电路参数设置
反激架构的Snubber电路的参数设定-090104

SANTAK ELECTRONIC (SHENZHEN) CO., LTD.反激架构的Snubber 电路的参数设定拟定:李明日期:2008-12-SANTAK ELECTRONIC (SHENZHEN) CO., LTD.一、引言 反激式变换器具有低成本,体积小,易于实现多路输出等优点,因此被广泛应用于中小功率(≤100w)的电源中。
但是,由于变压器漏感的存在及其它分布参数的影响,反激式变换器在开关管关断瞬间会产生很大的尖峰电压,这个尖峰电压严重威胁开关管的正常工作,必须采取措施对其进行抑制,目前,有很多种方法可以实现这个目的,其中的RCD 箝位法和RC 吸收以其结构简单,成本低廉的特点而得以广泛应用。
本文介绍了反激式变换器中的RCD 箝位电路和RC 电路的基本原理,和参数的确定方法。
本文简单的介绍了Snubber 电路的工作原理,详细原理参考[1]。
二、RCD 篏位电路的设计1、工作原理图1 Snubber 电路在反激变换器中的应用图1为RCD 箝位电路在反激式变换器中的应用。
图1中,clamp V 为箝位电容sn C 两端间的电压 ;in V 为输入电压 ;D V 为开关管漏极电压 ;p L 为初级绕组的电感量 ;k L 初级绕组的漏感量 。
图中RCD 箝位电路的工作原理是:当开关管导通时,能量存储在p L 和k L 中,当开关管关闭时,p L 中的能量将转移到副边输出,但漏感k L 中的能量将不会传递到副边。
如果没有RCD 箝位电路,k L 中的能量将会在开关管关断瞬间转移到开关管的漏源极间电容和电路中的其SANTAK ELECTRONIC (SHENZHEN) CO., LTD.它杂散电容中,此时开关管的漏极将会承受较高的开关应力。
若加上RCD 箝位电路,k L 中的大部分能量将在开关管关断瞬间转移到箝位电路的箝位电容上,然后这部分能量被箝位电阻sn R 消耗。
这样就大大咸少了开关管的电压应力。
三极管放大电路设计参数计算及静态工作点设置方法

三极管放大电路设计参数计算及静态工作点设置方法设计参数计算主要包括放大器的放大倍数、输入电阻、输出电阻和频率响应等参数的计算。
静态工作点设置指的是设置三极管的工作点电流和直流偏置电压,保证放大器在工作状态下的正常工作。
1.放大倍数的计算放大倍数是用来衡量放大器的信号放大情况的参数。
放大倍数的计算可以通过三极管的直流电流放大倍数和交流电流放大倍数的乘积来得到。
直流电流放大倍数可以通过三极管的参数手册查找得到,交流电流放大倍数与输入电阻和输出电阻相关,可以通过小信号模型计算得到。
2.输入电阻的计算输入电阻是指输入信号与输入端电阻之间的电阻值。
输入电阻可以通过分压器电阻和输入电容等组成,具体计算可以通过电路的电流和电压关系计算得到。
3.输出电阻的计算输出电阻是指输出信号与输出端电阻之间的电阻值。
输出电阻可以通过输出电流和输出电压关系计算得到。
4.频率响应的计算频率响应是指放大器对不同频率的输入信号的响应情况。
频率响应可以通过三极管的参数和电容等元件的组成计算得到,可以使用电路分析软件进行模拟计算。
静态工作点设置是为了保证放大器在工作状态下的正常工作,通过设置三极管的工作点电流和直流偏置电压来实现。
1.工作点电流的设置工作点电流是指三极管的静态电流,可以通过电路组成元件的参数计算得到,通过电阻和电压的关系来计算。
2.直流偏置电压的设置直流偏置电压是指三极管的偏置电压,可以通过分压电阻和二极管的压降计算得到,通过电路的分析可以得到具体的计算方法。
总结:三极管放大电路的设计参数计算和静态工作点设置是设计一个合理的放大器电路的重要步骤。
通过计算和设置合适的参数和工作点,可以实现放大器的正常工作。
为此,需要了解三极管的参数和工作原理,以及电路计算和分析的方法,同时还需要使用相关的电路分析软件进行模拟计算和仿真。
温控电路PID参数调节方法

在定值控制问题中,如果控制精度要求不高,一般采用双位调节法,不用PID。
但如果要求控制精度高,而且要求波动小,响应快,那就要用PID调节或更新的智能调节。
调节器是根据设定值和实际检测到的输出值之间的误差来校正直接控制量的,温度控制中的直接控制量是加热或制冷的功率。
PID调节中,用比例环节(P)来决定基本的调节响应力度,用微分环节(D)来加速对快速变动的响应,用积分环节(I)来消除残留误差。
PID调节按基本理论是属于线性调节。
但由于直接控制量的幅度总是受到限定,所以在实际工作过程中三个调节环节都有可能使控制量进入受限状态。
这时系统是非线性工作。
手动对PID进行整定时,总是先调节比例环节,然后一般是调节积分环节,最后调节微分环节。
温度控制中控制功率和温度之间具有积分关系,为多容系统,积分环节应用不当会造成系统不稳定。
许多文献对PID整定都给出推荐参数。
PID是依据瞬时误差(设定值和实际值的差值)随时间的变化量来对加热器的控制进行相应修正的一种方法!!!如果不修正,温度由于热惯性会有很大的波动.大家讲的都不错. 比例:实际温度与设定温度差得越大,输出控制参数越大。
例如:设定温控于60度,在实际温度为50和55度时,加热的功率就不一样。
而20度和40度时,一般都是全功率加热.是一样的. 积分:如果长时间达不到设定值,积分器起作用,进行修正积分的特点是随时间延长而增大.在可预见的时间里,温度按趋势将达到设定值时,积分将起作用防止过冲! 微分:用来修正很小的振荡. 方法是按比例.微分.积分的顺序调.一次调一个值.调到振荡范围最小为止.再调下一个量.调完后再重复精调一次. 要求不是很严格.先复习一下P、I、D的作用,P就是比例控制,是一种放大(或缩小)的作用,它的控制优点就是:误差一旦产生,控制器立即就有控制作用,使被控量朝着减小误差方向变化,控制作用的强弱取决于比例系数Kp。
举个例子:如果你煮的牛奶迅速沸腾了(你的火开的太大了),你就会立马把火关小,关小多少就取决于经验了(这就是人脑的优越性了),这个过程就是一个比例控制。
simulink电路中的参数

在Simulink中进行电路参数设置时,你需要根据实际需求对一些重要参数进行调整,主要包括以下几个方面:
1. **系统采样时间**:这个参数主要影响系统的模拟精度和计算速度,需要根据电路的具体情况和仿真需求进行设置。
2. **系统阶数**:阶数是描述系统动态性能的一个重要参数,需要根据电路的复杂度和动态响应要求进行设置。
3. **系统状态变量**:状态变量是描述系统状态的重要参数,需要根据电路的工作原理和状态方程进行设置。
4. **系统初始值**:初始值是描述系统初始状态的重要参数,需要根据电路的初始状态和系统的工作流程进行设置。
5. **系统输入信号**:输入信号是影响系统输出的重要因素,需要根据电路的工作原理和仿真需求进行设置。
6. **系统输出量测**:输出量测是用于观测系统输出的重要参数,需要根据电路的工作原理和仿真需求进行设置。
这些参数的具体设置方法因电路的特性和需求而异,需要根据实际情况进行具体的分析和调整。
如果你在设置参数时遇到问题,建议查阅相关的技术文档或寻求专业的技术支持。
调试电路的方法和技巧

调试电路的方法和技巧
调试电路是电子工程领域中非常重要的一个环节,以下是一些调试电路的方法和技巧:
1. 先确定问题:在调试电路之前,需要先确定电路中是否存在问题。
这可以通过检查电路的工作状态和测试信号的响应来实现。
2. 使用适当的工具:在进行调试时,需要使用适当的工具来检查电路。
例如,可以使用万用表来检查电阻值和电感值,使用示波器来检查波形和频率等。
3. 逐步添加负载:在调试电路时,需要逐步添加负载来测试电路的性能和稳定性。
逐渐增加负载的大小可以让电路适应不同的负载情况,从而找到问题的根本原因。
4. 使用信号源:信号源可以帮助检查电路的工作状态。
例如,可以使用示波器上的正弦波信号源来检查电路的波形和频率等。
5. 调整参数:有些电路可能需要调整参数才能正常工作。
例如,如果电路需要调整电压增益或频率响应,可以使用示波器上的参数调整器来调整这些参数。
6. 记录数据:在调试电路时,需要记录数据来帮助分析和解决问题。
例如,可以使用万用表记录电阻值和电感值,使用示波器记录波形和频率等。
7. 重复测试:在确定电路已经正常工作后,需要重复测试以确保电路的稳定性和可靠性。
例如,可以在多次添加负载和调整参数后重复测试电路的性能和稳定性。
8. 考虑环境因素:环境因素也可能对电路的性能和稳定性产生影响。
例如,如果电路放在一个高温或湿度高的环境下,可能会导致电路的故障。
因此,在调试电路时需要考虑环境因素。
低压断路器的电流参数设置

低压断路器的电流参数设置一、低压断路器电流参数的基本概念1.额定电流(In):低压断路器额定动作电流或额定工作电流,即断路器能够长时间运行的电流值。
2. 短时额定电流(Icw):低压断路器能够在一定时间内承受的最大短路电流。
3. 瞬时额定电流(Ipk):低压断路器能够瞬间承受的最大短路电流。
4. 动稳定电流(Idyn):低压断路器动稳定电流是指断路器在干扰电流下,仍能正常工作的电流。
二、低压断路器电流参数设置的原则1.根据设备额定电流:低压断路器的额定电流应该与被保护设备的额定电流相匹配。
一般来说,断路器的额定电流设置应略大于设备的额定电流,以确保正常运行时电路不会频繁断路。
2.考虑负载特性:根据负载特性选择断路器电流参数。
负载特性可分为耐过载特性和短路保护特性。
耐过载特性考虑负载的瞬时大电流,而短路保护特性考虑负载的短路电流。
3.根据应用环境选择:根据低压断路器所处的应用环境选择电流参数。
例如,在暖通空调系统中,由于起动电流较大,断路器的额定电流需考虑起动电流的因素。
4.根据安装位置选择:根据低压断路器的安装位置选择合适的电流参数。
例如,在低压变压器的附近安装断路器时,考虑到变压器的短路电流,断路器的电流参数需要相应调整。
三、低压断路器电流参数设置的步骤1.确定被保护设备的额定电流。
2.根据负载特性选择耐过载特性和短路保护特性。
3.根据应用环境和安装位置确定需要考虑的其他因素。
4.根据以上参数选择合适的低压断路器型号。
5.按照断路器厂家提供的参数设置说明进行设置。
四、低压断路器电流参数设置的注意事项1.不可超额使用:严禁将低压断路器的电流参数长时间设置超过其额定电流。
2.合理调整参数:如果发现断路器频繁跳闸或无法正常工作,应根据实际情况合理调整断路器的电流参数。
3.注意灵敏度和均匀性:为保证断路器正常运行,应注意断路器的灵敏度和均匀性。
断路器电流调整过大,可能导致过早动作或过度动作。
4.定期检测:定期检测低压断路器的电流参数,确保其在正常范围内运行。
系统射频接口ADS仿真电路原理图及参数设定详细讲解

S21=dbpolar(20,180)。 3.混频器部分参数设置 (1)本振:在 Sources-Freq Domain palette 选一电压源,图 2 系统射频 前端参数设置由于接收机中频 为 0,故本振频率应和输入信号频率一致,这 里设为变量 LO_freq,可以用 VAR 很方便地进行赋值,输出电 压功率设为 -20dBm,如图 3 所示。 (2)由于要将接收信号分为同相和正交两路,所以本振信号也要分为两 路,一路直接和接收信号混频, 一路先经移相器移相 90 度,再进入混频器 混频,所以还要用到移相器和功率分配器,它们都可以从 System -Passive palette 中找到。 (3)下变频部分的混频器选用 SySTem-Amps & Mixerpalette 中的 behavioral Mixer,注意不要错选成 Mixer2,因为它是用来进行非线性分析的, 而 Mixer 才是用来进行频率转换的。将混频器的边带设为 LOWER ,增益为 10dB。 4.模拟基带部分参数设置
图 2 系统射频前端参数设置 图 3 混频器部分参数设置 图 4 模拟基带部分参数设置 接下来的模拟基带部分分为两条支路,每条都由一个信道选择低通滤波器、 基带放大器和自乘器级联而 成,如图 4 所示。信道选择低通滤波器采用 8 阶 巴特沃斯滤波器,-3dB 频率转折点为 10MHz,止带截点频率 为 20MHz, 期望得到 43dB 的邻道衰减。高通滤波器用于消除接收基带信号的直流分量。 基带放大器的增益 由外接电阻可调。最后在基带输出端加入端口 Term2 和 Term3
系统射频接口 ADS 仿真电路原理图及参数设定详细
讲解
1.系统仿真原理图 系统仿真原理图如图 1 所示。 图 1 系统射频接口 ADS 仿真原理图 2.射频前端参数设置 (1)最前端的 R
matlab仿真电路的参数设置

一、概述Matlab作为一种功能强大的仿真软件,被广泛应用于电路仿真领域。
在进行电路仿真时,合理的参数设置对于模拟电路的仿真结果具有重要的影响。
本文将就Matlab仿真电路的参数设置进行详细的讨论,帮助读者更好地了解如何进行合理的参数设置,以获得准确和可靠的仿真结果。
二、仿真电路参数设置的重要性1. 电路参数对仿真结果的影响对于电路仿真来说,电阻、电容、电感等元件的参数设置直接影响到仿真结果的准确性。
合理的参数设置可以使得仿真结果更加接近实际电路中的情况,从而提高仿真结果的可靠性。
2. 参数设置对电路性能的分析通过合理的参数设置,可以方便地对电路的性能进行分析,比如电压、电流的波形、功率的分布等。
这对于电路设计者来说非常重要,可以帮助他们更好地了解电路的工作情况,从而进行进一步的优化和改进。
三、Matlab仿真电路参数设置的方法1. 参数设置前的准备工作在进行电路仿真之前,首先需要对电路进行建模,包括各个元件的连接方式、参数等。
建模的准确性对于仿真结果至关重要,因此需要在参数设置之前对电路的模型进行充分的验证和调试,确保模型的准确性。
2. 参数设置的流程在进行电路仿真时,需要对每个元件的参数进行合理的设置。
一般来说,可以按照以下步骤进行参数设置:(1) 选择合适的元件模型对于不同类型的元件,Matlab提供了多种模型可供选择,比如电阻可以选择理想电阻模型、非线性电阻模型等。
需要根据实际情况选择合适的模型。
(2) 设置元件的参数根据电路的实际情况,对每个元件的参数进行设置,包括电阻的阻值、电容的电容量、电感的电感值等。
需要根据实际情况进行合理的设置,避免出现参数设置不合理的情况。
(3) 设置仿真参数在进行仿真的时候,需要设置仿真的时间、步长等参数,以获得更加详细和准确的仿真结果。
3. 参数设置的注意事项在进行参数设置时,需要注意以下几点:(1) 参数的合理性参数的设置需要符合实际的电路情况,不能盲目地进行设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源/信号源库(一)
GROUND:电路地,各个接地点电位相同,均为0。 DIGITAL_GND:数字地,标号可以改动。 VCC:电源,电压值可以改动。 VDD;CMOS电源,电压值可以改动。 DC_VOLTAGE_SOURCE;电池,即直流电压源,可对有关各种参数设置。 DC_CURRENT_SOURCE:直流电流源,设置参考“直流电压源” 。 AC_VOLTAGE_SOURCE:交流电压源,可对有关参数设置。 AC _CURRENT_SOURCE:交流电流源。设置参考“交流电压源”。 CLOCK_SOURCE:时钟电压源,即脉冲信号源,可对有关参数设置。 AM_SOURCE:AM调幅信号源,可对有关参数设置。 FM_VOLTAGE_SOURCE:FM调频信号源,可对有关参数设置。 FM_CURRENT_SOURCE:FM调频信号电流源。 FSK_SOURCE:FSK信号源。 VOLTAGE_CONTROLLED_SINE_WAVE:压控正弦信号源。 VOLTAGE_CONTROLLED_SQUARE_WAVE:压控方波信号源。 VOLTAGE_CONTROLLED_TRIANGLE_WAVE:压控三角波信号源。
14
电源/信号源库(二)
VOLTAGE_CONTROLLED_VOLTAGE_SOURCE:压控电压增益源。 VOLTAGE_CONTROLLED_CURRENT_SOURCE:压控电流增益源。 CURRENT_CONTROLLED_ VOLTAGE_SOURCE:流控电压增益源。 CURRENT_CONTROLLED_CURRENT_SOURCE:流控电流增益源。 PULSE_ VOLTAGE_SOURCE:脉冲电压信号源。 PULSE_CURRENT_SOURCE:脉冲电流信号源。 EXP_VOLTAGE_SOURCE:指数电压信号源。 EXP_CURRENT_SOURCE:指数电流信号源。 PIECEWISE_LINEAR_VOLTAGE_SOURCE:分段线性电压源。 PIECEWISE_LINEAR_CURRENT_SOURCE:分段线性电流源。 VOLTAGE_CONTROLLED_ PIECEWISE_LINEAR _SOURCE:压控分段线性电压源。 CONTROLLED_ONE_SHOT:受控脉冲源。 POLYNOMIAL_SOURCE:多项式信号源。 NONLINEAR_DEPENDENT_SOURCE:非线性相关信号源。
杂 项 器 件 库
键 盘 显 示 器 库
射 频 元 器 件 库
机 电 类 元 器 件 库
微 控 制 器 库
TTL
创 建 分 层 电 路
信号源库包含有接地端、直流电压源(电池)、正弦交 流电压源、方波(时钟)电压源、压控方波电压源等多种电源 与信号源。电源/信号源库如图1.2.5所示。
仿真开关
仿真开关如图,主要用于仿真过程的控制。
Muitisim的元器件库
电 源 信 号 源 库
基 本 元 件 库
二 极 管 库
晶 体 管 库
模 拟 元 件 库
系 列 元 器 件 库
数 字 器 数 件 字 库 元 器 件 库
模 数 混 合 元 器 件 库
CMOS
指 示 器 件 库
电 源 器 件 库
6
Muitisim仿真软件的使用
1) Muitisim的工作界面
7
Muitisim 10用户界面
菜单栏
依次是:文件、编辑、视图、放置、MCU、 仿真、转换、工具、报表、选项、窗口和帮助 菜单共12个主菜单。
标准工具栏
标准工具栏
包含了有关电路窗口基本操作的按钮,从左向右依次 是新建、打开、打开设计范例、保存、打印、预览、 剪切、复制、粘贴、撤销、切换全屏、放大、缩小、 100%放大、项目栏、电路元件属性视窗、数据库管 理、创建元件、仿真启动、图表、分析、后处理、使 用元件列表和帮助等按钮。
3
Muitisim的元器件库提供数千种电路元器件 供实验选用,同时可以新建或扩充已有的元 器件库; Muitisim虚拟测试仪器仪表种类齐全,有一 般实验用的通用仪器,如万用表、函数信号 发生器、双踪示波器、直流电源;还有一般 实验室少有或没有的仪器,如波特图仪、字 信号发生器、逻辑分析仪、失真仪、频谱分 析仪;
5
利用Muitisim可以实现计算机仿真设计与虚拟实验, 与传统的电子电路设计与实验方法相比,具有如下特 点: 设计与实验可以同步进行,可以边设计边实验,修改 调试方便; 设计和实验用的元器件及测试仪器仪表齐全,可以完 成各种类型的电路设计与实验; 可方便地对电路参数进行测试和分析; 可直接打印输出实验数据、测试参数、曲线和电路原 理图; 实验中不消耗实际的元器件,实验所需元器件的种类 和数量不受限制、实验成本低、实验速度快、效率高; 设计和实验成功的电路可直接在产品中使用。
4
Muitisim具有较为先进的电路分析功能,可以完成电 路的瞬态分析和稳态分析、时域分析和频域分析、器 件的线性和非线性分析、电路的噪声分析和失真分析、 交直流灵敏度分析等电路分析方法,以帮助设计人员 分析电路的性能; Muitisim可以设计、测试和演示各种电子电路,包括 电工电路、模拟电路、数字电路、射频电路及部分微 机接口电路等。 可以对被仿真的电路中的元器件设置各种故障、如开 路、短路和不同程度的漏电等,从而观察不同故障情 况下的电路工作状况; 在进行仿真的同时,软件还可以存储测试点的所有数 据,列出被仿真电路的所有元器件清单,以及存储测 试仪器的工作状态、显示波形和具体数据等。
Muitisim 10电路设计及仿真
微电子学系
各种电路仿真软件的比较
Muitisim的性能突出,无论从仿真元件库中 元件的数量上,还是虚拟设备的种类以及虚 拟分析的种类上都比别的软件要好,为仿真 设计提供了极大的方便。
2
Muitisim仿真软件简介
Muitisim是一个完成原理电路设计、电路功能 测试的虚拟仿真软件; Muitisim用软件的方法虚拟电工与电子元器件, 虚拟电工与电子仪器和仪表,实现了“软件即 元器件”和“软件即仪器”;