最全面七年级下册数学知识点归纳总结

合集下载

七年级下册数学知识点归纳总结

七年级下册数学知识点归纳总结

七年级下册数学知识点归纳总结一、代数1. 代数式1)代数式的定义代数式是由数字、字母及表示数学运算的符号组成的式子。

其中,字母表示未知数,常用字母有x、y、a、b等。

例如:3x+2、a-b、4xy+6x-3等都是代数式。

2)代数式的分类代数式根据字母的指数、项的特性等,可以分为单项式、多项式、升幂、降幂等特性。

单项式是只含有一个项的代数式,如3x、2y、-5a等。

多项式是含有两个或两个以上项的代数式,如2x+3y、4x²-7y+8等。

3)代数式的加减、乘除代数式的加减法,要保持字母部分相同的项的系数不变,将它们的系数相加或相减即可。

代数式的乘法,是用代数式的分配律、交换律、结合律等性质进行处理。

代数式的除法,则要借助于分解质因数、倍式等方法进行处理。

2. 方程与方程式1)方程的定义方程是一个含有未知数的等式。

一般地,含有未知数的等式称为方程,未知数在方程中的系数和指数都是可以确定的。

2)方程的解解方程就是求出使得方程成立的未知数的值。

解方程的方法包括整式相等法、等式的变形与化简等。

3)方程组如果一个方程不能确定一个未知数时,就需要构造两个或两个以上的方程,这就是方程组。

方程组有两元一次方程组、一元二次方程组等。

4)应用问题方程在生活和实际问题中有广泛的应用,如数学问题、物理问题、经济问题等都可以通过方程来解决。

3. 函数1)函数的定义函数是一种特殊的关系,每一个自变量都有一个确定的因变量和反之亦然。

一般地,表示函数的常用符号有f(x)、y等。

2)函数的图象函数的图象是自变量和因变量之间的对应关系。

常见的函数图象有一次函数、二次函数、绝对值函数等。

3)函数的性质函数的性质包括奇偶性、单调性、周期性等,通过这些性质可以描述函数的变化规律。

4)函数的应用函数在生活中有广泛的应用,如工程中的函数求值、统计学中的分布函数、金融学中的复利增长等。

二、几何1. 图形与尺规作图1)平行线、垂直线和斜线平行线是在同一个平面内,且方向相同或者方向完全相反的两条直线。

七年级数学下册知识点归纳

七年级数学下册知识点归纳

七年级数学下册知识点归纳一、图形的认识1. 点、线、面的定义和特征2. 线段、直线、射线的区别和特征3. 角的定义和特征4. 图形的种类和特点:三角形、四边形、多边形等5. 同种图形的分类和比较二、平面图形的性质研究1. 三角形的内角和外角关系2. 三角形的分类及其性质3. 三角形内切圆和外接圆的应用4. 平行四边形的性质及其判定5. 长方形、正方形、菱形和矩形的性质及其判定三、图形的相似与全等1. 图形相似的概念和判定条件2. 相似三角形的性质及其判定3. 图形全等的概念和应用4. 证明图形全等的方法和步骤四、直角三角形的研究1. 直角三角形的定义和性质2. 勾股定理的应用3. 余弦定理和正弦定理的应用五、多边形的面积和周长1. 一般多边形的周长计算2. 三角形的面积计算和性质3. 四边形的面积计算和性质4. 多边形的面积计算和性质六、圆的研究1. 圆的定义和性质2. 圆的元素:圆心、半径、直径、弧长等的概念和关系3. 圆内角和弧度的关系及其应用4. 弧长、扇形面积和圆的面积计算七、线性方程的解法1. 一元一次方程的解方法2. 解一元一次方程的应用3. 解一元一次方程组的方法和步骤4. 一次函数及其应用八、比例与相似1. 比和比例的概念及其应用2. 相似三角形的比例关系3. 解直角三角形的比例问题4. 解平行四边形的比例问题九、数据的收集和处理1. 数据收集的方法和意义2. 数据的整理和描述3. 数据图形的绘制和解读4. 统计与概率的基本知识十、考试技巧与思维方法1. 解题方法和思维技巧的培养2. 数学解题策略与问题解决能力的提升3. 拓展数学的应用能力和创新思维。

七年级下学期数学知识点归纳大全

七年级下学期数学知识点归纳大全

七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。

七年级数学下册全部知识点归纳(含概念公式实用)

七年级数学下册全部知识点归纳(含概念公式实用)

第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中全部字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包含它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1〞。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包含项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不肯定是单项式。

4、整式不肯定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。

3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。

〔2〕按去括号法则去括号。

〔3〕合并同类项。

4、代数式求值的一般步骤:〔1〕代数式化简。

〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。

初一下学期数学知识点总结

初一下学期数学知识点总结

初一下学期数学知识点总结一、代数1. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)- 不等式的基本性质- 一元一次不等式及其解法- 一元一次不等式的解集表示2. 函数- 函数的概念- 函数的表示方法(表格、图形、解析式)- 线性函数和常函数的图像及性质- 函数的基本运算(加法、减法、乘法、除法)3. 多项式- 多项式的概念- 多项式的加法和减法- 多项式乘以单项式的运算- 多项式乘以多项式的运算- 多项式的因式分解(提公因式、公式法)二、几何1. 平面图形- 平行线的性质- 角的概念和分类(邻角、对角、同位角等)- 三角形的基本性质- 特殊三角形(等腰三角形、等边三角形、直角三角形) - 四边形的基本性质(平行四边形、矩形、菱形、正方形)2. 图形的变换- 平移变换- 旋转变换- 轴对称变换- 相似变换3. 几何图形的计算- 面积的计算(三角形、四边形、圆)- 周长的计算- 体积的计算(长方体、立方体)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读(条形图、折线图、饼图)2. 概率- 概率的基本概念- 简单事件的概率计算- 独立事件的概率计算四、数列1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 数列的计算- 等差数列的通项公式和求和公式- 等比数列的通项公式和求和公式请根据以上内容在Word文档中创建一个格式化的文档,确保使用清晰的标题和子标题,以及适当的列表和编号来组织内容。

您可以添加适当的图表和示例来辅助解释。

完成后,确保文档无错乱字符,逻辑清晰,格式规范,以便读者下载后可以轻松编辑和使用。

七年级数学下册(人教版)全册笔记 超详细

七年级数学下册(人教版)全册笔记 超详细

七年级数学下册(人教版)全册笔记超详细第一章分数1.1 分数的引入- 分数的概念:分数是整数与整数之间的比值关系。

- 分子和分母:分数的分子表示分数的份数,分母表示每份的份数。

- 分数的意义:分数表示一个数比整数大,但比下一个整数小。

1.2 分数的性质- 分数的大小比较:分数的分母相同,分子大的分数大;分数的分子相同,分母小的分数大。

- 分数的约分:分子和分母同时除以一个相同的数,得到的分数与原分数相等。

1.3 分数的加减运算- 分数的加法:分母相同,分子相加;分母不同,通分后分子相加。

- 分数的减法:分母相同,分子相减;分母不同,通分后分子相减。

1.4 分数的乘除运算- 分数的乘法:分子相乘,分母相乘。

- 分数的除法:将除数倒置后变成乘法。

第二章小数2.1 小数的引入- 小数的概念:小数是整数与整数之间的比值关系,但分子是整数,分母是10的幂次。

2.2 小数与分数的关系- 小数转分数:小数的数字部分作为分子,根据小数位数确定分母的幂次。

- 分数转小数:分子除以分母得到小数。

2.3 小数的加减运算- 小数的加法:小数部分相加,整数部分相加。

- 小数的减法:小数部分相减,整数部分相减。

2.4 小数的乘除运算- 小数的乘法:小数部分相乘,整数部分相乘。

- 小数的除法:将被除数的小数点移动与除数对齐,然后按整数除法进行计算。

第三章平方根3.1 平方根的引入- 平方根的概念:平方根是一个数的平方等于另一个数的运算。

3.2 平方根的性质- 平方根的符号:非负数的平方根为正数。

- 平方根的大小比较:对于非负数,平方根越大,被开方数越大。

3.3 平方根的计算- 尝试法计算平方根:通过试探和逼近的方法计算一个数的平方根。

3.4 平方根的运算- 平方根的加减运算:分别计算两个数的平方根,然后进行加减运算。

- 平方根的乘除运算:分别计算两个数的平方根,然后进行乘除运算。

以上是《七年级数学下册(人教版)全册笔记》的内容概要。

七年级下数学(重要知识点总结)

七年级下数学(重要知识点总结)

七年级数学(下)重要知识点总结第一章:整式的运算一、概念1、代数式:2、单项式:由数字与字母的乘积的代数式叫做单项式。

单项式不含加减运算,分母中不含字母。

3、多项式:几个单项式的和叫做多项式。

多项式含加减运算。

4、整式:单项式和多项式统称为整式。

二、公式、法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。

(6)负指数幂:11()(0)p p p a a a a -==≠(底倒,指反)(7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。

(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。

(9)平方差公式:(a+b )(a-b)=a 2-b 2 公式特点:(有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同 推广(项数变化):连用变化:(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):完全平方和公式中间项=完全平方差公式中间项=完全平方公式中间项=例如:229x +mxy+4y 是一个完全平方和公式,则m = ;是一个完全平方差公式,则m = ;是一个完全平方公式,则m = ;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第二章 平行线与相交线一、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。

七年级下册数学知识点归纳

七年级下册数学知识点归纳

七年级下册第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平移命题、定理二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。

同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

命题:判断一件事情的语句叫命题。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

三、定理与性质对顶角的性质:对顶角相等。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

第六章平面直角坐标系一、知识结构图有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识定义有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最全面七年级下册数学知识点归纳总结
七年级下册数学知识点包括数学的基本概念、常见的运算法则、几何图形的性质、初步的代数知识、以及简单的统计学习等,下面进行归纳总结:
一、数的概念与性质
1.自然数、整数、有理数、无理数的概念及其表示
自然数:1、2、3、4、5、 ... ...
整数:-3、-5、-7、0、1、3、5、7、 ... ...
有理数:可以写成分数形式的数,或者是有限小数或无限循环小数的数。

无理数:不能写成分数形式,且不能表示为有限小数或无限循环小数的数。

2.数的分类及运算
根据数的正负和大小关系,可以分为零数、正数、负数。

数的四则运算包括加、减、乘、除四种运算。

3.常见的数学常数
圆周率π≈3.14,自然对数的底数e≈2.718。

二、初步的代数知识
1.代数式的概念和基本性质
代数式是由数、变量和运算符号组成的。

比如,3x - 5是一个代数式,其中3和5是数,x是一个变量,-和+是代数式的运算符号。

2.用文字表示代数式
可以用文字表示代数式,比如将“用一个数的两倍减去3”表示
为2x - 3。

3.方程的概念和基本性质
方程是用来表示等式的数学式子。

比如,2x+5=11 就是一个方程,它表示2x+5和11是相等的。

4.方程的解法
用逆运算的方式可以求解方程的值。

比如,对于方程2x+5=11,对等式两侧同时减去5,可以得到
2x=6,再除以2,就可以得到x=3。

5.方程的应用
方程在生活中很常见,比如计算距离、时间、速度等问题时,就需要用到方程。

三、几何图形及其性质
1.几何图形的分类
几何图形按照维数的不同,可以分为平面图形和立体图形。

2.平面图形及其性质
平面图形包括直线、角、三角形、矩形、正方形、等腰三角形、等边三角形、梯形、菱形、圆等。

它们各自具有不同的性质,比如三角形的内角和等于180°,
矩形的对角线相等,正方形每条对边相等等等。

3.立体图形及其性质
立体图形包括球、圆柱体、圆锥体、正方体、长方体等,它们各自具有不同的性质。

比如球的表面积是4πr²,体积是4/3πr³。

四、统计学习
1.数据的收集和整理
统计学习需要先进行数据的收集和整理。

数据主要包括定量数据和定性数据,收集的方法有实地调查、问卷调查等。

2.数据的分析
收集到数据后,需要进行数据的分析,可以包括平均值、中位数、方差、标准差等统计方法。

3.概率问题
统计学习中还需要涉及一些概率问题,包括事件的概率、互斥事件、条件概率等。

五、常用运算法则
1.加法结合律:a+(b+c)=(a+b)+c。

两个以上数相加,先算其中任意两个数的和,再与其他的数相加,结果不变。

2.乘法结合律:a(bc)=(ab)c。

两个以上的数相乘,先算其中任意两个数的积,再与其他的数相乘,结果不变。

3.分配律:a(b+c)=ab+ac。

先乘外面的括号,再分别乘内部的括号,最后相加。

4.交换律:a+b=b+a,ab=ba。

加法和乘法满足交换律,即调换加数或乘数的位置,结果不变。

5.结合律:(a+b)+c=a+(b+c),(ab)c=a(bc)。

加法和乘法满足结合律,即在保持数的先后顺序不变的条件下,可以按照任意的组合方式进行运算,结果不变。

六、常用数学符号
1.数学符号:
+:加号;
-:减号;
×:乘号;
÷:除号;
=:等于号。

2.数学符号的组合
>:大于号;
<:小于号;
≥:大于等于号;
≤:小于等于号;
≠:不等于号;
():圆括号;
{}:花括号;
[]:方括号;
|:绝对值符号;
%:百分号。

以上就是七年级下册数学知识点的归纳总结,希望对同学们有所帮助。

七年级下册数学知识点包括数的概念与性质、初步的代数知识、几何图形及其性质、统计学习和常用运算法则等。

这些知识点为后续学习和应用打下基础,下面将为大家进一步展开:
数的概念与性质
数的概念是我们从小学开始学习的内容,七年级下册要求同学们进一步深入理解数的分类,并具备进行加减乘除等简单运算
的能力。

同时,同学们还需要了解一些常见的数学常数,比如圆周率π和自然对数的底数e等。

代数知识
代数是数学的一个重要分支,代数式是由数、变量和运算符号组成的。

通过代数式的运算,可以推导出方程,而方程又是解决很多实际问题的重要工具。

本学期中,同学们需要掌握代数式的概念和基本性质,学会用文字表达代数式和解方程的方法,并了解方程在实际问题中的应用。

几何图形及其性质
几何是数学的另一个重要分支,这个学期学生需要学习的主要是平面图形和立体图形。

平面图形包括了我们从小学开始学习的矩形、正方形、三角形等,不过需要掌握的不仅是它们的形状,还有它们各自的性质,并能够进行计算。

立体图形需要掌握它们的表面积和体积的计算,还需要注意它们各自的特点和性质。

统计学习
统计学习是数据科学的重要分支,它能够帮助我们处理数据和为实际问题做出决策。

本学期中,我们需要学习数据的收集和整理方法,如何对数据进行分析,以及一些概率问题的处理方法,比如条件概率、互斥事件等。

常用运算法则
运算法则是数学学习中的基础,它包括加法结合律、乘法结合律、分配律、交换律和结合律等,这些法则在运算中是非常有用的,能够帮助我们进行快速而准确的计算。

总之,七年级下册数学知识点为同学们打好了数学学习的基础,为其后面的学习和应用打下了基础。

在后续的学习中,同学们需要巩固所学的知识点,并探究更深入的数学概念,以拓宽自己的数学视野和解决更加复杂的实际问题。

除了上述提到的数学知识点,七年级下册还涉及一些重要的数学概念和技能,这些将在后续学习中起到至关重要的作用。

其中,数轴和数线图是数学中的基本画法,用于展示数之间的大小关系;分数和百分数的概念和运算能力,是数学中必不可少的基本技能,它们在日常生活和实际问题中有着广泛的应用。

此外,同学们还需要学会使用比例和相似的概念来解决实际问题,掌握角度和弧度的概念,以及三角形的基本概念和性质,这些也是数学中重要的知识点。

在数学的学习中,除了掌握各种概念和技能,同学们还需要锻炼自己的思维能力和动手能力。

这意味着做数学题时需要学会独立思考和分析问题,寻找问题的解决方法,并且需要有足够的耐心和细心来完成计算和检查。

总之,七年级下册数学知识点丰富多样,每一个知识点都有它的重要性和用途,同学们需要认真学习,掌握基础概念和技能,才能推动自己在数学学习中的不断进步。

七年级下册的数学学
习涉及到多个知识点和技能,包括数与代数、平面几何、统计与概率等方面的内容。

这些知识点将会在数学学习中扮演着至关重要的角色,从组成数的符号,到乘方、根式、图形的性质和统计数据的分析,同学们需要逐步掌握这些知识点,从而提高自己的数学素养。

数轴和数线图是数学中基本的画法,用于展示数之间的大小关系;分数和百分数是数学中必不可少的基本技能,具有广泛的应用。

同学们还需要学习比例和相似的概念、角度和弧度的概念、以及三角形的基本概念和性质等。

在学习数学中,除了掌握各种概念和技能,同学们还需要锻炼自己的思维能力和动手能力。

需要学会独立思考和分析问题,寻找问题的解决方法,并且需要有足够的耐心和细心来完成计算和检查。

综上所述,七年级下册的数学学习是相对较为全面和系统的。

通过学习这些知识点和技能,同学们可以更好地理解数学的本质和价值,提升数学思维和动手能力,为将来的学习和实践奠定坚实的基础。

相关文档
最新文档