【建筑工程管理】希望工程义演的方程详解

合集下载

5-应用一元一次方程—“希望工程”义演

5-应用一元一次方程—“希望工程”义演

随堂练习
小彬用172元钱买了两种书,共10 本,单价分别为18元、10元。每种书 小彬各买了多少本?
9本 1本
作业布置:
完成练习册本根据题意,得
6950 — y
8
+
y
5
= 1000
解方程,得 y = 1750
1750÷5 = 350
1000 — 350 = 650
答:成人票售出650张,学生票售出350张。
8 5 某文艺团体为“希望工程”募捐组织 了一场义演,共售出了1000张票,筹得 票款6950元。成人票与学生票各售出了 多少张?
总价(元)
学生
5x
x 成人 8(1000 — )
单价(元/张) 数量(张)
5
x
8
x 1000 —
x 解法1:设售出的学生票为 张,根据题意,得
x x 8(1000 — )+ 5 = 6950
x 解方程,得 = 350
x 1000 — = 1000—350=650
答:成人票售出650张,学生票售出350张。
老师现在把上面的这道题 改动一个数字,你能悟出什么?
某文艺团体为“希望工程”募捐组织 了一场义演,共售出了1000张票,筹得 票款6930元。成人票与学生票各售出了 多少张?
我明白了! 用一元一次方程解决实际
问题的一般步骤:
实际问题
抽象 寻找等量关系
数学问题 (一元一次方程)
解释
解方程
数学问题的解 实际问题的解 验证 (一元一次方程的解)
8
某文艺团体为“希望工程”募捐
5
组织了一场义演,共售出了1000张票,
筹得票款6950元。成人票与学生票各售

《应用一元一次方程-“希望工程”义演》教案 (公开课)2022年3

《应用一元一次方程-“希望工程”义演》教案 (公开课)2022年3

应用一元一次方程——“希望工程〞义演教学设计〖教学目标〗1.借助表格分析复杂问题中的数量关系,从而建立方程解决实际问题,开展分析问题、解决问题的能力。

2.让学生在自己不断的努力和对实际问题的探索研究中,体验成功的快乐,激发学生的学习兴趣和热情,培养学生勇于探索的科学精神。

3.通过对“希望工程〞义演中的数学问题的探讨,进一步体会方程模型的作用。

〖教材分析〗通过前几节知识的学习,学生已学会通过分析简单问题中量与未知量的关系列出方程解应用题。

列一元一次方程解应用题的难点在于根据题意找出等量关系,它同时又是解决这个问题的关键所在。

所以,本节课仍然以生动的联系生活的情境,继续培养学生分析等量关系,列方程解决实际问题的能力。

本节课以求解一个实际问题为切入点,让学生经历抽象、符号变换、应用等活动,展现运用方程解决实际问题的一般过程。

帮助学生认识寻找等量关系是列方程解决实际问题的核心和关键。

我们有时可以借助图示或列表的方法去表达问题的信息,寻求其中的等量关系。

〖学校及学生状况分析〗在前面的学习中,学生经历了“建立方程模型〞这一数学化的过程,理解了学习方程的意义,初步掌握了运用方程解决实际问题的一般过程。

但学生在列方程解应用题时常常会遇到以下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到一些等量关系但不能列出方程。

因此,教学中要指导学生借助图表整体把握和分析问题,引导学生多角度思考问题,寻找等量关系。

〖教学设计〗(一)创设情境多媒体显示场景“希望工程〞义演现场,两人对话如下:A:观众真多呀!B:是呀,这次演出共售出了1000张票。

A:筹了多少钱?B:共筹得票款6950元,全部捐给了“希望工程〞。

问:你知道成人票与学生票各售出多少张吗?【教学说明:以动画的形式再现生活场景,让学生感受到数学就在我们身边,有利于调动学生的积极性和参与意识。

】(二)探索研讨1.议一议(1)从动画中,你可以得到哪些信息?(2)在这个问题中包含了哪些等量关系?学生汇报:量:成人票价8元/张、学生票价5元/张、成人和学生总票数1000张、成人和学生总票款6950元。

应用一元一次方程——“希望工程”义演课件-【经典教育教学资料】

应用一元一次方程——“希望工程”义演课件-【经典教育教学资料】
0.7x+x+2x+4.7x=2100 解得 x=250
故 0.7x=175,2x=500,4.7x=1175 答:需要甲种草药175克,乙种草药250克, 丙种草药500克,丁种草药1175克.
课堂小结
课后作业
1.必做题:教材P149 习题5.8 第2题 2.选做题:教材P149 习题5.8 第3题
方法一 解:设买了单价为18元的书x本,则买了单价 为10元的书为(10-x)本,根据题意得: 18x+10 (10-x)=172 解得x=9 故10-x=1 答:小彬买了18元的书9本,10元的书1本.
方法二
解:设买单价为18元的书花的钱为x元,则买
了单价为10元的书花的钱是(172-x)元,根据
发现我的生命
1 .探索生命的意义 探索生命意义,是人类生命的原动力之一 。只有人类才可能驾驭自己的生活,选择 自己的人生道路。
2 .生命是独特的,生命的意义是具体的 每个人的生活不尽相同,我们都是在自
探究与分享
发现我的生命
3 .生命的意义需要自己发现和创造 我想要过怎样的生活?我该如何
创造我想要的生活?通过认真地审ຫໍສະໝຸດ 这些问题,我们会更加明晰生命的意
成人票款+学生票款= 69350元 ②
设售出的学生票为x张,根据等量关系②,
可列出方程:
5x+(1000-x)8=6930
解得x=356
2 3
不符合题意,所以售出1000张票款不可能是6930元.
做一做
小彬用172元钱买了两 种书,共10本,单价分别为 18元、10元.每种书小彬各 买了多少本?
分析 等量关系: 单价为10元的书的数量+单价为18元书的数量=10本 单价为10元的书花的钱+单价为18元书花的钱=172元 有两种等量关系,则可有两种列方程的方法.

5 应用一元一次方程——“希望工程”义演课件

5 应用一元一次方程——“希望工程”义演课件

据题意得 5x+8(1000-x) =6930. 解得 x=
356 2 . 3
答:因为x=356 2 不符合题意,所以如果票价不变,
3
售出1000张票所得票款不可能是6930元.
审——通过审题找出等量关系; 设——设出合理的未知数(直接或间接),注意单位名称; 列——依据找到的等量关系,列出方程; 解——求出方程的解(对间接设的未知数切记继续求解); 检——检验求出的值是否为方程的解,并检验是否符合实际问题; 答——注意单位名称.
第五章 一元一次方程
5. 应用一元一次方程 —— “希望工程”义演
审——通过审题找出等量关系; 设——设出合理的未知数(直接或间接),注意单位名称; 列——依据找到的等量关系,列出方程; 解——求出方程的解(对间接设的未知数切记继续求解); 答——注意单位名称.
有甲、乙两种学生用本,甲种本的单价是
解:设学生票2x张,成人票3x张。 根据题意得:5×2x+8×3x=6800
解:设生产螺栓x人,生产螺帽(84-x)人 刚好配套。
根据题意得:3×12x=18(84-x)
1.两个未知量,两个等量关系,如何列方程; 2.寻找中间量; 3.学会用表格分析数量间的关系; 4.列方程解应用题的一般步骤。
1.习题5.8 1、2、3 2.预习下一节
此时,y 1750 350 (张). 55
58
解得 y=1750,
1000-350=650(张).
答:售出成人票650张,学生票350张.
合作探究2:某文艺团体为“希望工程”募捐义演, 成人票8元,学生票5元.
想一想:如果票价不变,那么售出1000张票所得的 票款可能是6930元吗?
解:设售出学生票为x张,

《“希望工程”义演》一元一次方程PPT课件

《“希望工程”义演》一元一次方程PPT课件

你更不会想到,依然有 四处漏风、光线昏暗在 狂风中摇曳的教室;
当你坐在明亮的教室, 有人却点着蜡烛苦读;
有 人 却 奔 波 在 十 几 里 的 上 下 学 路 上
某文艺团体为“希 望工程”募捐组织 了一场义演,共售出 1000张票,筹得票款 6950元.成人票与学 生票各售出多少张?
上面的问题中包含 哪些已知量、未知 量和等量关系?
等量关系:
40瓦的灯泡个数+60瓦的灯泡个数=5个① 40瓦灯泡瓦数+60瓦灯泡瓦数=260瓦②
设40瓦的灯泡有x个, 填写下表:
40瓦灯泡 个数(个) 60瓦灯泡
x 40x
瓦数(瓦)
5-x 60×(5-x)
根据等量关系②,可列出方程: 40x+60×(5-x)=260 ________________________ 2 解得x=______ 2 个,60瓦的灯泡有______ 3 因此,40瓦的灯泡有_______ 个.
40瓦的灯泡个数+60瓦的灯泡个数=5个 ① 40瓦灯泡总瓦数+60瓦灯泡总瓦数=260瓦 ② 设40瓦的灯泡瓦数为y瓦,
40瓦灯泡 个数(个) 瓦数(瓦) y/40 y
60瓦灯泡 (260-y)/60 (260-y)
根据等量关系2,可列出方程:
y/40+(260-y)/60=5 ________________________ 80 解得y=______
第五章 一元一次方程
年这 前是 ,一 这双 双对 眼知 睛识 感充 动满 了渴 整求 整的 一眼 代睛 人, .二 十
这个已到上学年龄却上 不起学,只能帮父母拾柴 火的孩子,你读到他的 无奈了吗?
1989年成立的“希望工程”让他们圆了上学梦.

5.6 “希望工程”义演

5.6 “希望工程”义演

§5.6 “希望工程”义演教学目标:1、明确有关分配问题中两个未知量之间的关系,初步认识合理选元的重要性.2、能借助图表分析复杂问题的数量关系,建立方程解决实际问题.教学重点:进一步熟练掌握列一元一次方程解应用题的一般方法步骤,学会用图表分析数量较为复杂的应用题.教学难点:用图表分析数量关系较为复杂的应用题.教学方法:讲练结合教学过程:一、创设情景举手说一说自己有关“希望工程”的知识,讲解“希望工程”的作用和意义,引入课题.二、1.某文艺团体为“希望工程”募捐组织了一场义演,共售出了解1000张票,筹得票款6950元.成人票和学生票各售出了多少张?(成人:8元;学生:5元)想一想:上面问题中包含哪些等量关系?成人票数+学生票数=1000张成人票款+学生票款=6950元设售出的学生票为x张,填写下表:设所得的学生票款为y元,填写下表:读题,思考,找等量关系,填表,小组交流,全班交流.示题,组织交流.出示范例.解答(略)3.看一看这两种方法哪一种较为简单?你从中学到了什么?三.集体探究1.在以上问题中,如果票价和票的总数不变,票款能不能是6930元或6932元?为什么?如果可能,成人票比学生票多售出多少张?思考讨论,尝试解答.示题,辅导矫正,组织讨论交流.小结:解答的结果一定要代入实际问题中去检验.如果与实际问题不符,则要检查是否解答有误或是不可能发生.四、试一试:小明用172元钱买了两种书,共10本,单价分别为18元、10元.每种书小明各买了多少本?独立思考解答辅导,组织交流评价五、课堂小结:本课时你学到了什么?思考回顾,举手回答指名口答,补充完善【要点】1.图表法分析应用题. 2.结果代入实际问题中去检验.七、板书设计八、教学后记。

《应用一元一次方程——“希望工程”义演》参考课件

《应用一元一次方程——“希望工程”义演》参考课件

归纳小结:
通过仔细审题,找到等量关系,学 会借助表格分析复杂问题中的数 量关系,从而建立方程解决实际 问题,并能够根据实际问题判断 解的合理性.




今有鸡兔同笼,上有三十五头,下有九十四 足,问鸡兔各几何? 1.“上有三十五头”的意思是什么?“下有九 十四足”呢? 2.题目中包含哪些等量关系? 等量关系: 鸡头总数 + 兔头总数 =35 鸡足总数 + 兔足总数 =94 解法分析一: 解法分析二: ⑴ ⑵
等量关系: 鸡头总数 + 兔头总数 =35 鸡足总数 + 兔足总数 =94
⑴ ⑵
解法分析一: 设鸡有x 只,填写下表:
鸡 头/个 足/只 兔 35 –
x
2x
x x)
4(35 –
根据等量关系⑵,可列出方程: 2x
解得 x = 23 ,则 因此,鸡有23只,兔有12只。
பைடு நூலகம்
+ 4(35 – x)= 94 35 – x = 12
+
想一想
如果票价不变,那么售出1000张票所 得票款可能是 6930 元吗?为什么?
1 成人票数+学生票数=售出的票数 1000张 2 成人票款+学生票款=所得票款 6930 元
设售出的学生票为x张,
根据等量关系2,可列出方程: 5x+8 × (1000-x)=6930 ________________________ 356 2 解得x=___________ 3 不符合题意,所以 售出1000张票所得 票款不可能是6930元.
等量关系: 鸡头总数 + 兔头总数 =35 鸡足总数 + 兔足总数 =94
解法分析二: 设兔有x 只,填写下表: 鸡 兔

5 应用一元一次方程——“希望工程”义演

5 应用一元一次方程——“希望工程”义演

5 应用一元一次方程——“希望工程”义演【学习目标】1.通过分析复杂问题的已知量和未知量之间的等量关系,从而建立方程模型解决实际问题.2.掌握应用一元一次方程解决实际问题的一般步骤.【学习重点】找出问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题.【学习难点】找等量关系.情景导入 生成问题为了帮助地震灾区重建家园,校委会在学校进行了募捐,七、八、九年级的同学都参加了募捐.七年级捐款数是捐款总数的16,八年级捐款数是捐款总数的13,九年级捐款1200元,三个年级共捐款多少元? 【说明】学生从非常熟悉的例子中感受教学与生活的紧密联系.自学互研 生成能力知识模块一 应用一元一次方程解决数量分配问题认真研读教材第147页“议一议”上面的内容,完成下面问题1的学习与探究.【说明】学生观察、分析,结合图中信息,解决下面的问题.问题1 上面的问题中包含哪些等量关系?售出的票包括成人票和学生票,所得票款包括成人票款和学生票款,因此这个问题中包含着下面两个等量关系: 成人票数+学生票数=1000(张),① 成人票数+学生票数=6950(元).②设售出的学生票为x 张,填写下表:根据等量关系②,可列出方程:8(1000-x)=6950-5x .解得x =350,因此,售出成人票650张,学生票350张.设所得的学生票款为y 元,填写下表:根据等量关系①,可列出方程:8⎝⎛⎭⎫1000-45=6950-y , 解得y =1750,因此,售出成人票650张,学生票350张.【归纳结论】对于数量分配问题,一般包含两个等量关系,一个用来设未知数,另一个用来列方程.师生合作共同完成下面问题2的学习与探究.问题2 如果票价不变,那么售出1000张票所得票款可能是6930元吗?为什么?【归纳结论】利用方程解决实际问题时,不仅要注意列、解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.知识模块二 一元一次方程解决实际问题的一般步骤师生合作共同完成下面问题3的学习探究.问题3 用一元一次方程解决实际问题的一般步骤是什么?【说明】学生结合前面的例子,归纳用一元一次方程解决实际问题的一般步骤.【归纳结论】教材第148页“议一议”的图示.交流展示 生成新知1.小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行板书规划.知识模块一 应用一元一次方程解决数量分配问题知识模块二 一元一次方程解决实际问题的一般步骤检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、“希望工程”义演1、甲、乙两班共90人,期中考试后,由甲班转入乙班4人,这时甲班人数是乙班人数的80%,问期中考试前两班各有多少人?解:设甲班原有x人,则乙班有90-x 人,根据题意可得:x-4=[(90-x)+4]×80%x-4=[(90-x)+4]×0.8x-4=(94-x)×0.8x-4=(94-x)×0.8x-4=75.2-0.8xx+0.8x=75.2+41.8x=79.2x=79.2÷1.8x=44∴乙班原有的人数为:90-x=90-44=46(人)(检验:人数变化后,甲班人数为x-4=44-4=40;乙班人数为(90-x)+4=(90-44)+4=50;甲班人数占乙班人数的百分比为40÷50×100%=80%。

符合题意。

)答:期中考试前甲、乙两班人数依次为44、46人。

2、某套书分上、中、下三册,印上册用了全部印刷时间的40%,印中册用了全部印刷时间的36%,印下册用24天,印完全套书共用了多少天?(分析等量关系为:印上册所用时间+印中册所用时间+印下册所用时间=印完全套书共用时间;若印完全套书共用了x天,则印上册所用时间为:40%x;印下册所用时间为36%x;印下册所用时间是24天。

)解:设印完全套书共用了x天,根据题意,得:40%x+36%x+24=x0.76x+24=x24=x-0.76x24=0.24x24÷0.24=x100=xx=100(检验:40%x=0.4×100=40(天);36%x=0.36×100=36(天);40+36+24=100(天),符合题意。

)答:印完全套书共用了100天。

3、学校开展植树活动,甲班和乙班共植树31棵,其中甲班植树数比乙班植树数的2倍多一棵,求两班各植树多少棵?解:设乙班植树x棵,则甲班植树2x+1棵,根据题意,得:x+(2x+1)=31x+2x=31-13x=30x=30÷3x=10则:2x+1=2×10+1=21(检验:)10+21=31(棵),符合题意。

答:乙班植树10棵,甲班植树21棵。

4、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?x÷3×3=(600-x)÷3×2x=2405、某车间100个工人,每人平均每天可加螺栓18个或螺母24个,要使每天加工的螺栓与螺母配套(一个螺栓配两个螺母),应如何分配加工螺栓和螺母的工人?2(x×18)=(100-x)×24X=406、我校数学活动小组,女生的人数比男生的人数的少2人,如果女生增加3人,男生减少1人,那么女生的人数比全组人数的1/4多3人,求原来男女生的人数。

(分析:若女生人数为x人,则男生人数为x+2人;人数有了增减后,则女生人数为(x+3),男生人数为(x+2-1))解:设女生人数为x人,则男生人数为x+2人。

根据题意,得:[(x+3)+(x+2)-1]×(1/4)+3=x+3(2x+4)×1/4=x+3-3(2x+4)×1/4=x1/2x+1=x1=x -1/2x1=1/2x1÷1/2=x2=xx=2(检验:)女男原来的人数:x=2 (x+2)=4人数增减之后:2+3=5 4-1=3人数增减之后全组人数为:5+3=8全组人数的1/4为:8×1/4=2;女生的人数比全组人数的1/4多3人的表达式为:5-2=3,符合题意。

答:原来女生的人数是2人;原来男生的人数是4人。

7、甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2,乙、丙两仓存粮数之比是1:2.5,求甲、乙、丙三个粮仓各存粮多少吨?(分析:根据观察,甲、乙相比,乙、丙相比,可知核心对象是乙仓,若乙仓存粮数为x吨,则甲仓存粮数为1/2x;丙仓存粮数为2.5x。

三仓存粮数之和等于80吨。

)解:设乙仓存粮数为x吨,则甲仓存粮数为1/2x;丙仓存粮数为2.5x。

根据题意,得:x+1/2x+2.5x=80x+0.5x+2.5x=804x=80x=80÷4x=20则:甲仓存粮数为:1/2x=0.5×20=10(吨);乙仓存粮数为:2.5x=2.5×20=50(吨)(检验:10+20+50=80(吨),符合题意。

)答:甲、乙、丙三个粮仓存粮数依次为10、20、50吨。

8、在全国足球甲A联赛的前11轮比赛中,某队保持连续不败(不败含取胜和打平)共积23分,按比赛规则,胜一场得3分,平一场得1分,负一场得0分,求该队在这11场比赛中共胜了多少场?(分析等量关系为:胜场累计积分+ 平场累计积分=23分)解:设该队在这11场比赛中共胜了x场,积分为3x,则平了(11-x)场,积分为(11-x)×1=11-x分,得:3x+(11-x)=233x-x=23-112x=12x=12÷2x=6(检验:胜场积分为:3x=3×6=18(分);平场积分为:11-x=11-6=5(分);胜场与平场累计积分为:18+5=23(分),符合题意。

)答:该队在这11场比赛中共胜了6场。

9、甲、乙、丙三位同学向贫困地区的希望小学捐赠图书,已知他们捐赠的图书数之比为7:5:8,且共捐书200本,问三位同学各捐书多少本?(分析:同7题类似,核心对象是乙,可设乙捐书x本。

)解:设乙捐书x本,则甲捐书7/5x本;丙捐书8/5x本,根据题意,得:7/5x+x+8/5x=20020/5x=200x=200÷20/5x=200×5/20x=50则甲捐书数量为:7/5x=7/5×50=70(本);丙捐书数量为:8/5x=8/5×50=80(本)。

(70+50+80=200(本),符合题意。

)答:甲、乙、丙三位同学捐书数量依次为70、50、80本。

10、某校七年级举行数学竞赛,80人参加,总平均成绩63分,及格学生平均成绩为72分,不及格学生平均48分,问及格学生有多少人?(分析等量关系为:及格学生总分+不及格学生总分=80×63)解:设及格学生有x人,则不及格学生有80-x人,根据题意,得:72x+48×(80-x)=80×6372x+3840-48x)=504072x-48x=5040 - 384024x=1200x=1200÷24x=50答:及格学生有50人。

11、某校组织活动,共有100人参加,要把参加活动的人分成两组,已知第一组人数比第二组人数的2倍少8人,问这两组人数各有多少人?(分析等量关系为:第二组人数+ 第一组人数=100)解:设第二组有x人,则第一组有2x-8人,根据题意,得:x+(2x-8)=1003x-8=1003x=100+83x=108x=108÷3x=36则第一组人数为:2x-8=2×36-8=72-8=64(人)(检验:第二组人数+ 第一组人数=36+64=100(人),符合题意。

)答:第二组有36人,第一组有64人。

12、在全国足球甲级A组的前11轮(场)比赛中,W队保持连续不败,共积23分,按比赛规则,胜一场得3分,平场得1分,那么该队共胜了多少场?(同第8题)13、一批宿舍,若每间住1人,有10人无处住,若每间住3人,则有10间无人住,那么这批宿舍有多少间,人有多少个?(分析等量关系为:人数不变,若设这批宿舍有x间,按第一方案:人数为x+10;按第方案:人数为3(x-10),可列出方程。

)解:设这批宿舍有x间,根据题意,得:x+10=3(x-10)x+10=3x-3010+30=3x-x40=2x40÷2=x20=xx=20∴共有人数为:x+10=20+10=30(人)(检验:按第一方案,可得人数为:x+10=20+10=30(人);按第二方案,可得人数为:3(x-10)=3×(20-10)=30(人),符合题意。

)答:这批宿舍有20间,共有30人。

14、师生共100人去植树,教师每人栽2棵树,学生平均每2人栽1棵树,一共栽了110棵,问教师和学生各有多少人?(分析:教师栽树棵树+学生栽树棵数=110)解:设教师有x人,则学生人数为(100 – x)人,根据题意,得:2x+1/2(100 – x)×1=1102x+50-0.5x=1102x-0.5x=110-501.5x=60x=60÷1.5x=40∴学生人数为:100 – x=100 - 40=60(人)检验:教师种树棵数:40×2=80(棵);学生种树棵数:60÷2×1=30(棵)。

80+30=110(棵)答:教师有40人;学生有60人。

15、某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?(分析等量关系是:参加春游的师生总人数不变)解:设车辆数为x辆,则用第一种方案人数表达式为(45x+15);第二种方案人数表达式为:60(x-1)。

45x+15=60(x-1)45x+15=60x-6015+60=60x-45x75=15xx=5(检验:师生总人数为:45x+15=45×5+15=225+15=240(人);60(x-1)=60×4=240(人)。

无论采取哪一种方案,师生总人数不变,均为240人,符合题意。

)∴第一种方案需要租车x+1=5+1=6(辆);(从实际需要出发,5辆车载不走所有师生,15个没有座位的人,需要增加1辆车。

)租车费用共为:250×6=1500(元),第二种方案需要租车x-1=5-1=4(辆);租车费用共为:300×4=1200(元)。

∵1200﹤1500∴第二种方案,即租用4辆60座的客车更合算。

答:租用4辆60座的客车更合算。

16、甲、乙、丙三个村庄合修一条水渠,计划需要176个劳动力,由于各村人口多少不等,只有按2:3:6的比例摊派才较合理,问甲、乙、丙三个村庄各派出多少个劳动力?(分析等量关系是:甲村劳动力个数+乙村劳动力个数+丙劳动力个数=176)解:设乙村派出x个劳动力,则甲村派出2/3x个;丙村派出6/3x个,根据题意,得:2/3x+x+6/3x=17611/3x=176x=176÷11/3x=176×3/11x=48则:甲村派出人数为:2/3x=2/3×48=32(人);丙村派出人数为:6/3x=2×48=96(人)。

相关文档
最新文档