小学二年级奥数:幻方

合集下载

小学数学奥数测试题奥数幻方_人教版

小学数学奥数测试题奥数幻方_人教版
2.6
【解析】对角线的和为12+9+5+8=34,
于是,第三列的和也是34,有34-7-9-16=2知第三列第四行的数为2。
有34-8-11-2=13,那么第四行第四列为13。
有34-12-3-13=6,所以第四列第二行为6,即标有〝*〞的方格内所填得数为6。
3.
【解析】设中间的数为A,
有a+b=5+A,c+d=5+A,e+f=5+A,g+h=5+A,那么有a+b+c+d+e+f+g+h+A=20+5A=1+2+3+…+9=45。
参考答案
1.
【解析】为了方便表达,在幻方内标上字母.
显然有a+c+e=h+A+g=f+d+b,而这9个数的和为1+2+3+…+9=45,所以每行,每列,两条对角线的和均为45÷3=15。
又有a+A+b=c+A+d=e+A+f=g+A+h,所以有a+b=c+d=e+f=g+h=k,那么有4k+4A=15×4,而4k+A=45,所以A=5,即中间数为5,k=10,试着填入,有如下填充结果满足题意:
有A=5,a+b=10,c+d=10,e+f=10,g+h=10,即为普通的三阶幻方,答案与题逐一样。
有如以下图给出几种填法:
4.6
【解析】有1×36=2×18=3×12=4×9,36×6=216,所以有中心填入6.

(小学奥数)幻方(二)

(小学奥数)幻方(二)

1. 會用羅伯法填奇數階幻方2. 瞭解偶數階幻方相關知識點3. 深入學習三階幻方一、幻方起源也叫縱橫圖,也就是把數字縱橫排列成正方形,因此縱橫圖又叫幻方.幻方起源於我國,古人還為它編撰了一些神話.傳說在大禹治水的年代,陝西的洛水經常大肆氾濫,無論怎樣祭祀河神都無濟於事,每年人們擺好祭品之後,河中都會爬出一只大烏龜,烏龜殼有九大塊,橫著數是3行,豎著數是3列,每塊烏龜殼上都有幾個點點,正好湊成1至9的數字,可是誰也弄不清這些小點點是什麼意思.一次,大烏龜又從河裏爬上來,一個看熱鬧的小孩驚叫起來:“瞧多有趣啊,這些點點不論橫著加、豎著加還是斜著加,結果都等於十五!”於是人們趕緊把十五份祭品獻給河神,說來也怪,河水果然從此不再氾濫了.這個神奇的圖案叫做“幻方”,由於它有3行3列,所以叫做“三階幻方”,這個相等的和叫做“幻和”.“洛書”就是幻和為15的三階幻方.如下圖:987654321我國北周時期的數學家甄鸞在《算數記遺》裏有一段注解:“九宮者,二四為肩,六八為足,左三右七,戴九履一,五居中央.”這段文字說明了九個數字的排列情況,可見幻方在我國歷史悠久.三階幻方又叫做九宮圖,九宮圖的幻方民間歌謠是這樣的:“四海三山八仙洞,九龍五子一枝連;二七六郎賞月半,周圍十五月團圓.”幻方的種類還很多,這節課我們將學習認識瞭解它們.二、幻方定義幻方是指橫行、豎列、對角線上數的和都相等的數的方陣,具有這一性質的33⨯的數陣稱作三階幻方,44⨯的數陣稱作四階幻方,55⨯的稱作五階幻方……如圖為三階幻方、四階幻方的標準式樣,知識點撥教學目標5-1-4-2.幻方(二)987654321 13414151612978105113216三、解決這幻方常用的方法⑴適用於所有奇數階幻方的填法有羅伯法.口訣是:一居上行正中央,後數依次右上連.上出框時往下填,右出框時往左填.排重便在下格填,右上排重一個樣.⑵適用於三階幻方的三大法則有:①求幻和: 所有數的和÷行數(或列數)②求中心數:我們把幻方中對角線交點的數叫“中心數”,中心數=幻和÷3. ③角上的數=與它不同行、不同列、不同對角線的兩數和÷2. 四、數獨數獨簡介:(日語:數獨 すうどく)是一種源自18世紀末的瑞士,後在美國發展、並在日本得以發揚光大的數學智力拼圖遊戲。

小学奥数题目-二年级-数字敏感度类-简单幻方

小学奥数题目-二年级-数字敏感度类-简单幻方

简单幻方幻方1.概念简析:幻方:是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样.幻和:是指每行或每列或每条对角线上所有数字之和。

2.解题方法:三阶幻方的性质1.幻和相等,幻和等于9个数的和除以3.2.中间数必位于幻方中心,中间数等于幻和除以3.3.黄金三角: 黄金三角顶点的数为两腰之和除以2.如右图所示,在正方形的空格里填上适当的数,使每一横行、竖行、斜行的三个数相加都为21.1.1.如右图所示,在正方形的空格里填上适当的数,使每一横行、竖行、以及对角线上的三个数相加都为18.问第三行的三个数字从左到右组成的数为_______.2.2.在空格里填数,使横行、竖行、以及对角线上的三个数相加得30。

问四个角数字之和为_______.如图所示,在正方形空格里填上适当的数,使每一横行、竖行、斜行的四个数相加都等于34.1.1.在正方形空格里填上适当的数,使每一横行、竖行以及对角线上的四个数相加都等于34.问四个角数字之和为_______.2.2.在下图的方格里填上适当的数,使每一横行、竖行、以及对角线上的三个数相加都为18.问四角上的数字之和为________.请你在下图的方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都相等。

1.1.八戒巡山,遇到一块大石头挡路,上面写着:在方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都相等,填写正确才能过去,聪明的小朋友你会填吗?问最后一行的三位数为_________.2.2.请你在下图的方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都相等。

问四角上的数字之和为________.请你在下图的方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都相等。

1.1.请你在下图的方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都相等。

幻方题目解题思路

幻方题目解题思路

幻方题目解题思路幻方这玩意儿挺有趣的呢!咱来唠唠解题思路哈。

一、啥是幻方首先得知道幻方是个正方形的格子阵,就像九宫格那种(当然也有其他规格的,像四阶幻方啥的)。

每一行、每一列还有对角线上的数字加起来都得等于同一个数,这个数就叫幻和。

二、三阶幻方(九宫格)的基本思路1. 确定幻和- 对于三阶幻方(3×3的格子),因为1 + 2+3+4+5+6+7+8+9 = 45,这9个数要平均分配到三行(或者三列),所以幻和就是45÷3 = 15。

2. 找中心数- 在三阶幻方里,中心数特别重要。

因为它会在四条线上(一行、一列和两条对角线)参与求和。

- 假设中心数是x,那么它在四条线上相加的总和就是4x。

其他八个数两两组合成四组,每组和都等于幻和 - x。

- 经过计算就会发现中心数是5(你可以自己试着推导一下哦,挺好玩的)。

3. 填角上的数- 角上的数也很关键。

一般先从和5能凑成15的数开始考虑,像1、9,2、8,3、7,4、6这几组。

- 先试着把1放在左上角(只是个例子,放哪儿都行开始),那它对角就得是9,这样才能保证对角线的和是15。

然后再根据每行每列的和是15慢慢填其他的数。

1. 连续自然数幻方- 对于四阶幻方,1到16这16个数的和是136。

因为要四行(或四列),所以幻和是136÷4 = 34。

- 有一种方法叫“对称交换法”。

先把1到16按顺序填到四阶方阵里,就像从左上角开始横着填。

- 然后把对角线上的数保留,其他的数关于中心对称交换位置。

这样就得到了四阶幻方。

- 更高阶的幻方也有一些类似的方法,不过会更复杂一些。

2. 不是连续自然数的幻方- 如果不是1、2、3……这样连续的数,那首先得算出这些数的总和,然后确定幻和(总和除以阶数)。

- 然后可以先找一个和这些数相近的连续自然数幻方,再通过调整数字的大小来得到想要的幻方。

总之呢,幻方就像一个数字谜题,要根据幻和、数字的规律还有一些特殊位置(像中心数、角上数)的特点来慢慢拼凑出答案,多试几次就会找到感觉啦!。

小学数学幻方课件

小学数学幻方课件
幻方是一种将数字放入正方形格子中,使每行、每列和对角线上的数字之和相等的数学游戏。在小学数学中,幻方常被用作锻炼孩子们逻辑思维和数学运算能力的重要工具。本文详细介绍了四种解题方式:首先是洛书九宫格法,通过特定的数字排列,如492、357、816等,实现每行、每列和对角线ቤተ መጻሕፍቲ ባይዱ字之和相等;其次是对角线法,注重对角线上的数字搭配,如438和276两组数字,同时满足行和列的和相等;第三种是行列对角线法,它结合了行、列和对角线的特点,通过巧妙的数字排列达到平衡;最后是特定数字组合法,通过寻找特定的数字组合,如15等,来构建幻方。这四种方式各有特点,孩子们可以根据实际情况选择适合自己的方法进行解题,从而提高数学兴趣和解题能力。

小学数学幻方练习题

小学数学幻方练习题

小学数学幻方练习题幻方是一种古老而神秘的数学游戏,通过填充数字使得每行、每列以及对角线上的数字之和都相等。

这不仅是一种锻炼逻辑思维和数学能力的好方法,还能培养孩子的耐心和观察力。

本文将为小学生提供几个幻方练习题,帮助他们提高数学技能。

一、3阶幻方练习题要求:填写1-9这9个数字,每个数字只能用一次1 2 34 5 67 8 9二、4阶幻方练习题要求:填写1-16这16个数字,每个数字只能用一次1 2 3 45 6 7 89 10 11 1213 14 15 16三、5阶幻方练习题要求:填写1-25这25个数字,每个数字只能用一次1 2 3 4 56 7 8 9 1011 12 13 14 1516 17 18 19 2021 22 23 24 25四、幻方解法及技巧1. 对于3阶幻方,首先填写中间的数字为5,然后按照顺序填写其它数字即可。

2. 对于4阶幻方,填写数字时可以采取以下方法:- 将1填在第一行的中间,则16必定填在第一行的另一边。

然后将2填在第一行的最左边,15必填在第一行的最右边,以此类推。

3. 对于5阶幻方,填写数字时可以采取以下方法:- 将13填在第一行的中间,则在第一行填数字时可对称填写。

例如,将19填在第一行的最左边,5必填在第一行的最右边。

然后填写第二行时,直接填充与第一行对称的数字即可。

- 填写第一列时,也可以采取对称填写的方法。

通过这些练习题和技巧的学习,小学生可以更好地理解和应用幻方的规律。

同时,这也是培养孩子数学思维和逻辑能力的有效方式。

鼓励孩子们多加练习,逐渐掌握幻方的解题方法,并享受其中的乐趣。

小结:本文为小学生提供了几个幻方练习题,通过填写数字来构成满足要求的幻方。

幻方不仅能够锻炼孩子们的数学能力,还可以培养他们的观察力和耐心。

此外,我们还分享了一些针对不同阶数幻方的解题技巧,帮助孩子们更好地理解和掌握幻方的规律。

希望这些练习题和技巧能够帮助小学生更好地学习数学。

小学数学思维方法:幻方与数阵图

小学数学思维方法:幻方与数阵图

幻方与数阵图【知识要点】 一、幻方在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”。

我国古代称为“河图”、“洛书”,又叫“纵横图”。

三阶幻方的性质:1.中心位置上的数等于幻和除以3;2.角上得数等于和它不相邻的两条边上的数的平均数;3.中心数两头的数之和等于中心数的2倍。

二、数阵图数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这类问题可以按以下步骤解决问题:第一步:从整体考虑,将要求满足相等的几个数字和全部相加,一般为n ×s 的形式。

第二步:从个体考虑,分别计算每一个位置数字相加的次数,将比较特殊的(多加或少加几次)位置数字用未知数表示,全部相加,一般为题目所给全部数字和×一般位置数字相加次数±特殊位置数字和×多加或少加次数的形式。

第三步:格局整体与个体的关系,列出等式即n ×s=题目所给全部数字和×一般位置数字相加次数±特殊位置数字和×多加或少加次数。

第四步:根据数论植树即整除性确定特殊位置数的取值即相对应的S 值。

第四步:根据确定的特殊位置数字及S 值进行数字分组及尝试。

【典型例题】 一、幻方例1:如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?分析:首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。

它是多少呢?如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9这九个数字都只各用了一次,所以3倍的的“幻和”第1题就等于1+2+3+4+5+6+7+8+9=45。

小学奥数 幻方(二) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  幻方(二) 精选练习例题 含答案解析(附知识点拨及考点)

1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独知识点拨教学目标5-1-4-2.幻方(二)数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档