微波电路及设计的基础知识4
微波电路及设计的基础知识

微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。
此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。
实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。
由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。
作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。
另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。
在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。
以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。
微波集成电路〔MIC〕:采用管芯及陶瓷基片。
微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。
图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。
微波电路及其PCB技术设计知识

微波电路及其PCB技术设计知识微波电路及其PCB技术设计知识随着科技的不断发展,微波技术在通信、雷达、航空航天等领域中逐渐得到广泛应用。
微波电路是微波技术的核心,而微波电路的设计和制作依靠着PCB技术。
本文将从微波电路的基本概念和PCB技术的基本流程入手,介绍微波电路及其PCB 技术的设计知识。
一、微波电路的基本概念微波电路是指在微波频段(1~300GHz)内工作的电路,通常包括射频电路、微波电路和毫米波电路。
微波电路与一般的低频电路相比,有着不同的特点和要求。
微波电路的特点主要有以下几个方面:1.工作频率高,信号波长短。
微波波长在厘米至毫米级别,与低频电路相比要短得多。
因此在微波电路的设计中,需要特别注意电路的尺寸和传输线的特性阻抗等参数。
2.信号传输损耗大。
由于传输线的损耗、元器件的损耗、导体的损耗等原因,微波电路的传输损耗要比低频电路大得多。
因此,在设计微波电路时需要充分考虑信号传输损耗和信噪比问题。
3.信号噪声低。
微波电路的信噪比要求高,因为在微波频段内,信号与噪声的比例要比低频电路低得多。
因此,在设计微波电路时需要考虑降低噪声的影响,提高信号的质量和可靠性。
4.稳定性要求高。
微波电路的稳定性要求比低频电路高,因为微波电路中的元器件往往是高精度、高质量的,其参数变化容易引起整个电路的性能变化甚至发生故障。
二、PCB技术的基本流程PCB(Printed Circuit Board,印刷电路板)技术是目前电子制造领域中使用最广泛的电路板制造技术之一。
在微波电路的制造过程中,PCB技术也占据着至关重要的地位。
下面简要介绍PCB技术的基本流程,以便更好地理解微波电路和PCB技术的设计。
1.设计。
首先需要进行PCB设计,即绘制电路原理图、布局图和走线图。
PCB设计软件有Altium Designer、Cadence Allegro等。
2.制板。
根据设计好的电路图纸,将其转化为PCB板图,然后使用制板机进行制板。
精选微波技术基础知识

1、第三章、微波集成传输线常用集成传输线的种类和主要特点2、第四章介质波导和光波导
1、传播条件和波型2、特性阻抗3、波长,相速4、功率容量5、衰减
了解
微波集成传输线
微波集成传输线的最大特点是 平面化
五种重要的传输线:带状线(Stripline)微带线(Microstrip line)槽线(Slotline)鳍线(Finline)共面线(Coplanar line)
式中
微波集成传输线-带状线
带状线—优缺点和应用
1、改变线宽一个参数就改变电路参数(特性阻抗)。2、在馈线、功分器,耦合器,滤波器,混频器,开关的设计中,体积小,重量轻,大批量生产的重复性好。3、立体电路的设计,适用于多层微波电路,LTCC等,辐射小。4、封闭的电路,调试难。5、电路需要同轴或波导馈入,引入不连续性,需要在设计时补偿。6、在多层电路设计中,存在不同节点常数的介质之间的连接,介质与金属导体的连接,分析方法非常复杂,尤其对3D电路,尚缺少各种不连续性的模型和相关设计公式,采用全波分析法或者准静态场分析。
毫米波鳍线混频器
介质波导和光波导
当毫米波波段→亚毫米波段→太赫兹波段时普通的微带线将出现一系列新问题1)高次模的出现使微带的设计和使用复杂2)金属波导的单模工作条件限制了其横向尺寸不能超过大约一个波长的范围。这在厘米波段和毫米波低频段不成问题。但到毫米波高频段,单模波导的尺寸就显得太小,不仅制造工艺困难,而且随着工作频率的提高,功率容量越来越小,壁上损耗越来越大,衰减大到不能容忍的地步。因此,对毫米波段的高端及来说,封闭的金属波导已不再适用。于是,适合于毫米波高频段、亚毫米波的传输线 —— 介质波导等非封闭式的传输线(或称开波导)便应运而生
微波集成传输线-微带线
微波电路

半径 ±
2
1
1/2 0
缩小为点(1,0)
直线,对应纯电阻
r ↑,半径↓
圆心都在r=1直线上 都在(1,0)点与实轴相切
2.Smith圆图
映射图形表示法-Smith圆图
2.Smith圆图
Smith圆图
2.Smith圆图
普通负载的阻抗变换分析
确定电路阻抗响应,以预言RF/MW系统的性能。
过程:
角映射原理为基础的图解方法,即Smith圆图。Smith圆图能 够在一个图中简单直观地显示传输线阻抗及反射系数。
理解:
Smith圆图实际上是(电压)反射系数的极坐标图; 一种求解传输线问题的辅助图形; 电阻圆和电抗圆是正交的。 用Smith圆图思考,可以开发出关于传输线和阻抗匹配问题 的直观想象力。
jL1
Z0
zin
jtand2
d2 1arctanZL0 n
2.Smith圆图
特殊变换分析—短路线变换
通过短路传输线实现容性和感性电抗
2.Smith圆图
导纳变换
1d zin rjx1d
由归一化阻抗表达式经过倒置,可得
yin
Yin Y0
1 zin
1d 1d
1 1
e e
j j
d d
在归一化输入阻抗表达式中用-1=exp(-j*pi)乘以反射系数, 等效于在复平面上旋转180°
并联电感 gjbj 1Lgjb1L
2.Smith圆图
特殊变换分析—开路线变换
为了获得纯感性或容性电抗,必须沿r=0的圆工作,从 起始点Γ=1顺时针方向旋转。
容性电抗 jX c
11
jCZ0
zinjcotd1
d1
微波电路设计

微波电路设计下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!微波电路设计是电子工程领域中的重要分支,它涉及到从微波信号的传输到处理的各个方面。
微波电路基本原理与设计方法

微波电路基本原理与设计方法微波电路是指工作频率在1 GHz至300 GHz范围内的电路。
由于微波信号的特殊性质,微波电路的设计与普通射频电路有较大的区别。
本文将介绍微波电路的基本原理和设计方法。
一、微波电路的基本原理微波电路的基本原理包括微波信号传输特性、微波谐振现象以及微波传输线特性等。
1. 微波信号传输特性微波信号在传输过程中会产生传播损耗、反射损耗和衰减损耗等。
了解微波信号传输特性对于微波电路的设计至关重要。
2. 微波谐振现象微波电路中常常使用谐振器来实现对特定频率微波信号的选择性放大或滤波。
因此,了解微波谐振现象对于微波电路的设计和优化至关重要。
3. 微波传输线特性微波传输线是微波电路中的重要组成部分,其特性包括传输线的阻抗特性、传播常数特性等。
了解微波传输线特性可以帮助我们设计出更加优秀的微波电路。
二、微波电路的设计方法微波电路的设计方法通常包括仿真分析、参数优化和实验验证等步骤。
1. 仿真分析仿真分析是微波电路设计的重要环节之一。
通过使用专业的微波电路仿真软件,可以对设计方案进行仿真分析,从而评估其性能和可行性。
常用的微波电路仿真软件包括ADS、CST等。
2. 参数优化通过对仿真得到的电路参数进行优化,可以得到更佳的性能。
参数优化方法有很多种,可以使用遗传算法、粒子群算法等进行优化。
3. 实验验证在完成仿真分析和参数优化后,需要进行实验验证。
通过在实际硬件中实现设计方案,并利用专业的测量仪器对其进行测试,从而验证设计方案的性能和可行性。
总结:微波电路的基本原理和设计方法是微波电路领域的重要内容。
了解微波电路的基本原理,可以更好地进行微波电路的设计和优化。
同时,合理运用仿真分析、参数优化和实验验证等方法,可以设计出性能优秀的微波电路。
在今后的微波电路设计中,我们应该继续深入学习和探索微波电路的基础知识,不断提高自己的微波电路设计能力。
微波电路基本概念
微波电路基本概念微波电路是研究和应用微波技术的重要组成部分,其基本概念是理解微波电路原理和设计微波设备的基础。
本文将介绍微波电路的基本概念,包括微波频率范围、传输线、匹配网络、耦合器和功率分配器等。
一、微波频率范围微波频率范围一般指的是几个GHz到几百GHz之间的频率范围。
与常规的低频电路相比,微波电路在频率、尺寸以及特性上都有所不同。
微波电路的频率高,传输的信号具有高速率和大带宽,因此其特性分析和设计方法也有所不同。
二、传输线传输线是微波电路中常见的元件,用于在微波系统中传输信号。
常见的传输线类型包括同轴电缆、矩形波导和微带线。
传输线具有导频率特性、阻抗特性和波导模式等特点,其设计需要考虑阻抗匹配、功率传输以及信号衰减等因素。
三、匹配网络匹配网络是微波电路中用于实现阻抗匹配的关键元件。
在微波系统中,信号的传输需要保证阻抗的匹配,以减少反射和信号功率损失。
常见的匹配网络包括L型匹配器、T型匹配器和π型匹配器等,通过调整元件的参数来实现阻抗匹配。
四、耦合器耦合器是微波电路中用于将信号从一个部分传输到另一个部分的元件。
常见的耦合器包括负载耦合器、耦合隔离器和功率耦合器等。
耦合器的设计需要考虑耦合效率、插入损耗和功率传输等因素,以确保信号的有效传输。
五、功率分配器功率分配器是微波电路中用于将输入功率分配给不同输出端口的元件。
常见的功率分配器包括功分器和合分器等。
功率分配器的设计需要考虑功率均匀分配、射频损耗和相位平衡等因素,以确保各个输出端口的功率和相位稳定。
六、微波器件微波器件是用于产生、放大、调制、调制微波信号的器件。
常见的微波器件包括微带滤波器、微波放大器、微波发生器和微波调制器等。
这些器件通过调整电磁场的特性和信号的特性来实现对微波信号的处理,广泛应用于通信、雷达和卫星系统等领域。
总结微波电路基本概念涵盖了微波频率范围、传输线、匹配网络、耦合器和功率分配器等关键元件。
了解这些基本概念对于理解微波电路的工作原理和设计微波设备至关重要。
微波技术基础第四章课后答案杨雪霞汇总-精品
【关键字】情况、方法、条件、模式、有效、和谐、加大、规律、稳泄、理想、方式、作用、结构、关系、简化、保证、取决于、方向、提髙、中心4-1谐振腔有哪些主要的参疑?这些参量与低频集总参数谐振回路有何异同点?答:谐振腔的主要特性参数有谐振频率、品质因数以及与谐振腔中有功损耗有关的谐振电导, 对于一个谐振腔来说,这些参数是对于某一个谐振模式而言的,若模式不同,这些参数也是不同的。
谐振频率具有多谐性,与低频中的回路,当其尺寸、填充介质均不变化时,只有一个谐振频率是不相同的。
任谐振回路中,微波谐振腔的固有品质因数要比集总参数的低频谐振回路髙的多。
一般谐振腔可以等效为集总参数谐振回路的形式。
4-2何谓固有品质因数、有载品质因数?它们之间有何关系?答:固有品质因数是对一个孤立的谐振腔而言的,或者说,是谐振腔不与任何外电路相连接 (空载)时的品质因数。
当谐振腔处于稳泄的谐振状态时,固有品质因数Qo的左义为WQo=27r——,其中W是谐振腔内总的储存能量,略是一周期内谐振腔内损耗的能量。
W T有载品质因数是指由于一个腔体总是要通过孔、环或探针等耦合机构与外界发生能量的耦合,这样不仅使腔的固有谐振频率发生了变化,而且还额外地增加了腔的功率损耗,从而导致品质因数下降,这种考虑了外界负载作用情况下的腔体的品质因数称为有载品质因数Q O 对于一个腔体,英中k为腔体和外界负载之间的耦合系数。
1 + R4-4考虑下图所示的有载RLC谐振电路。
计算其谐振频率、无载0。
和有载0“解:此谐振电路属于并联谐振电路,苴谐振频率为:无载时,Q = — =竿==/ *°°= 17.9说[L7 720X10~9/10X10_,2有载时,Qe=d = = --------- ---- ---------- = 40.25叫上/Z7 ^OxlO-'/lOxlO-12根据有载和无载的关系式—=—+丄得:Q L Q Q4-5有一空气填充的矩形谐振腔。
微波理论知识点总结
微波理论知识点总结微波是指波长在1毫米至1米之间的电磁波,它具有许多独特的特性和应用。
微波理论是研究微波的产生、传播、接收和应用的相关理论。
在通信、雷达、无线电频谱、天文学和材料加工等方面都有着广泛的应用。
1. 微波的概念和特性微波是电磁波的一种,波长范围在1毫米至1米之间。
与可见光波长相近,但由于其波长较短,因此具有许多独特的特性。
例如,微波能够穿透云层、雾气和一些障碍物,因此在雷达和通信中有着重要的应用。
此外,微波不会像可见光那样受到大气的散射和吸收,因此可以在大气层中进行远距离的传播。
2. 微波的产生和接收微波可以通过多种方式产生,常见的方法包括使用微波发射器、微波天线和微波放大器等。
微波接收则通过微波接收天线和微波接收器进行。
微波天线的设计对于接收微波信号具有重要影响,通常设计成具有较高的方向性和增益。
3. 微波传播微波在空间中的传播受到地形、大气条件和电磁波干扰等因素的影响。
通常情况下,微波的传播距离受到频率和天线高度的影响,高频率的微波传播距离较短,而低频率的微波传播距离较远。
此外,微波还受到地形和大气层的影响,例如山脉、建筑物和大气湍流都会对微波的传播产生影响。
4. 微波器件和电路微波器件和电路是指在微波频段内工作的元器件和电路。
常见的微波器件包括微波天线、微波滤波器、微波耦合器、微波终端等。
微波电路主要由微波传输线、微波振荡器、微波放大器和微波混频器等组成,用于实现微波信号的处理、分析和放大。
5. 微波通信和雷达系统微波通信和雷达系统是微波技术的两个重要应用领域。
微波通信系统通过微波传输线、微波天线和微波接收器等设备实现无线通信。
雷达系统则利用微波的穿透能力和高精度进行目标探测、跟踪和识别,广泛应用于军事、航空、气象和海洋领域。
6. 微波在材料加工中的应用微波在材料加工中有着广泛的应用,例如微波加热、微波干燥和微波辐照等。
微波加热是利用微波能量对材料进行加热,通常应用于食品加工、化工和材料处理中。
微波技术第2章 微波传输线4-微带线基础
高频头的构成主要有以下几部分:波导-微带转换器,低噪声 放大器,混频器,中频放大器。
高频头
波导-微带转换器:波导-微带转换器的作用是将馈源中所 接收到的微波信号通过小天线、同轴线耦合到微带低噪声放 大电路中。转换器的驻波比必须很低,否则接收到信号将被 反射,等效于接收信号被衰减,增加整机噪音。
3、微带线的色散特性
色散是指电磁波的传播速度随其频率变化而变化的现象。 一般对微带线进行的分析都认为微带线上传播的是TEM模, 因而微带线的导波波长、相速或有效介电常数均与频率无 关,即没有色散现象。但是,实际上无论是敞开的还是屏 敝的微带线,均不能维持这种TEM模的传播,因为这种模 满足不了空气和介质上的边界条件。
SMB系列
SMB系列产品是一种小型推入式锁紧射频同轴连接器、 具有体积小、重量轻、使用方便、电性能优良等特点、 适用于无线电设备和电子仪器的高频回路中连接射频同 轴电缆用。
MCX系列
MCX系列接头具有插入自锁结构。它是一种体积、重量、 耐用性及性能俱佳的产品。它的体积比标准SMB小30%, 因此连接更加紧密。应用于对体积、重量、性能及安装方 式有要求的场所。
3、微带线的色散特性
微带线中传播的真正模式是一种TE模和TM模组成的混合 模式。这种混合模式能在任何频率下传播,但是它是色散 的。频率较低时,混合模就趋近于TEM模。因而微带线中 传播的模式可近似地看成TEM模,或称它为准TEM模。但在 较高的频率下,当传输线尺寸远大于四分之一波长时,就 必须考虑微带线的色散性质,此时高次模已经存在。
微带集成电路具有小型化、轻量化、生产成本低、生 产周期短、可靠性高和性能指标高的优点,已从单一 的单元器件发展到大的微波功能模块,如微波固体接 收机、微波相控阵单片固体模块等。当然,它也有缺 点和局限性,例如损耗较大、Q值较低、空气-介质 界面附近会激起表面波等。 目前,微带集成电路发展十分迅速,已成为微波技术 的主要发展方向之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7. 一些常用的微波部件及其主要技术指标
在各种各样的微波电路中,放大器是相对最具有代表性的。
因此,我们作为重点对其进行介绍,而对于其它的电路,则只介绍其特殊的性能指标,同样的内容不再重复。
7.1 放大器
Pin Pout
图41 放大器框图
① 频率范围: f1~f2
② 增益(G):
G=P out /P in (3)
③ 噪声系数(NF): 'o
i
1N S //x i x i i o i i
o o i i N N G N N G N G N G N S N S N S F +=⋅+⋅=⋅=⋅== (4) 式中N x 是出现在放大器的输出端,由放大器内部产生的噪声。
NF=10logF (5) 即 NF=10log ('x N )
所以,噪声系数NF 就代表了放大器自身噪声贡献的大小。
④ 输入、输出反射损耗及电压驻波比(VSWR )
反射损耗(L R )是在输入信号保持不变的情况下,从短路器反射的电压与从被测负载反射的电压值比,并用dB 表示。
L R =20log ⎪⎪⎭⎫
⎝⎛ρ1 (6) 式中,ρ为被测负载的反射系数。
20
10/1R L =ρ (7) ρρ-+=11VSWR (8) ⑤ 1dB 压缩点输出功率(P -1):
随着输入功率的增加,当放大器的增益被压缩了1dB 时的输出功率,即为1dB 压缩点输出功率。
P -1是表示一个放大器的非线性特性和输出能力的一项重要指标。
图42 放大器输入/输出功率关系曲线
⑥ 互调分量和交叉点 如图43所示,当频率为f1和f2的两个等幅信号同时加在放大器的输入端时,由于放大器非线性的影响,在输出端将出现互调失真的成份。
其中f2±f1为二阶互调分量,而2f1±f2为三阶互调分量。
另外,除非是对于宽带的电路,一般我们不考虑二阶互调失
真的影响。
下面以三阶互调失真为例进行分析。
P in P in
P out
IM 3
图43 放大器互调失真示意图
图44是基波分量和三阶互调分量与输入功率之间的关系曲线。
将它们线性延长的交点,即为三阶交叉点(IP 3)。
若IP 3已知,那么我们就可以准确地预知三阶互调失真的大小。
图44 基波分量、三阶互调分量和三阶交叉点
2
33IM P P IP out out -+= (9) 或 3323IP P IM out ⋅-⋅= (10)
7.2 混频器
① 杂波抑制: 输出的有用信号的功率与杂波之间的差值。
杂波抑制(dBc)
图45杂波抑制
f RF f IF
f LO
图46 混频器
混频器可以进行下变频或上变频,其输出的有用信号分别为 LO RF IF f f f -= (11)
或 IF LO RF f f f += (12)
而实际上混频器所输出的频率成份为 LO RF out f n f m f ⋅±⋅= (13)
其中除了有用的信号外,其它均为杂波,需要通过改进电路设计、适当增加本振功率等方法来提高混频器的动态范围,或者通过滤波器来抑制杂波。
由此就已经引出了频率的选择、计算和分配的问题了。
7.3 频率合成器(包括振荡器)
① 输出功率
②杂波、谐波抑制
③相位噪声
这里我们只介绍相位噪声的概念,不进行公式推导。
我们知道,所有实际应用的信号源都存在着不稳定性,即存在着无用的信号幅度、频率或相位起伏。
通常可将这些无用的频率或相位的起伏描述为相位噪声。
如图47所示,由于相位噪声的存在,引起载波频谱的扩展,其范围可以从偏离载波小于1Hz一直延伸到几MHz(加性噪声的影响)。
图47 正弦信号的噪声边带频谱
离散(确定的)随机(连续的)
图48 一个实际信号的频谱
图48为在频谱分析仪上实际观察到的RF信号的频谱。
对于一个实际的信号,一般存在下面三种情况:
a. 由于器件老化等导致的长期不稳定性,需要经过长期观察才能看到。
b. 由于电源起伏、振动等导致的短期不稳定性(即在<1s 时间内的频率变化),为系统的、离散的信号,他们在信号的频谱边带上表现为截然不同的分量—杂散。
通常我们所说的杂散还包括一些寄生的杂波分量。
c. 随机效应。
随机的和幂律噪声只产生随机的短期不稳定性,这就是我们通常所说的相位噪声。
随机噪声包括热噪声、散粒噪声和闪烁噪声。
图49 相位噪声的定义
如图49所示,(单边带)相位噪声通常用在相对于载波某
一频偏处,相对于载波电平的归一化1Hz带宽的功率谱密度表示(dBc/Hz)。
图50 某10MHz温补晶振(TCXO)的相位噪声测试曲线
7.4 滤波器
仅以带通滤波器为例:
①插入损耗
②带宽:BW-1dB; BW-3dB
③带外抑制
④VSWR
⑤群延时
⑥其它
图51 带通滤波器(BPF)的测试曲线。