江阴市xx中学2018年八年级下数学期中试卷及答案苏科版
江苏省江阴市祝塘中学2018-2019学年八年级下学期期中考试数学试卷 (苏科版)Word版含解析

江苏省江阴市祝塘中学2018-2019学年八年级下学期期中考试数学试卷1、要想了解10万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.每位考生的数学成绩是个体C.10万名考生是个体D.1000名考生是是样本的容量【答案】B.【解析】根据总体、个体、样本、样本容量的定义即可做出选择.试题分析:总体是指考察对象的全体,个体是指组成总体的每一个考察对象,从总体中取出的一部分个体叫做这个总体的样本,样本中个体的数量叫做样本容量.A.题目的考察对象是考生的数学成绩,因而1000名考生的数学成绩是总体的一个样本,A错误.B.个体是指组成总体的每一个考察对象,即每位考生的数学成绩,B选项正确,C选项错误. D.样本中个体的数量叫做样本容量,所以样本的容量是1000而不是1000名考生.考点:1.总体;2.个体;3.样本;4.样本容量.2、某校测量了初二(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如下频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人【答案】B.【解析】试题分析:正确读取频数分布直方图的信息即可得出答案.如图所示各阶段身高的人数分别为:[140.5,150.5]5人,[150.5,160.5]15人,[160.5,170.5]20人,[170.5,180.5]7人.所以,该班人数最多的身高段的学生数应为20人,A选项错误;该班身高最高段的学生数为7人,B选项正确C选项错误;该班身高低于160.5cm 的学生数为:5+15="20" (人),D选项错误.考点:直方图.3、平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A.8和14 B.10和14 C.18和20 D.10和34【答案】C.【解析】构造平行四边形将已知的三条线段转化到一个三角形中即可解答.试题分析:如图所示,平行四边形ABDC的对角线AD=x,BC=y,延长CD至E使得DE=CD=12,∵AB∥CD且AB=CD=12,∴AB∥DE且AB=DE,∴四边形ABED也为平行四边形,BE=AD=x.在△BCE中BE=x,BC=y,CE=2CD=24,由三角形三边关系:.A. ,A错误;B. ,B错误;C. ,C正确;D.,D错误.考点:1.平行四边形;2.三角形的三边关系.4、下列调查的样本具有代表性的是()A.利用当地的七月份的日平均最高气温值估计当地全年的日最高气温B.在农村调查市民的平均寿命C.利用一块实验水稻田的产量估水稻的实际产量D.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验【答案】D.【解析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.试题分析:A.抽取七月份的平均最高气温,样本太小,缺乏代表性B. 农村和城市人的寿命有差别,样本不具有代表性;C利用一块试验田,样本太小D从仓库中任意抽取100袋进行检验的样本是随机的,具有代表性.考点:样本估计总体.5、下列说法中的错误的是( ).A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形【答案】C.【解析】根据正方形、菱形、平行四边形的定义或判定即可得到答案.试题分析:根据正方形、菱形、平行四边形的定义知A、B、D正确;C.如图所示直角梯形,使AB=AC,则满足是一组对边相等且有一个角是直角的四边形,但不是矩形.考点:1.正方形;2.菱形;3.平行四边形;4.矩形.6、矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A.6 B.C.2(1+)D.1+【答案】C.【解析】试题分析:本题已知条件涉及矩形的对角线和周长,可考虑用“矩形的对角线相等且相互平分”性质来解.如图所示,∠AOB=120°,AD=2∵ABCD为矩形,∴AD=BC=2,AO=B0=1(矩形的对角线相等且相互平分),∴△AOB为等腰三角形,∠BAO=30°;在Rt△ABD中,∠BAO=30°,AD=2∴AB=,BD=1,∴矩形ABDC的周长为.考点:矩形性质.7、袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A.【解析】试题分析:正确理解“必然事件”的定义,即可解答.必然事件是指事件一定会发生,即事件发生的可能性为100%.A.白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,A正确.B. 袋子中有4个黑球,有可能摸到的全部是黑球,B、D有可能不发生,所以B、D不是必然事件.C袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以C 不是必然事件.考点:必然事件.8、将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度与注水时间的函数图象大致为()【答案】B.【解析】用排除法可直接得出答案.试题分析:圆柱形小水杯事先盛有部分水,起点处小水杯内水面的高度必然是大于0的,用排除法可以排除掉A、D;注水管沿大容器内壁匀速注水,在大容器内水面高度到达h之前,小水杯中水边高度保持不变,大容器内水面高度到达h后,水匀速从大容器流入小容器,小容器水面高度匀速上升,达到最大高度h后,小容器内盛满了,水面高度一直保持h不变,因此可以排除C,正确答案选B.考点:1.函数;2.数形结合;3.排除法.9、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF 的面积为S2,若S△ABC=9,则S1-S2=()A、 B、1 C、 D、2【答案】C.【解析】试题分析:根据线段的比例关系确定面积之间的关系即可得出答案.∵△ADF的面积为S1,△CEF的面积为S2,∴S1-S2= =S△ABE-S△BCD∵AD=2BD,BE=CE,S△ABC=9,∴S△ABE= S△ABC=,S△BCD=S△ABC=3,∴S1-S2=考点:1.中线;2.比例线段.10、已知平行四边形的三个顶点坐标分别为(-1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为___________。
2018年苏科版八年级下学期数学期中试卷 精品

第二学期期中考试 八年级数学试题一.细心选择(本大题共10小题,每小题2分,计20分)1、下列约分,正确的是 ( )A .326x x x = B .0=++y x y x C .x xy x y x 12=++ D .214222=y x xy2、下列函数中,y 与x 成反比例函数关系的是 ( )A .1)1(=-y xB .11+=x y C .21xy = D .x y 31=3、 函数xxy 21-=中自变量x 的取值范围是( ) A 、x ≤21且x ≠0 B 、x 21->且x ≠0 C 、x ≠0 D 、x 21<且x ≠04、下列分式中,与分式ba a--的值相等的是 ( ) A .b a a --- B .ba a + C .b a a -- D .a b a --5、下列各式:()yx b a y x x x 2225,1,2 ,34, 151+---π其中分式共有 ( )A .2个B .3个C .4个D .5个6、若点(3,4)是反比例函数y=221m m x+- 图象上一点,则此函数图象必经过点( ) A .(2,-6) B .(2,6) C .(4,-3) D .(3,-4)7、函数xmy =与)0(≠-=m m mx y 在同一平面直角坐标系中的图像可能是 ( )8、某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为 ( ) A .6.0元 B .7.0元 C .8.0元 D .9.0元9、若M ),21(1y -、N ),41(2y -、P ),21(3y 三点都在函数xm y 12--=(m 为常数)的图象上,则1y 、2y 、3y 的大小关系为 ( ) A .2y >3y >1y B .2y >1y >3y C .3y >1y >2y D .3y >2y >1y 10、如图,Rt △ABC 的直角边BC 在x 轴正半轴上,斜边AC 边上的中线BD 反向延长线交y 轴负半轴于E ,双曲线的图象经过点A ,若S △BEC=8,则k 等于 ( ) A .8 B .16 C .24 D .28二.精心填空(本大题共9小题,每空2分,计28分)11. 63->x 的解集是___________,不等式12>-x 的解集是__________;不等式组⎩⎨⎧-><-1312x x 的解集是_____________.12. 若分式242+-x x 的值为0,则x=_________;当x 时,分式12+x x 有意义.13. 已知y -2与x 成反比例,且当x=2时,y = 4,则当 3=y 时,x = .14. 化简2293m m m --=___________;已知311=-y x ,则分式y xy x yxy x ---+2232的值为_________.15.当m___________时,方程233x m x x =---的解是正数. 16.直线:1l b x k y +=11与直线:2l x k y 22=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式b x k x k +<12的解集为 ;17.代数式113m --值为正数,m 的范围是 . 若不等式组⎩⎨⎧-<-+>+112m x nm x 的解集为21<<-x ,则(m+n )2018.= .18. 如果函数y =4x 与x y 1=的图象的一个交点坐标为(21,2),则另一个交点的坐标是 .[更多资料加Q465010203]19. 已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,△ODP 是腰长为5的等腰三角形时,点P 的坐标为________________________.三.用心解答(本大题共8小题,计52分)解答应写出演算步骤.20、(本题满分6分,每小题3分)计算:(1)xx x x x x +-÷-+-2221112 (2)计算:)2(121n m m n m n m m --+⋅+-21、(本题满分6分,每小题3分)解下列方程:(1)解方程:11322xx x--=---。
江苏省江阴市敔山湾实验学校2017_2018学年八年级数学下学期期中试题苏科版(附答案)

江苏省江阴市敔山湾实验学校2017-2018学年八年级数学下学期期中试题一、选择题(本大题共10小题,每题3分)1. 下列四个图形中,既是轴对称图形又是中心对称图形的是( )A B C D2. 下列二次根式中属于最简二次根式的是( )A B C D 3.为了了解2017年我市七年级学生期末考试的数学成绩,从中随机抽取了1000名学生的数学成绩进行分析,下列说法正确的是( )A .2017年我市七年级学生是总体B .样本容量是1000C .1000名七年级学生是总体的一个样本D .每一名七年级学生是个体 4. 下列说法中,不正确的是( )A .两组对边分别平行的四边形是平行四边形B .一组对边平行另外一组对边相等的四边形是平行四边形C .对角线互相平分且垂直的四边形是菱形D .有一组邻边相等的矩形是正方形5.如果把分式yx x +22中的x 和y 都扩大3倍,那么分式的值 ( )A .扩大9倍B .缩小3倍C .扩大3倍D .不变 6.已知点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)在双曲线1y x=-上,当x 1<0<x 2<x 3时,y 1、y 2、y 3的大小关系是( ) A .y 2<y 3<y 1 B .y 1<y 3<y 2 C .y 3<y 1<y 2D .y 1<y 2<y 37.下列计算:①22=;2=;③2(12-=;④1=-.其中正确的有( )A .1个B .2个C .3个D .4个8 .一次函数y kx k =-+与反比例函数ky x=-(k ≠0)在同一坐标系中的图象可能是( )A B C D.9.如图,平行四边形ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若∠BAE=40°,∠CEF=15°,则∠D的度数是()A.65°B.55°C.70°D.75°10.如图,□ ABCD中,点E、F分别在AD、AB上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是()A.4 B.5 C.6 D.7S1S2S3S4FE DCBA二、填空题(本大题共8小题,每题2分)11.若y=x的取值范围是.12. 当x=__________时,分式||22xx--的值为零.13.当三角形的面积为12cm2时,它的底边a(cm)与底边上的高h(cm)之间的函数关系式为.14. 在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为____________.15. 关于x的分式方程233x mx+=-解为正数,则m的取值范围是.16. 如图,点A在双曲线0)y x=>上,点B在双曲线kyx=上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .17. 在正方形ABCD中,点O为正方形的中心,直线m经过点O,过A、B两点作直线m的垂线AE、BF,垂足分别为点E、F,若AE=2,BF=5,则EF长为_________________.18.如图,已知正方形OABC的边长为6,直线DE:1322y x=+交AC于点F,线段G H与线段DF交于点P,且∠CGP=∠CFP,当P点在线段DF上移动(不含端点D、F)时,求线段BG长的范围 .三、解答题(本大题共8小题,共74分)19.(8分)计算下面各题.(1)(2)1)20.(10分)解分式方程:(1)21424x x=--(2)先化简,再求值:22()242m m mm m m-÷--+,请在2,﹣2,0,3当中选一个合适的数代入求值.21.(8分)如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AE平分∠BAD交BD于点F,∠1=15°,(1)则∠BAO= ∠2=.(2)求证:OE=EF(3)求证:△BEF≌△OEC第18题第16题22.(8分)如图,每个小正方形的边长为1个单位.(1)图中△ABC的面积是_______________.(2)在图1中,利用网格点画出△ABC关于点O对称的△A′B′C′.(3)在图2中,利用网格点和无刻度直尺画出△ABC的角平分线.(4)若△ABC与△EBC面积相等,在图3中描出所有满足条件且不同于A点的格点E,并记为E1、E2、... 23.(8分)以下是根据南京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2016年南京市私人轿车拥有是多少万辆?(2)补全条形统计图;(3)经测定,汽车的碳排放量与汽车的排量大小有关.如驾驶排量1.6L的轿车,若一年行驶里程1万千米,则这一年,该轿车的碳排放量约为2.7吨.经调查,南京市某小区的300辆私人轿车,不同排量的数量统计如下表:图2图1图312请按照上述的统计数据,通过计算估计,2017年南京市仅排量为1.6L的私人轿车(假定每辆车平均一年行驶的路程都为1万千米)的碳排放总量约为多少万吨?24.(10分)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独完成工程的时间是乙工程队单独完成工程时间的2倍.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?25.(10分)已知如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°,图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的程度为b.(1)图形①中∠B=________度,图形②∠E=__________度;(2)爱动脑筋的小聪同学,将图形①命名为“风筝一号”,图形②命名为“飞镖一号”,他用这两种纸片各若干张,设计了以下拼图游戏,请你和他一起玩吧:①仅用“风筝一号”拼成一个边长为b的正十边形(正十边形是指所有的边相等,所有的角也相等的十边形),需要这种纸片____________张;②若同时使用这两种“风筝一号”和“飞镖一号” 若干张,拼成了一个“大风筝”,请你设计出一个“大风筝”画出拼接线并保留作图痕迹.(本题中均为无重叠、无缝隙拼接)26.(12分)如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数kyx的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象在第一象限的一个公共点;(1)求反比例函数的解析式;(2)当m为何值时,一次函数y=mx+3﹣4m恰好将平行四边形ABCD的面积分成1:3的两部分;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)2017-2018学年度第二学期期中考试答案一、 选择题(本大题共10小题,每题3分)1.D2.C3.B4.B5.C6.A7.D8.C9.A 10.D 二、填空题(本大题共8小题,每题2分)11. 1x ≤ 12. 2- 13. 24a h = 14. 1415. 96且m m >-≠-16. 或7 18. 292<<BG三、解答题(本大题共8小题,共74分)19.(4+4)(1) -20.(4+6)(1)x = -2 经检验,原方程无解. (2)原式= 2mm -,3 21.(2+3+3)(1)60°,30°(2)略;(3)略22.(2+2+2+2)(1)8; (2)C′B′A′(3)(4)23.(2+2+4)(1)96万辆;(2)略;(3)159.3万吨.24.(4+2+4)(1)甲单独完成此项工程需要60天,乙单独完成此项工程需要30天;(2) (20)3a -天;(3)至少甲单独施工36天后,才能使施工费不超过64万元. 25.(4+6)(1)72;36; (2)①5; ②26.(4+6+2)(1) 2y x =; (2) m =32或35(3) 243x <<。
江苏江阴第二学期八年级数学期中试卷及答案.doc

A D C 江苏江阴第二学期八年级数学学科期中试卷一.填空题(每空2分,共28分) 1.当x 时,分式2x x+有意义. 2. 函数y=32x-2的图象与x 轴的交点坐标为 . 3.计算:3a a 2+-39+a =__________.4.若函数y=x6k 3-的图像在二、四象限,则k 的取值范围是____________. 5.已知等腰三角形的周长为15若底边长为y cm ,一腰长为x cm ,则 y 与x 之间的函数关系式为________ ,自变量x 的取值范围是 .6. 与直线y=3x-2平行,且经过点(-1,2)的直线的解析式是 .7.直线y= -3x+3不经过第_____象限,向下平移4个单位得到的直线的函数关系式是_______ .8. 如图1,根据SAS ,如果AB =AC , ,即可判定ΔABD ≌ΔACE.9.如图2,在等腰直角△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于D ,若AB =10,则△BDE 的周长等于 .10.如图3,四边形ABCD 是矩形,P 是CD 边上的一点,若AB=3,BC=1,则PA+PB 的最小值为_________. 11.若a cb +=bc a +=cba +=k ,则y=kx+k 一定经过 象限. 12.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a ,b ,c ,…,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号y=21x +;当明码对应的序号x 为偶数时,密码对应的序号y=x+13.再由得到的新序号推出密码中的字母。
图2 E D C BA 图1 E D CB A图3按上述规定,将明码“love ”译成密码是 二.选择题(每题3分,共24分)13.如果把分式ba ab+中的a 、b 都扩大2倍,那么分式的值一定-------------- ( ) A 、是原来的2倍 B 、是原来的4倍 C 、是原来的21D 、不变14. 某煤厂原计划x 天生产120吨煤,由于采用新的技术,每天增加生产3吨,因此提前2天完成任务,列出方程为----------------------------------------------( )A .2x 120-=x 120-3 B.x 120=2x 120+-3 C .2x 120+=x 120-3 D. x 120 =2x 120--315.下列说法中正确的个数为---------------------------------------------( ) (1)所有的等边三角形都全等 (2)所有的等腰直角三角形都全等(3)两个三角形全等,它们的对应角相等; (4)对应角相等的三角形是全等三角形 A.1个 B.2个 C.3个 D.4个16.下列各式中正确的是-----------------------------------------------( ) A.m b m a ++=b a B.b a ++b a =0 C. 1ac 1ab --= 1-c 1-b D.22y x y x --=y x +1 17.已知点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数y=x4的图象上,则( ) A. y 1< y 2< y 3 B. y 3< y 2< y 1 C. y 3< y 1< y 2 D. y 2< y 1< y 3 18. 如果ab >0,且ac=0,那么直线ax+by+c=0一定通过---------------------( ) (A)第一、三象限 (B)第二、四象限 (C)第一、二、三象限 (D)第一、三、四象限 19.如图,已知点A 是一次函数y=x 的图象与反比例函数y=x2的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA= OB ,那么△AOB 的面积为-------------------------( )A 、2B 、22C 、2D 、22 . 20.直至水槽注满。
江苏省无锡市江阴市澄要片2018-2019学年八年级下学期数学期中考试试卷及参考答案

25. 在进行二次根式化简时,我们有时会碰上如 , ,
一样的式子,其实我们还可以将其进一步化简
:
,
,
以上这种化简的步骤叫做分母有理化.
还可以用以下方法化简:
(1) 请用不同的方法化简
;
(2) 化简:
.
26. 某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元 购买的甲种配件的数量与用24万元购9. 计算:
(1)
;
(2)
.
20. (1) 计算:
-x+y;
(2) 解方程:
=1.
21. 化简代数式(2m- )÷
,并求当m=2019-2 时此代数式的值.
22. 已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.
求证:
(1) △AFD≌△CEB. (2) 四边形ABCD是平行四边形. 23. 某市对即将参加中考的4000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方 图.请根据图表信息回答下列问题:
13. 一个菱形的两条对角线长分别为3cm,4cm,这个菱形的面积S=________.
14. 若最简二次根式
与 是同类二次根式,则x=________.
15. 关于 的方程
的解是正数,则 的取值范围是________.
16. 若□ABCD中一内角平分线和某边相交把这条边分成1cm、2cm的两条线段,则口ABCD的周长是________ 17. 如图,矩形内有两个相邻的正方形,面积分别为3和27,那么图中阴影部分的面积为________。
3. 代数式
中是分式的有( )
A . 1个 B . 2个 C . 3个 D . 4个 4. 下列二次根式中属于最简二次根式的是( )
江阴市XX中学2017-2018学年八年级下数学期中试卷(有答案)AKUUAn

2017---2018年XX 中学第二学期期中考试(试题卷)初二数学(考试时间120分钟,满分120分)命题人:蔡丽明复核人:金年骏一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形是( ▲)2. 下列有四种说法中,正确的说法是(▲)①了解某一天出入无锡市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是确定事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.A .①②③B .①②④C .①③④D .②③④3.矩形具有而一般平行四边形不具有的特点是(▲)A .对角相等 B.对边相等C.对角线相等D.对角线互相平分4如果把分式中的m 和n 都扩大3倍,那么分式的值( ▲ )A .不变B .扩大3倍C .缩小3倍D .扩大9倍5. 分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式个数为(▲) A .1个 B .2个 C .3个 D .4个6. 为了早日实现“绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是 ( ▲ )A .B .C .D . 7.如图,在□ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是(▲)A .1cm <OA <4cmB .2cm <OA <8cmC .2cm <OA <5cmD .3cm <OA <8cm8. 对于反比例函数y =2x,下列说法不正确的是(▲) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小9. 如图,将矩形ABCD 绕点C 顺时针旋转90°得到矩形FGCE ,点M 、N 分别是BD 、GE 的中点,若BC=14,CE=2,则MN 的长 ( ▲ )A .7B .8C .9D .1010.如图,在正方形ABCD 中,E 为AD 的中点,DF ⊥CE 于M ,交AC 于点N ,交AB 于点F ,连接EN 、BM .有如下结论:①△ADF ≌△DCE ;②MN =FN ;③DE =EN ;④S △ADN :S 四边形CNFB =2:5;⑤BM =AB .其中正确结论的个数为 ( ▲ )40004000210x x -=+40004000210x x-=+40004000210x x -=-40004000210x x -=-第7题 第9题 第10题A .5个B .4个C .3个D .2个二、填空题(本大题共有8个空格,每个空格2分,共16分.)11.当 x= ▲时,分式x 2-1x -1的值为0. 12.□ABCD 中,∠A+ ∠C=100゜,则∠B=__▲______.13.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有▲个数.14.在菱形ABCD 中,边长为5,对角线AC =6.则菱形的面积为___▲__.15.已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 ▲ .16.若关于x 的分式方程xx x m 2132=--+无解,则m 的值为 ▲ . 17.如图,△ABC 中,∠C =900, AC=4, BC=8,以AB 为边向外作正方形ABDE ,若此正方形中心为点O ,则点C 和点O 之间的距离为__▲__.18.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,-2)、点B (m ,m +1),点C (6,2),则对角线BD 的最小值是 ▲ .三、解答题(本大题共9小题.共74分.)19.(本题满分8分)计算: (1)2422m m m +--(2)()x x x x x x -+∙+÷++-21212422 20.(本题满分8分)解方程:(1)1223-=+x x (2) 21.(本题满分6分)如图,在直角坐标系中,A (0,4),C (3,0). (1)①画出线段AC 关于y 轴对称线段AB ;②将线段CA 绕点C 顺时针旋转一个角,得到对应线段CD 使得AD∥x 轴,请画出线段CD ;(2)若直线y=kx 平分(1)中四边形ABCD 的面积,请直接写出实数k 的值.22.(本题满分8分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B 级)?23.(本题满分8分)如图,点E 、F 分别是□ABCD 边AB 、12112-=--x x x 第22题 第17题第21题CD 延长线上一点,且BE =DF ,连EF 、AC 交于点O .求证:AC 、EF 互相平分.24.(本题满分8分)把一张矩形纸片ABCD 按如图方式折叠,使顶点B和D 重合,点A 到点A ’,折痕为EF .(1)连接BE ,求证:四边形BFDE 是菱形;(2)若AB =8cm ,BC =16cm ,求线段DF 的长.25. (本题满分10分)如图,反比例函数xmy =1与一次函数b kx y +=2的图像交于两点A (n ,-1)、B (1,2). (1)求反比例函数与一次函数的关系式;(2)连接OA 、OB, 求△AOB 的面积;(3)在反比例函数的图象上找点P ,使△POB 为等腰三角形,这样的P 点有_____个?26.(本题满分10分)如图矩形OACB,以O 为原点建立平面直角坐标系,点C 坐标为(6,3).动点E 、F 分别从点B 、A 同时出发,点E 以1 cm /s 的速度沿边BO 向点O 移动,点F 以1 cm /s 的速度沿边AC 向点C 移动,点F 移动到点C 时,两点同时停止移动.以EF 为边在EF 的上方作正方形EFGD ,设点F 出发ts 时,正方形EFGH 的面积为s .(1 )t=___正方形积s 为最小;s的面EFGD 最小值正方形EFGD 的=___;最大面积s =_____.(2) t=1 时求D 点的坐标.(3) t=1 时点Q 是线段EF 上的一个动点(可与E 、F 重合),试探索在平面直角坐标系内找一点N ,使得以O 、Q 、E 、N 为顶点的四边形是菱形?若不存在,请说明理由,若存在,请求出N 的坐标.27.(本题满分8分)如图甲,将矩形ABCD 放在平面直角坐标系中,点D 的坐标为(3,2),以y 轴上一点P 为中心,a 为边长作正方形EFGH ,点E 和点G 都在y 轴上。
2018年苏科版八年级数学下册期中考试试卷及答案
学校班级准考证号姓名----------------------------------------装----------------------------------------------------订------------------------------------------------线----------------------------------------------2017-2018学年八年级数学第二学期期中考试试卷本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟.一、选择题:(本大题共有10小题,每小题3分,共30分,)1.下列图形中是中心对称图形而不是轴对称图形的是(▲)A .B.C.D.2.下列调查中,适宜采用普查方式的是(▲)A.了解一批灯泡的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护环境的意识D.了解全国八年级学生的睡眠时间3. 为了了解2016年苏州市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩,下列说法正确的是( ▲)A. 2016年苏州市九年级学生是总体B.每一名九年级学生是个体C. 1000名九年级学生是总体的一个样本D.样本容量是10004.反比例函数,6yx=-的图像在(▲)A.一、二象限B一、三象限 C.二、三象限 D.二、四象限5、下列判断正确的是(▲)A一组对边平行且另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.一组对边平行且有一组对角相等的四边形是平行四边形D.对角线互相垂直且相等的四边形是正方形6、如图,函数xky=与()01≠+-=kkxy在同一平面直角坐标系中的图像大致(▲)7.已知1122(,),(,)A x yB x y是反比例函数(0)ky kx=≠图象上的两个点,当12x x<<时,12y y>,那么一次函数y kx k=-的图象不经过(▲)A.第一象限B.第二象限C.第三象限D.第四象限8.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于(▲)A.245B.125C. 5D. 49.如图,在周长为20 cm的□ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE 的周长为 ( ▲ ) A .4 cm B .6 cm C .8 cm D .10 cm二、填空题:(本大题共8小题,每小题3分,共24分) 11.己知反比例函数(0)k y k x =≠的图像经过点(2,3)P -,k 的值为 ▲ . 12.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.搅匀后从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 ▲ . 13.反比例函数25(1)k y k x -=-(k 为常数),当x >0时,y 随x 的增大而减小,则k 的值为 ▲ . 14. 矩形ABCD 中,AB =5,BC =12,对角线AC ,BD 交于点O ,E ,F 分别为AB ,AO 中点,则线段EF =___▲______. 15.如图,延长矩形ABCD 的边BC 至点E ,使CE=BD ,30ADB ∠=︒,E ∠= ▲. 16.如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的解析式为 ▲ . 17.已知反比例函数10y x =,当2y <时,x 的取值范围是 ▲ .18.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部.将AF 延长交边BC于点G .若81=GB CG,则AB AD的值是 ▲ 第16题第9题 题第8题 第15题 第14题 第18题图 第10题三、解答题:(本大题共10小题,共76分). 19、(6分)在平面直角坐标系中, △ABC 的点坐标分别是A (2,4)、B (1,2)、C (5,3),如图:(1)以点(0,0)为旋转中心,将△ABC 顺时针转动90∘,得到△111A B C ,在坐标系中画出△111A B C ,写出A 1、B 1、C 1的坐标;(2)在(1)中,若△ABC 上有一点P (m ,n ),直接写出对应点1P 的坐标。
江阴市XX中学八年级下数学期中试卷及答案-超值
2017---2018年XX 中学第二学期期中考试(试题卷)初二数学(考试时间120分钟,满分120分)命题人:蔡丽明复核人:金年骏一、选择题(本大题共10小题,每小题3分,共30分) 1.下列图形中,不是中心对称图形是( ▲)2. 下列有四种说法中,正确的说法是(▲)①了解某一天出入无锡市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是确定事件; ③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件. A .①②③B.①②④ C.①③④ D.②③④ 3.矩形具有而一般平行四边形不具有的特点是(▲)A .对角相等 B.对边相等C.对角线相等D.对角线互相平分 4如果把分式中的m 和n 都扩大3倍,那么分式的值( ▲ )A .不变B .扩大3倍C .缩小3倍D .扩大9倍 5. 分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式个数为(▲)A .1个B .2个C .3个D .4个6. 为了早日实现“绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是 ( ▲ )A .B .C .D . 7.如图,在□ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是(▲)A .1cm <OA <4cmB .2cm <OA <8cmC .2cm <OA <5cmD .3cm <OA <8cm8. 对于反比例函数y =2x,下列说法不正确的是(▲)A .点(-2,-1)在它的图象上B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 9. 如图,将矩形ABCD 绕点C 顺时针旋转90°得到矩形FGCE ,点M 、N 分别是BD 、GE 的中点,若BC=14,CE=2,则MN 的长 ( ▲ ) A .7 B .8 C .9 D .1010.如图,在正方形ABCD 中,E 为AD 的中点,DF ⊥CE 于M ,交AC 于点N ,交AB 于点F ,连接EN 、BM .有如下结论:①△ADF ≌△DCE ;②MN =FN ;③DE =EN ;④S △ADN :S 四边形CNFB =2:5;⑤BM =AB .其中正确结论的个数为 ( ▲ )A .5个B .4个C .3个D .2个40004000210x x -=+40004000210x x-=+40004000210x x -=-40004000210x x -=-第7题第9题第10题二、填空题(本大题共有8个空格,每个空格2分,共16分.)11.当 x= ▲时,分式x 2-1x -1的值为0.12.□ABCD 中,∠A+ ∠C=100゜,则∠B=__▲______.13.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有▲个数. 14.在菱形ABCD 中,边长为5,对角线AC =6.则菱形的面积为___▲__. 15.已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 ▲ . 16.若关于x 的分式方程xx x m 2132=--+无解,则m 的值为 ▲ . 17.如图,△ABC 中,∠C =900, AC=4, BC=8,以AB 为边向外作正方形ABDE ,若此正方形中心为点O ,则点C 和点O 之间的距离为__▲__.18.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,-2)、点B (m ,m +1),点C (6,2),则对角线BD 的最小值是 ▲ .三、解答题(本大题共9小题.共74分.) 19.(本题满分8分)计算:(1)2422m m m +--(2)()x x x x x x -+∙+÷++-2121242220.(本题满分8分)解方程:(1)1223-=+x x (2) 21.(本题满分6分)如图,在直角坐标系中,A (0,4),C (3,0).(1)①画出线段AC 关于y 轴对称线段AB ;②将线段CA 绕点C 顺时针旋转一个角,得到对应线段CD 使得AD∥x 轴,请画出线段CD ;(2)若直线y=kx 平分(1)中四边形ABCD 的面积,请直接写出实数k 的值.22.(本题满分8分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B 级)?23.(本题满分8分)如图,点E 、F 分别是□ABCD 边AB 、CD 延长线上一点,且BE =DF ,连EF 、AC 交于点O .求证:AC 、EF 互相平分.12112-=--x x x 第22题 第17题第21题24.(本题满分8分)把一张矩形纸片ABCD 按如图方式折叠,使顶点B和D 重合,点A 到点A ’,折痕为EF . (1)连接BE ,求证:四边形BFDE 是菱形; (2)若AB =8cm ,BC =16cm ,求线段DF 的长.25. (本题满分10分)如图,反比例函数xm y =1与一次函数b kx y +=2的图像交于两点A (n ,-1)、B (1,2).(1)求反比例函数与一次函数的关系式; (2)连接OA 、OB, 求△AOB 的面积;(3)在反比例函数的图象上找点P ,使△POB 为等腰三角形,这样的P 点有_____个?26.(本题满分10分)如图矩形OACB,以O 为原点建立平面直角坐标系,点C 坐标为(6,3).动点E 、F 分别从点B 、A 同时出发,点E 以1 cm/s 的速度沿边BO 向点O 移动,点F 以1 cm/s 的速度沿边AC 向点C 移动,点F 移动到点C 时,两点同时停止移动.以EF 为边在EF 的上方作正方形EFGD ,设点F 出发ts 时,正方形EFGH 的面积为s .(1 )t=___正方的面积s 为最小;形EFGDs 最小值=___;正方形的面积s 最大=_____. EFGD(2) t=1 时求D 点的坐标.(3) t=1 时点Q 是线段EF 上的一个动点(可与E 、F 重合),试探索在平面直角坐标系内找一点N ,使得以O 、Q 、E 、N 为顶点的四边形是菱形?若不存在,请说明理由,若存在,请求出N 的坐标.27.(本题满分8分)如图甲,将矩形ABCD 放在平面直角坐标系中,点D 的坐标为(3,2),以y 轴上一点P 为中心,a 为边长作正方形EFGH ,点E 和点G 都在y 轴上。
2018-2019学年苏科版八年级下期中数学试卷(含答案解析)
2018-2019学年八年级下期中数学试卷一、选择题:(每小题3分,共30分)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个2.下列事件中,是随机事件的为()A.水涨船高B.守株待兔C.水中捞月D.冬去春来3.下列等式成立的是()A.B.C.D.4.分式:①;②;③;④中,最简分式的个数有()A.1个B.2个C.3个D.4个5.下列根式中,最简二次根式是()A.B.C.D.6.(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣7.为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重8.已知O是▱ABCD对角线的交点,△ABC的面积是3,则▱ABCD的面积是()A.3B.6C.9D.129.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.二、填空题(本大题共9小题,每空2分,共20分,答案填入答题纸上)11.若有意义,则x的取值范围是.12.已知分式无意义,则x;当x时,分式的值为零.13.平行四边形ABCD中,∠A+∠C=100゜,则∠B=.14.若最简二次根式与是同类二次根式,则a=.15.的最简公分母是.16.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有个数.17.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=度.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有次.三.简答题20.(12分)计算或化简:(1);(2)(3)(xy﹣x2)÷;(4)﹣a﹣1.21.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2.(3)△ABC是否为直角三角形?答(填是或者不是).(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.23.(6分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?24.如图,在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明四边形MFNE是平行四边形.25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.求证:BE=CD.26.(6分)已知:如图,平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.27.(8分)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在y轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选:C.【点评】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列事件中,是随机事件的为()A.水涨船高B.守株待兔C.水中捞月D.冬去春来【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:A、水涨船高是必然事件,选项错误;B、守株待兔是随机事件,选项正确;C、水中捞月是不可能事件,选项错误;D、冬去春来是必然事件,选项错误.故选:B.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列等式成立的是()A.B.C.D.【分析】根据分式的运算即可求出答案.【解答】解:(A)原式=,故A错误;(C)是最简分式,故C错误;(D)原式=,故D错误;故选:B.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算,本题属于基础题型.4.分式:①;②;③;④中,最简分式的个数有()A.1个B.2个C.3个D.4个【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:①④中分子分母没有公因式,是最简分式;②中有公因式(a﹣b);③中有公约数4;故①和④是最简分式.故选:B.【点评】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.5.下列根式中,最简二次根式是()A.B.C.D.【分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.【解答】A、可以化简,不是最简二次根式;B、,不能再开方,被开方数是整式,是最简二根式;C、,被开方数是分数,不是最简二次根式;D、,被开方数是分数,不是最简二次根式.故选:B.【点评】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.6.(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣【分析】直接利用二次根式的性质化简得出答案.【解答】解:∵有意义,∴1﹣a>0,∴a﹣1<0,∴(a﹣1)=﹣=﹣.故选:C.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.7.为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某中学九年级500名学生的体重情况,故总体是某中学九年级500名学生的体重情况.故选:C.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.已知O是▱ABCD对角线的交点,△ABC的面积是3,则▱ABCD的面积是()A.3B.6C.9D.12【分析】根据平行四边形的性质可知,OD=OB,OA=OC,所以平行四边形的两条对角线把平行四边形分成四个面积相等的三角形,已知△ABC的面积为3,所以平行四边形的面积可求.【解答】解:∵O为▱ABCD对角线的交点,且△ABC的面积为3,∴▱ABCD的面积为2×3=6.故选:B.【点评】本题考查的是平行四边形的性质,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四.9.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【分析】首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.【点评】此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.10.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.【分析】作CH⊥AB于H,如图,根据菱形的性质可判断△ABC为等边三角形,则CH=AB=4,AH=BH=4,再利用勾股定理计算出CP=7,再根据折叠的性质得点A′在以P点为圆心,PA为半径的弧上,利用点与圆的位置关系得到当点A′在PC上时,CA′的值最小,然后证明CQ=CP即可.【解答】解:作CH⊥AB于H,如图,∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=AB=4,AH=BH=4,∵PB=3,∴HP=1,在Rt△CHP中,CP==7,∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,PA为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选:B.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC上时CA′的长度最小.二、填空题(本大题共9小题,每空2分,共20分,答案填入答题纸上)11.若有意义,则x的取值范围是x≥﹣1.【分析】二次根式的被开方数x+1是非负数.【解答】解:根据题意,得x+1≥0,解得,x≥﹣1;故答案是:x≥﹣1.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.已知分式无意义,则x=﹣1;当x=2时,分式的值为零.【分析】直接利用分式无意义则其分母为0,再利用分式的值为0,则其分子为零,进而求出答案.【解答】解:分式无意义,则x=﹣1;当x=2时,分式的值为零故答案为:=﹣1,=2.【点评】此题主要考查了分式的值为0以及分式分式有无意义,正确把握相关定义是解题关键.13.平行四边形ABCD中,∠A+∠C=100゜,则∠B=130°.【分析】根据平行四边形的性质可得∠A=∠C,又有∠A+∠C=100°,可求∠A=∠C=50°.又因为平行四边形的邻角互补,所以,∠B+∠A=180°,可求∠B.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】此题考查了平行四边形的性质.此题比较简单,熟练掌握平行四边形的性质定理是解题的关键.14.若最简二次根式与是同类二次根式,则a=4.【分析】根据题意,它们的被开方数相同,列出方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣5=a+3,解得a=4.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.的最简公分母是12x3yz.【分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【解答】解:的最简公分母是12x3yz.故答案为:12x3yz.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.16.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有200个数.【分析】根据频数=频率×数据总和求解即可.【解答】解:数据总和==200.故答案为;200.【点评】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.17.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=20度.【分析】根据旋转的性质找到对应点、对应角进行解答.【解答】解:∵△ABC绕点A逆时针旋转85°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC﹣∠BAB′=20°.故答案是:20.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣﹣旋转中心;②旋转方向;③旋转角度.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次.【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.【点评】此题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.三.简答题20.(12分)计算或化简:(1);(2)(3)(xy﹣x2)÷;(4)﹣a﹣1.【分析】(1)先算绝对值,化简二次根式,再合并同类项即可求解;(2)先分母有理化,根据平方差公式计算,再合并同类项即可求解;(3)先因式分解,将除法变为乘法,再约分计算即可求解;(4)先通分,再约分计算即可求解.【解答】解:(1)=2﹣3++3=3;(2)=﹣1+4﹣2=+1;(3)(xy﹣x2)÷=﹣x(x﹣y)×=﹣xy;(4)﹣a﹣1=﹣==.【点评】考查了二次根式的混合运算,分式的混合运算,关键是熟练掌握计算法则正确进行计算.21.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x 值代入求值.【分析】先化简分式,再把x=2代入进行计算即可.【解答】解:原式=÷=•=,当x=2时,原式==4.【点评】本题考查了分式的化简求值,掌握因式分解是解题的关键.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1(2,﹣4).(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2(﹣2,4).(3)△ABC是否为直角三角形?答不是(填是或者不是).(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.【分析】(1)依据△A1B1C1与△ABC关于x轴对称,即可得到△A1B1C1,并写出点A1的坐标;(2)依据△A1B1C1绕原点O旋转180°后得到的△A2B2C2进行画图并写出点A2的坐标;(3)利用勾股定理的逆定理进行计算即可;(4)利用格点图,画出BC边上的高AD,依据S=×BC×AD,即可得到AD△ABC的长.【解答】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标(2,﹣4);(2)如图所示,△A2B2C2,点A2的坐标(﹣2,4);(3)∵AB2+AC2<BC2,∴△ABC不是直角三角形;(4)如图所示,BC边上的高AD即为所求,=×BC×AD,∵S△ABC∴(1+2)×4﹣×1×2﹣×1×3=××AD,解得AD=,故答案为:(2,﹣4);(﹣2,4);不是;.【点评】本题主要考查了利用旋转变换以及轴对称变换进行作图,旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.23.(6分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?【分析】(1)根据A级人数除以A级所占的百分比,可得抽测的总人数;(2)根据抽测总人数减去A级、B级人数,可得C级人数,根据C级人数,可得答案;(3)根据圆周角乘以C级所占的百分比,可得答案;(4)根据学校总人数乘以A级与B级所占百分比的和,可得答案.【解答】解:(1)此次抽样调查中,共调查了50÷25%=200名学生,故答案为:200;(2)C级人数为200﹣50﹣120=30(人),条形统计图;(3)C级所占圆心角度数:360°×(1﹣25%﹣60%)=360°×15%=54°(4)达标人数约有8000×(25%+60%)=6800(人).【点评】本题考查了条形统计图,观察统计图获得有效信息是解题关键.24.如图,在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明四边形MFNE是平行四边形.【分析】利用平行四边形的性质,可先证得四边形BEDF为平行四边形,则可证得BE=DF,且BE∥DF,结合条件可求得ME=NF,则可证得结论.【解答】证明:∵四边形ABCD为平行四边形,∴AD=BC且AD∥BC,∵AE=CF,∴DE=BF,且DE∥BF,∴四边形BEDF为平行四边形,∴BE=DF,∵M、N分别是BE、DF的中点,∴ME=NF,且ME∥NF,∴四边形MFNE是平行四边形.【点评】本题主要考查平行四边形的性质和判定,熟练掌握平行四边形的性质和判定方法是解题的关键.25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC 的延长线于点E.求证:BE=CD.【分析】由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;【点评】此题考查了平行四边形的性质、等腰三角形的判定等知识,熟练掌握平行四边形的性质,是解决问题的关键.26.(6分)已知:如图,平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.【分析】(1)证明四边形ABDF是平行四边形,再利用平行四边形对角线互相平分可证出结论;(2)首先证明四边形ABCD是菱形,再用菱形的性质可得到AC⊥BD,再根据两直线平行,同位角相等得到∠CAF=∠COD=90°.【解答】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DF=CD,∴AB∥DF.∵DF=CD,∴AB=DF.∴四边形ABDF是平行四边形,∴AE=DE.(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.∴AC⊥BD.∴∠COD=90°.∵四边形ABDF是平行四边形,∴AF∥BD.∴∠CAF=∠COD=90°.【点评】此题主要考查了平行四边形的判定与性质,菱形的判定与性质,平行线的性质,解决问题的关键是熟练掌握平行四边形的判定方法与性质.27.(8分)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在y轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)可求得B、D的坐标,利用待定系数法可求得直线BD的解析式;(2)可求得E点坐标,求出直线OE的解析式,联立直线BD、OE解析式可求得H 点的横坐标,可求得△OFH的面积;(3)当△MFD为直角三角形时,可找到满足条件的点N,分∠MFD=90°、∠MDF =90°和∠FMD=90°三种情况,分别求得M点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N点坐标.【解答】解:(1)∵BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,=××=;∴S△OFH(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,该情况不符合题意.②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).【点评】本题主要考查一次函数的综合应用,涉及待定系数法、旋转的性质、矩形的性质、相似三角形的性质等.在(1)中求得B、D坐标是解题的关键,在(2)中联立两直线求得H点的横坐标是解题的关键,在(3)中确定出M点的坐标是解题的关键,注意分类讨论思想的应用.本题考查知识点较基础,难度适中.。
苏科版2017-2018学年第二学期八年级期中数学试卷三含答案
学校___________ 编号________ 班级_________ 姓名______________ 学号________ …………………………………………密……………………………………………封…………………………………………线……………………………………………2017-2018学年第二学期八年级期中数学试卷三含答案考试范围:苏科版《数学》八年级下册第九、十、十一章内容;考试时间:120分钟;考试题型:选择题、填空题、解答题;考试分值:130分。
一、选择题(本大题共有10小题,每小题3分,共30分) 1.下列函数中,反比例函数是 ( ▲ ) A .25y x=B .25y x =-1 C .245y x =D .25y x =-2.下面对□ABCD 的判断,正确的是 ( ▲ ) A .若AB ⊥BC ,则□ABCD 是菱形;B .若AC ⊥BD ,则□ABCD 是正方形;C .若AC =BD ,则□ABCD 是矩形 ; D .若AB =AD ,则□ABCD 是正方形. 3.对于反比例函数xy 2=,下列说法不正确的是( ▲ ) A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小4.分式x--11可变形为( ▲ ) A .11--x B .x +-11 C .x +11 D .11-x 5.若代数式13x +在实数范围内有意义,则实数x 的取值范围是( ▲ )A. 3x =-B. 3x ≠-C. 3x <-D. 3x >-6.下列各点中,在双曲线上12y x=的点是( ▲ ) A .(4,-3) B. (3,-4) C. (-4,3) D.(-3,-4) 7.已知点123(1,),(2,),(3,)A y B y C y -都在反比例函数2y x=-的图像上,则( ) A. 123y y y <<; B. 132y y y >>; C. 123y y y >>; D. 231y y y >> 8.己知,一次函数1y ax b =+与反比例函数2ky x=的图像如图所示,当12y y <时,x 的取值范围是( ▲ )A.2x <; B.5x >; C.25x <<; D.02x <<或5x >第7题第9题9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( ▲ )A .(3,1)B .(3,)C .(3,)D .(3,2)10.如图所示,在Rt AOB ∆中,90,23AOB OB OA ∠=︒=,点A 在反比例函数2y x=的图象上,若点B 在反比例函数ky x=的图象上,则k 的值为( ▲ ) A .3 ; B. -3; C. 94-; D. 92-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017---2018年XX 中学第二学期期中考试
(试题卷)
初二数学(考试时间120分钟,满分120分) 命题人:蔡丽明复核人:金年骏
一、选择题(本大题共10小题,每小题3分,共30分) 1.下列图形中,不是中心对称图形是( ▲)
2. 下列有四种说法中,正确的说法是(▲)
①了解某一天出入无锡市的人口流量用普查方式最容易;
②“在同一年出生的367名学生中,至少有两人的生日是同一天”是确定事件; ③“打开电视机,正在播放少儿节目”是随机事件;
④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件. A .①②③B.①②④ C.①③④ D.②③④ 3.矩形具有而一般平行四边形不具有的特点是(▲)
A .对角相等 B.对边相等C.对角线相等D.对角线互相平分 4如果把分式
中的m 和n 都扩大3倍,那么分式的值( ▲ )
A .不变
B .扩大3倍
C .缩小3倍
D .扩大9倍 5. 分式:①
223a a ++,②22
a b a b --,③412()a a b -,④1
2
x -中,最简分式个数为(▲) A .1个 B .2个 C .3个 D .4个
6. 为了早日实现“绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是 ( ▲ )
A .40004000210x x -=+
B .40004000210x x
-=+ C .
40004000210x x -=- D .40004000210x x -=- 7.如图,在□ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是(▲) A .1cm <OA <4cm B .2cm <OA <8cm C .2cm <OA <5cm D .3cm <OA <8cm
8. 对于反比例函数y =2
x
,下列说法不正确的是(▲)
A .点(-2,-1)在它的图象上
B .它的图象在第一、三象限
C .当x >0时,y 随x 的增大而增大
D .当x <0时,y 随x 的增大而减小 9. 如图,将矩形ABCD 绕点C 顺时针旋转90°得到矩形FGC
E ,点M 、N 分别是BD 、GE 的中点,若
BC=14,CE=2,则MN 的长 ( ▲ )
第7题
第9题
第10题
A .7
B .8
C .9
D .10
10.如图,在正方形ABCD 中,E 为AD 的中点,DF ⊥CE 于M ,交AC 于点N ,交AB 于点F ,连接EN 、
BM .有如下结论:①△ADF ≌△DCE ;②MN =FN ;③DE =EN ;④S △ADN :S 四边形CNFB =2:5;⑤BM =AB .其中正确结论的个数为 ( ▲ )
A .5个
B .4个
C .3个
D .2个
二、填空题(本大题共有8个空格,每个空格2分,共16分.)
11.当 x= ▲时,分式x 2-1
x -1
的值为0.
12.□ABCD 中,∠A+ ∠C=100゜,则∠B=__▲______.
13.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有▲个数. 14.在菱形ABCD 中,边长为5,对角线AC =6.则菱形的面积为___▲__. 15.已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 ▲ . 16.若关于x 的分式方程
x
x x m 2
132=--+无解,则m 的值为 ▲ . 17.如图,△ABC 中,∠C =900
, AC=4, BC=8,以AB 为边向外作正方形ABDE ,若此正方形中心为点
O ,则点C 和点O 之间的距离为__▲__.
18.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,-2)、点B (m ,m +1),点C (6,2),则对角线BD 的最小值是 ▲ . 三、解答题(本大题共9小题.共74分.) 19.(本题满分8分)计算:
(1)2422m m m +--(2)()x x x x x x -+•+÷++-21
21
2422
20.(本题满分8分)解方程:
(1)1223-=+x x (2)1
2
112
-=--x x x 21.(本题满分6分)如图,在直角坐标系中,A (0,4),C (3,0).
(1)①画出线段AC 关于y 轴对称线段AB ;②将线段CA 绕点C 顺时针旋转一个角,得到对应线段
CD 使得AD∥x 轴,请画出线段CD ;
(2)若直线y=kx 平分(1)中四边形ABCD 的面积,请直接写出实数k 的值.
22.(本题满分8分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了名学生; (2)将图①补充完整;
(3)求出图②中C 级所占的圆心角的度数; (4)根据抽样调查结果,请你估计
我市近8000名八年级学生中大约有多少名学生学习态
度达标(达标包括A 级和B 级)?
O
E
D
C
B
A
第17题
第21题
23.(本题满分8分)如图,点E、F分别是□ABCD边AB、CD延长线上一点,且BE=DF,连EF、AC交于点O.求证:AC、EF互相平分.
24.(本题满分8分)把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,点A到点A’,折痕为EF.
(1)连接BE,求证:四边形BFDE是菱形;
(2)若AB=8cm,BC=16cm,求线段DF的长.
25.(本题满分10分)
如图,反比例函数
x
m
y=
1
与一次函数b
kx
y+
=
2
的图像交于两点A(n,-1)、B(1,2). (1)求反比例函数与一次函数的关系式;
(2)连接OA、OB, 求△AOB的面积;
(3)在反比例函数的图象上找点P,使△POB为等腰三角形,这样的P点有_____个?
26.(本题满分10分)如图矩形OACB,以O为原点建立平面直角坐标系,点C坐标为(6,3).动点E、F分别从点B、A同时出发,点E以1 cm/s的速度沿边BO向点O移动,点F以1 cm/s的速度沿边AC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边在EF的上方作正方形EFGD,设点F出发ts时,正方形EFGH的面积为s .
B
A D C
E F
O
第24题
第25题
第23题
第22题
备用图
(1 )t=___正方形EFGD 的面积s 为最小;s 最小值=___;正方形EFGD 的面积s 最大=_____. (2) t=1 时求D 点的坐标.
(3) t=1 时点Q 是线段EF 上的一个动点(可与E 、F 重合),试探索在平面直角坐标系内找一点N ,使得以O 、Q 、E 、N 为顶点的四边形是菱形?若不存在,请说明理由,若存在,请求出N 的坐标.
27.(本题满分8分)如图甲,将矩形ABCD 放在平面直角坐标系中,点D 的坐标为(3,2),以y 轴上一点P 为中心,a 为边长作正方形EFGH ,点E 和点G 都在y 轴上。
点P 从(0,-3)出发,沿y 轴正方向以b 个单位长度每秒的速度运动。
在整个运动过程中,正方形的边EH 与矩形ABCD (含内部)的公共部分的长度L 与运动时间t 之间的函数关系如图乙所示。
(1)矩形ABCD 的周长为;正方形EFGH 的面积为; (2)当t =时,正方形与矩形的重叠部分的面积为1
初二数学期中考试答案
(第 A B C D (第7题) O A B C D
8题) O A B C D (第6题) O 第26题
第27题图甲
第27题图乙。