s n k+++-,,,个数,这样就得到容量为n的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样.⑶分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛.2.简单随机抽样必须具备下列特点:⑴简单随机抽样要求被抽取的样本的总体个数N是有限的.⑵简单随机样本数n小于等于样本总体的个数N.⑶简单随机样本是从总体中逐个抽取的.⑷简单随机抽样是一种不放回的抽样.⑸简单随机抽样的每个个体入样的可能性均为nN.3.系统抽样时,当总体个数N恰好是样本容量n的整数倍时,取Nkn =;若Nn不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n整除.因为每个个体被剔除的机会相等,因而整个抽样过程中每个个体被抽取的机会仍然相等,为Nn.二.频率直方图知识内容列出样本数据的频率分布表和频率分布直方图的步骤: ①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x =来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.三.茎叶图制作茎叶图的步骤:①将数据分为“茎”、“叶”两部分;②将最大茎与最小茎之间的数字按大小顺序排成一列,并画上竖线作为分隔线; ③将各个数据的“叶”在分界线的一侧对应茎处同行列出.四.统计数据的数字特征用样本平均数估计总体平均数;用样本标准差估计总体标准差. 数据的离散程序可以用极差、方差或标准差来描述.极差又叫全距,是一组数据的最大值和最小值之差,反映一组数据的变动幅度; 样本方差描述了一组数据平均数波动的大小,样本的标准差是方差的算术平方根.一般地,设样本的元素为12n x x x ,,,样本的平均数为x , 定义样本方差为222212()()()n x x x x x x s n-+-++-=,样本标准差(n x x s ++-=简化公式:22222121[()]n s x x x nx n=+++-.五.独立性检验1.两个变量之间的关系;常见的有两类:一类是确定性的函数关系;另一类是变量间存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有一定随机性的.当一个变量取值一定时,另一个变量的取值带有一定随机性的两个变量之间的关系叫做相关关系.2.散点图:将样本中的n 个数据点()(12)i i x y i n =,,,,描在平面直角坐标系中,就得到了散点图.散点图形象地反映了各个数据的密切程度,根据散点图的分布趋势可以直观地判断分析两个变量的关系.3.如果当一个变量的值变大时,另一个变量的值也在变大,则这种相关称为正相关;此时,散点图中的点在从左下角到右上角的区域.反之,一个变量的值变大时,另一个变量的值由大变小,这种相关称为负相关.此时,散点图中的点在从左上角到右下角的区域.散点图可以判断两个变量之间有没有相关关系.4.统计假设:如果事件A 与B 独立,这时应该有()()()P AB P A P B =,用字母0H 表示此式,即0:()()()H P AB P A P B =,称之为统计假设. 5.2χ(读作“卡方”)统计量:统计学中有一个非常有用的统计量,它的表达式为22112212211212()n n n n n n n n n χ++++-=,用它的大小可以用来决定是否拒绝原来的统计假设0H .如果2χ的值较大,就拒绝0H ,即认为A 与B 是有关的.2χ统计量的两个临界值:3.841、6.635;当2 3.841χ>时,有95%的把握说事件A 与B 有关;当2 6.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的.独立性检验的基本思想与反证法类似,由结论不成立时推出有利于结论成立的小概率事件发生,而小概率事件在一次试验中通常是不会发生的,所以认为结论在很大程度上是成立的. 1.独立性检验的步骤:统计假设:0H ;列出22⨯联表;计算2χ统计量;查对临界值表,作出判断.2.几个临界值:222()0.10( 3.841)0.05( 6.635)0.01P P P χχχ≈≈≈≥2.706,≥,≥.22⨯联表的独立性检验:如果对于某个群体有两种状态,对于每种状态又有两个情况,这样排成一张22⨯的表,如下:如果有调查得来的四个数据111221224个数据来检验上述的两种状态A 与B 是否有关,就称之为22⨯联表的独立性检验.六.回归分析1.回归分析:对于具有相关关系的两个变量进行统计分析的方法叫做回归分析,即回归分析就是寻找相关关系中这种非确定关系的某种确定性. 回归直线:如果散点图中的各点都大致分布在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 2.最小二乘法:记回归直线方程为:ˆy a bx =+,称为变量Y 对变量x 的回归直线方程,其中a b ,叫做回归系数.ˆy是为了区分Y 的实际值y ,当x 取值i x 时,变量Y 的相应观察值为i y ,而直线上对应于i x 的纵坐标是ˆi i ya bx =+.设x Y ,的一组观察值为()i i x y ,,12i n =,,,,且回归直线方程为ˆya bx =+, 当x 取值i x 时,Y 的相应观察值为i y ,差ˆ(12)i i y yi n -=,,,刻画了实际观察值i y 与回归直线上相应点的纵坐标之间的偏离程度,称这些值为离差.我们希望这n 个离差构成的总离差越小越好,这样才能使所找的直线很贴近已知点. 记21()ni i i Q y a bx ==--∑,回归直线就是所有直线中Q 取最小值的那条.这种使“离差平方和为最小”的方法,叫做最小二乘法.用最小二乘法求回归系数a b ,有如下的公式: 1221ˆni ii nii x ynxy bxnx ==-=-∑∑,ˆˆa y bx =-,其中a b ,上方加“^”,表示是由观察值按最小二乘法求得的回归系数.3.线性回归模型:将用于估计y 值的线性函数a bx +作为确定性函数;y 的实际值与估计值之间的误差记为ε,称之为随机误差;将y a bx ε=++称为线性回归模型. 产生随机误差的主要原因有:①所用的确定性函数不恰当即模型近似引起的误差; ②忽略了某些因素的影响,通常这些影响都比较小; ③由于测量工具等原因,存在观测误差. 4.线性回归系数的最佳估计值:利用最小二乘法可以得到ˆˆa b ,的计算公式为 1122211()()()()nnii iii i nniii i xx y y x ynxyb xx xn x ====---==--∑∑∑∑,ˆˆa y bx =-,其中11n i i x x n ==∑,11nii y y n ==∑由此得到的直线ˆˆya bx =+就称为回归直线,此直线方程即为线性回归方程.其中ˆa ,b 分别为a ,b 的估计值,ˆa称为回归截距,b 称为回归系数,ˆy 称为回归值. 5.相关系数: ()()nnii i ixx y y x ynx yr ---=∑∑6.相关系数r 的性质:⑴||1r ≤;⑵||r 越接近于1,x y ,的线性相关程度越强; ⑶||r 越接近于0,x y ,的线性相关程度越弱.可见,一条回归直线有多大的预测功能,和变量间的相关系数密切相关. 7.转化思想:根据专业知识或散点图,对某些特殊的非线性关系,选择适当的变量代换,把非线性方程转化为线性回归方程,从而确定未知参数. 8.一些备案①回归(regression )一词的来历:“回归”这个词英国统计学家Francils Galton 提出来的.1889年,他在研究祖先与后代的身高之间的关系时发现,身材较高的父母,他们的孩子也较高,但这些孩子的平均身高并没有他们父母的平均身高高;身材较矮的父母,他们的孩子也较矮,但这些孩子的平均身高却比他们父母的平均身高高.Galton 把这种后代的身高向中间值靠近的趋势称为“回归现象”.后来,人们把由一个变量的变化去推测另一个变量的变化的方法称为回归分析. ②回归系数的推导过程:22222[()]222i i i i i i i i Q y a bx y a y na b x y ab x b x =--=-+-++∑∑∑∑∑∑ 22222()2i i i i i i na a b x y b x b x y y =+-+-+∑∑∑∑∑,把上式看成a 的二次函数,2a 的系数0n >,因此当2()2i i i ib x y y b x a n n --=-=∑∑∑∑时取最小值.同理,把Q 的展开式按b 的降幂排列,看成b 的二次函数,当2i iiix y a xb x-=∑∑∑时取最小值.解得:12221()()()ni iii i niii x ynxyx x y y b x x xnx==---==--∑∑∑∑,a y bx =-, 其中1i y y n =∑,1i x x n=∑是样本平均数. 9. 对相关系数r 进行相关性检验的步骤: ①提出统计假设0H :变量x y ,不具有线性相关关系;②如果以95%的把握作出推断,那么可以根据10.950.05-=与2n -(n 是样本容量)在相关性检验的临界值表中查出一个r 的临界值0.05r (其中10.950.05-=称为检验水平); ③计算样本相关系数r ;④作出统计推断:若0.05||r r >,则否定0H ,表明有95%的把握认为变量y 与x 之间具有线性相关关系;若0.05||r r ≤,则没有理由拒绝0H ,即就目前数据而言,没有充分理由认为变量y 与x 之间具有线性相关关系.说明:⑴对相关系数r 进行显著性检验,一般取检验水平0.05α=,即可靠程度为95%.⑵这里的r 指的是线性相关系数,r 的绝对值很小,只是说明线性相关程度低,不一定不相关,可能是非线性相关的某种关系.⑶这里的r 是对抽样数据而言的.有时即使||1r =,两者也不一定是线性相关的.故在统计分析时,不能就数据论数据,要结合实际情况进行合理解释.题型一 线性相关及回归【例1】 已知变量y 与x 之间的相关系数是0.872r =-,查表得到相关系数临界值0.050.482r =,要使可靠性不低于95%,则变量y 与x 之间( )A .不具有线性相关关系B .具有线性相关关系C .线性相关关系还待进一步确定D .具有确定性关系典例分析【例2】 当相关系数0r =时,表明( )A 现象之间完全无关B 相关程度较小C 现象之间完全相关D 无直线相关关系【例3】 下列结论中,能表示变量,x y 具有线性相关关系的是( )A .0.05r r ≥B .0.05r r ≤C .0.05r r >D .0.05r r <【例4】 下列现象的相关密切程度最高的是( )A .某商店的职工人数与商品销售额之间的相关系数0.87B .流通费用水平与利润率之间的相关关系为0.94-C .商品销售额与利润率之间的相关系数为0.51D .商品销售额与流通费用水平的相关系数为0.81-【例5】 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )①若2χ的值为6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得判断出现错误;④以上三种说法都不正确.【例6】 设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵截距是a ,那么必有( ) A .b 与r 的符号相同 B .a 与r 的符号相同 C .b 与r 的相反 D .a 与r 的符号相反【例7】 定义:点()i i x y ,与直线y bx a =+的“纵向距离”为()i i y bx a -+.已知(00)(01)(11)A B C -,,,,,三点,存在直线l ,使A B C ,,三点到直线l 的“纵向距离的平方和”Q 最小.⑴求直线l 的方程和Q 的最小值; ⑵判断点1(0)3D ,与直线l 的位置关系.【例8】 (2009宁夏海南卷理)对变量x ,y 有观测数据()11x y ,()1210i =,,,,得散点图1;对变量u ,v 有观测数据()11u v ,()1210i =,,,,得散点图2. 由这两个散点图可以判断.A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关【例9】 为了考查两个变量x 和y 之间的线性关系,甲、乙两位同学各自独立做了10次和15次的试验,并且利用线性回归方法求得回归直线分别为12l l ,,已知两人得到的试验数据中,变量x 和y 的数据的平均值都对应相等,那么下列说法正确的是( )A .直线1l 和2l 一定有交点B .直线1l 一定平行于直线2lC .直线1l 一定与2l 重合D .以上都不对【例10】 某地高校教育经费()x 与高校学生人数()y 连续6年的统计资料如下:试求回归直线方程,估计教育经费为500万元时的在校学生数.【例11】一家庭问题研究机构想知道是否夫妻所受的教育越高越不愿生孩子,现随机抽样了8对夫妻,计算夫妻所受教育的总年数x与孩子数y,得结果如下试求【例12】某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:⑴画出散点图;⑵求回归直线方程.【例13】某五星级大饭店的住屋率(%)()x与每天每间客房的成本(元)()y如下:⑴试求⑵若y的表示不变,x以小数表示(如75%表为0.75),求新的回归直线.【例14】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.⑴若选取的1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;⑵若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想? 【例15】某种产品的产量与单位在成本的资料如下:试求:⑴计算相关系数r;⑵y对x直线回归方程;⑶指出产量每增加1000件时,单位成本平均下降了多少元?【例16】 求回归直线方程以下是收集到的某城市的新房屋销售价格y 与房屋的大小x 的数据:⑵用最小二乘法求回归直线方程;⑶估计该城市一个90平米的房屋销售价格大约为多少? ⑷写一个程序,计算出()Q a b ,和(20.2)Q ,的值,再比较大小.【例17】 (07广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨标准煤)的几组对照数据⑴请画出上表数据的散点图;⑵请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bx a =+;⑶已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)【例18】 测定某肉鸡的生长过程,每两周记录一次鸡的重量,数据如下表:由经验知生长曲线为2.8271xyAeλ-=+,试求y对x的回归曲线方程.【例19】为了研究某种细菌随时间x变化的繁殖个数,收集数据如下:⑴作出这些数据的散点图;⑵求出y对x的回归方程.。