(新人教版八年级下)第十九章四边形测试题及答案
人教版八年级数学第十九章四边形测试题

人教版八年级数学(下)四边形测试题班级 姓名 座号 成绩 .一、选择题(每题3分,共24分)1.能判定四边形ABCD 为平行四边形的题设是( ).(A )AB ∥CD ,AD=BC; (B )∠A=∠B ,∠C=∠D; (C )AB=CD ,AD=BC; (D )AB=AD ,CB=CD2.在□ABCD 中,∠A 的平分线交DC 于E ,若∠DEA=30°,则∠B =( )A.100°B.120°C.135°D.150°3.顺次连结任意四边形各边中点所得四边形一定是 ( )A .平行四边形B .菱形C .矩形D .正方形4.平行四边形一边长为12cm ,那么它的两条对角线的长度可能是( ).(A )8cm 和14cm (B )10cm 和14cm (C )18cm 和20cm (D )10cm 和34cm5中,AB=2,BC=3,∠B=60的面积为( ).(A )6 (B (C )(D )3 6.菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( )A .24B .20C .10D .57.在矩形ABCD 中,AB=3,BC=4,则点A 到对角线BD 的距离为( ) A.512 B.2 C.25 D.513 8.如图1,在平行四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A = ∠,则BCE =∠( )A.55 B.35 C.25 D.30二、填空题(每题4分,共32分)9. 已知:平行四边形一边AB =12 cm,它的周长是60,则BC =______ cm,CD =______ cm.10.平行四边形的一组对角度数之和为100°,则平行四边形中较大的角为 .11.在平行四边形ABCD 中,若∠A-∠B=70°,则∠A=_______,∠B=_______,12.在□ABCD 中,AC ⊥BD ,相交于O ,AC=6,BD=8,则AB=________,BC= _________.13.若矩形的对角线长为8cm ,两条对角线的一个交角为600,则该矩形的面积为 _____________cm 2.14.如图,已知□ABCD 中,AB=4,BC=6,BC 边上的高AE=2,则DC 边上的高AF 的长是_____________ 。
新人教版初中数学八年级下册 19.1平行四边形课时练(含答案)

数学:19.1平行四边形课时练(人教新课标八年级下)课时一平行四边形的性质(一) 一、选择题1.平行四边形的两邻角的角平分线相交所成的角为( ) A.锐角 B.直角 C.钝角 D.不能确定2.平行四边形的周长为24cm ,相邻两边的差为2cm ,则平行四边形的各边长为( ) A.4cm ,4cm ,8cm ,8cm B.5cm ,5cm ,7cm ,7cm C.5.5cm ,5.5cm ,6.5cm ,6.5cm D.3cm ,3cm ,9cm ,9cm3. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32° .则∠ABC 、∠CAB 的度数分别为( )A.28°,120°B.120°,28°C.32°,120°D.120°,32° 4. 在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )DA.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶1 5下面的性质中,平行四边形不一定具有的是( )A.对角互补B.邻角互补C.对角相等D.对边相等.6.在□ABCD 中,∠A 的平分线交DC 于E ,若∠DEA=30°,则∠B =( ) A100° B.120° C.135° D.150° 二、填空题7. .如图所示,A ′B ′∥AB ,B ′C ′∥BC ,C ′A ′∥CA ,图中有 个平行四边形8. 已知:平行四边形一边AB =12 cm,它的长是周长的61,则BC =______ cm,CD =______ cm. 9.平行四边形的一组对角度数之和为200°,则平行四边形中较大的角为 . 10.. ABCD 中,若∠A ∶∠B =1∶3,那么∠A =________,∠B =________, ∠C =________,∠D =________.11. 如图所示,,在ABCD 中,对角线AC 、BD 相交于点O ,图中全等三角形共有________对12.如图所示,在ABCD 中,∠B =110°,延长AD 至F ,CD 至E ,连结EF ,则∠E+∠F= 三、解答题13. 在四边形ABCD 中,AB ∥CD ,∠A =∠C ,求证:四边形ABCD 是平行四边形. 14. 在□ABCD 中, ∠A+∠C=160°, , 求∠A,∠C,∠B,∠D 的度数第3题图 第7题图 第11题图 第12题图第14题图15. .如图所示,四边形ABCD 是平行四边形,BD ⊥AD ,求BC ,CD 及OB 的长.16. 如图,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.课时一答案:一、1.B ,提示:平行四边形的两邻角的和为180°,所以它们的角平分线的夹角为90°;2.B ,提示:设相邻两边为,,ycm xcm 根据题意得⎩⎨⎧=-=+212y x y x ,解得⎩⎨⎧==57y x ;3. B ,提示:根据平行四边形的性质对角相等得∠D =∠ABC=120°,邻角互补得∠CAB +∠CAD+∠D =180°,则∠CAB =180°-32°-120°=28°;4. D ,提示:根据平行四边形的对角相等,得对角的比值相等故选D ;5.A ;6.B ,由题意得∠A =60°,根据平行四边形的邻角互补,得∠B =180°-60°=120°; 二、7.3个即四边形ABCB ′,C ′BCA ,ABA ′C 都是平行四边形;8.24 ,CD =12;9.100°,提示:先求出对角为100°,另一组对角为80°,所以较大的为100°;10.45°,135°,45°,135°11.4;15.70°,提示:根据平行四边形的对角互补得∠B=∠ADC=110°,则∠FDC=70°,再根据三角形的外角等于其不相邻的两个角的和,故为∠E+∠F=70°;三、13. 证明:∵AB ∥CD ,∴∠A+∠D=180°,又∵∠A =∠C,∴∠C+∠D=180°, ∴AD ∥CB, ∴四边形ABCD 是平行四边形.. 14.解:在□ABCD 中, ∠A =∠C,又∵∠A+∠C=160°∴∠A =∠C=80°∵在□ABCD 中AD ∥CB,∴∠A+∠B=180°, ∴∠B =∠D=180°-∠A=180°-80°=100° 15. 解:∵ABCD ,∴BC =AD =12,CD =AB =13,OB=21BD ∵BD ⊥AD ,∴BD =22AD AB -=221213-=5∴OB =25 16. AE =CF ;证明∵四边形ABCD 为平行四边形,∴AF ∥CE ,又∵AE ∥CF ∴四边形AECF 为平行四边形,AE=CF ;第15题图 第16题图课时二:平行四边形的性质(二)1. 如图所示,如果该平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长x 的取值范围是________.2.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.63. 如图,在□ABCD 中,对角线AC ,BD 相交于点O ,MN 是过O 点的直线,交BC 于M ,交AD 于N ,BM =2,AN =2.8,求BC 和AD 的长.4.平行四边形的周长为25cm ,对边的距离分别为2cm 、3cm为( )A.15cm 2B.25cm 2C.30cm 2D.50cm 25. 如图所示,已知ABCD 的对角线交于O ,过O 作直线交AB 、CD 的反向延长线于E 、F ,求证:OE =OF .6. 如图所示,在□ABCD 中,O 是对角线AC 、BD 的交点,BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F .那么OE 与OF 是否相等?为什么?7.已知O 为平行四边形ABCD 对角线的交点,△AOB 的面积为1,则平行四边形的面积为( )第1题图第2题图 第3题图 第5题图 第6题图A.1B.2C.3D.48.平行四边形的对角线分别为y x ,,一边长为12,则y x ,的值可能是下列各组数中的( ) A.8与14 B.10与14 C.18与20 D.10与28 9. □ABCD 中,若,6,10,30cm AB cm BC B ===∠ο则□ABCD 的面积是 .10. 如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45°,且AE+AF =22,则平行四边形ABCD 的周长是 .11.如图所示,已知D 是等腰三角形ABC 底边BC 上的一点,点E ,F 分别在AC,AB 上,且DE ∥AB ,DF ∥AC 求证:DE+DF=AB12. 如图,□ABCD O 为D 的对角线AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,•点E 、F 在直线MN 上,且OE=OF .(1)图中共有几对全等三角形,请把它们都写出来; (2)求证:∠MAE=∠NCF .课时二答案:1. 10<x <22,提示:根据三角形的三边关系得11215<<x ,解得2210<<x ;2. B ;3. BC =AD =4.8;4.A ;提示:根据面积法求出邻边的比为3∶2,则邻边为7.5,5,则面积为7.5×2=15cm 2;5. 证明:∵ABCD ,∴OA =OC ,DF ∥EB ∴∠E =∠F ,又∵∠EOA =∠FOC ∴△OAE ≌△OCF ,∴OE =OF ;6. OE =OF , 在□ABCD 中,OB=OD ,∵BE ⊥AC ,DF ⊥AC ∴∠BEO =∠DFO ,又∠BOE =∠DOF ,∴△BOE ≌△DOF ,∴OE =OF .7.D ,提示:因为平行四边形的对角线把平行四边形分成面积相等的4个小三角形,所以平行四边形的面积为4;8.C ,提示:根据三角形的两边之和大于第三边,两边之差小于第三第10题图 第11题图边,若y x >,则⎪⎪⎩⎪⎪⎨⎧<->+12221222yx yx ,所以符合条件的y x ,可能是18与20;9.302cm ;10.8;11.证明:∵DE ∥AB ,DF ∥AC∴四边形AEDF 是平行四边形,∴DF=AE ,又∵DE ∥AB ,∴∠B=∠EDC ,又∵AB=AC,∴∠B=∠C ,∴∠C=∠EDC ,∴DE=CE ,∴DF+DE=AE+CE=AC=AB. 12. 解:(1)有4对全等三角形.分别为△AMO ≌△CNO ,△OCF ≌△OAE ,△AME ≌△CNF ,△ABC ≌△CDA . (2)证明:∵OA=OC ,∠1=∠2,OE=OF , ∴△OAE ≌△OCF ,∴∠EAO=∠FCO . 在YABCD 中,AB ∥CD ,∴∠BAO=∠DCO ,∴∠EAM=∠NCF . 课时三平行四边形的判定(一) 一、选择题1.下列条件中不能判定四边形ABCD 为平行四边形的是( ) A.AB=CD,AD=BC B.AB ∥CD ,AB=CD C.AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC2.已知:四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;② AB=CD, ③AD=BC ,④∠A=∠C ,⑤∠B=∠D ,能使四边形ABCD 成为平行四边形的条件的个数是( ) A.4 B.3 C.2 D.13.把两个全等的非等腰三角形拼成平行四边形,可拼成的不同平行四边形的个数为( ) A.1 B.2 C.3 D.44. 在四边形ABCD 中,AC 与BD 相交于点O ,如果只给出条件“AB ∥CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下六个说法中,正确的说法有( )(1)如果再加上条件“AD ∥BC ”,那么四边形ABCD 一定是平行四边形; (2)如果再加上条件“AB =CD ”,那么四边形ABCD 一定是平行四边形;(3)如果再加上条件“∠DAB =∠DCB ”那么四边形ABCD 一定是平行四边形; (4)如果再加上“BC =AD ”,那么四边形ABCD 一定是平行四边形; (5)如果再加上条件“AO =CO ”,那么四边形ABCD 一定是平行四边形; (6)如果再加上条件“∠DBA =∠CAB ”,那么四边形ABCD 一定是平行四边形. A.3个 B.4个 C.5个 D.6个 二、填空题5.已知:四边形ABCD 中,AD ∥BC ,要使四边形ABCD 为平行四边形, 需要增加条件 .(只需填上一个你认为正确的即可).6.如图所示,ABCD 中,BE ⊥CD,BF ⊥AD,垂足分别为E 、F ,∠EBF=60°AF=3cm ,CE=4.5cm ,则∠C= ,AB= cm ,BC= cm .7.如图所示,在ABCD 中,E,F 分别是对角线BD 上的两点, 且BE=DF ,要证明四边形AECF 是平行四边形,最简单的方法 是根据 来证明.第6题图第7题图8. 将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______. 三、解答题9.已知:如图所示,在ABCD 中,E 、F 分别为AB 、CD 的中点,求证四边形AECF 是平行四边形.10. 如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.11. 如图所示,平行四边形ABCD 的对角线A C 、BD 相交于点O,E 、F 是直线AC 上的两点,并且AE=CF,求证:四边形BFDE 是平行四边形.12. 如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF .请你猜想:BE 与DF 有怎样的位置..关系和数量..关系? 并对你的猜想加以证明:课时三答案:一、1.C ;2.B ,提示:AD ∥BC ,添加条件①③④能使四边形ABCD 成为平行四边形;3.C ;4.B ;二、5. AD =BC (或AB ∥CD 或∠A=∠C 或∠B=∠D );6.30°,6,9;7.对角线互相平分;8. 3; 三、9.在ABCD 中,AD=CB,AB=CD,∠D =∠B ,∵E 、F 分别为AB 、CD 的中点,∴DF=BE , 又∵AB ∥CD ,AB=CD ,∴AE=CF ,∴四边形AECF 是平行四边形. 10. 证明:∵ABCD∴AB =CD ,AB ∥CD ∴∠1=∠2AE ⊥BD ,CF ⊥BD第9题图 第10题图 第11题图ABC DE F第12题图∴∠AEB =∠CFD =90°,AE ∥CF ∴△AEB ≌△CFD ,∴AE =CF ∴AECF 为平行四边形11. 证明:∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD又∵AE=CF ,∴OE=OF ∴四边形BFDE 是平行四边形. 12. 猜想:BE DF ∥,BE DF = 证明:证法一:如图第12-1.Q 四边形ABCD 是平行四边形. BC AD ∴= 12∠=∠ 又CE AF =Q BCE DAF ∴△≌△ BE DF ∴= 34∠=∠BE DF ∴∥证法二:如图第12-2.连结BD ,交AC 于点O ,连结DE ,BF . Q 四边形ABCD 是平行四边形 BO OD ∴=,AO CO = 又AF CE =Q AE CF ∴= EO FO ∴=∴四边形BEDF 是平行四边形BE DF ∴∥ 课时四平行四边形的判定(二)1.如图所示,D 、E 、F 为△ABC 的三边中点, 则图中平行四边形有( ) A.1个 B2个 C 3个 D.4个2. D 、E 、F 为△ABC 的三边中点,L 、M 、N 分别是△DEF 三边的中点,若△ABC 的周长为20cm ,则△LMN 的周长是( ) A.15cm B.12cm C.10cm D.5cm3.已知等腰三角形的两条中位线长分别为3和5, 则此等腰三角形的周长为 .4.□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别是OB 、OD 的中点,四边形AECF 是_______.5. 如图,DE ∥BC ,AE =EC ,延长DE 到F ,使EF =DE , 连结AF 、FC 、CD ,则图中四边形ADCF 是______.ABCDEF第12-2OAB CDE F 第12-1 2 3 4 1第1题图第5题图6. 如图,在□ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线相交于点F (1)求证:△ABE ≌△DFE ;(2)试连结BD 、AF ,判断四边形ABDF 的形状,并证明你的结论.7. 如图所示,某城市部分街道示意图,AF ∥BC ,EC ⊥BC ,BA ∥DE ,BD ∥AE ,EF=FC ,甲、乙两人同时从B 站乘车到F 站,甲乘1路车,路线是B →A →E →F ,乙乘2路,路线是B →D →C →F ,假设两车速度相同,途中耽误时间相同,那么谁先到达F 站,请说明理由.8. 如图所示,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD=CD ,∠ADB=90°,CH ⊥AB 于H ,CH 交AD 于F . (1)求证:CD ∥AB ; (2)求证:△BDE ≌△ACE ; (3)若O 为AB 中点,求证:OF=12BE .9.. 已知如图:在ABCD 中,延长AB 到E ,延长CD 到F ,使BE =DF ,则线段AC 与EF 是否互相平分?说明理由.第6题图 第7题图 第8题图 第9题图10. 如图所示,□ABCD 的对角线AC 、BD 交于O ,EF 过点O 交AD 于E ,交BC 于F ,G 是OA 的中点,H 是OC 的中点,四边形EGFH 是平行四边形,说明理由.11.如图所示,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MGNP 是平行四边形吗?为什么?课时四答案:1.C;2.D ,提示:根据三角形中位线的性质定理:;21,21DEF LMN ABC DEF L L L L ∆∆∆∆==3.26或22,提示:当两腰上的中位线长为3时,则底边长为6,腰长为10,三角形的周长为26,当两腰上的中位线长为5时,则底边长为10,腰长为6,三角形的周长为22;4.平行四边形 ;5.平行四边形;6.证明:(1)∵ 四边形ABCD 是平行四边形,∴AB ∥CF . ∴∠1=∠2,∠3=∠4 ∵E 是AD 的中点,∴ AE=DE . ∴△ABE ≌△DFE .(2)四边形ABDF 是平行四边形.∵△ABE ≌△DFE ∴AB=DF 又AB ∥CF .∴四边形ABDF 是平行四边形. 7.解:∵BA ∥DE ,BD ∥AE ,∴四边形ABDE 是平行四边形 ∴AB=DE ,BD=AE ,又EF=FC 且AF ∥BC ,EC ⊥BC ,∴DE=DC , ∴EA+AE+EF=BD+DC+CF ,∴二人同时到达F 站.8.证明:(1)∵BD=CD ,∴∠BCD=∠1.∵ ∠l=∠2,∠BCD=∠2.∴CD ∥AB . (2) ∵ CD ∥AB ∴∠CDA=∠3.第10题图第10题图 第11题图∠BCD=∠2=∠3.且BE=AE.且∠CDA=∠BCD.∴DE=CE.在△BDE和△ACE中,DE=CE,∠DEB=∠CEA,BE=AE.∴△BDE≌△ACE (3) ∵△BDE≌△ACE∠4=∠1,∠ACE=∠BDE=90°.∴∠ACH=90°一∠BCH又CH⊥AB,.∴∠2=90°一∠BCH∴∠ACH=∠2=∠1=∠4.AF=CF∵∠AEC=90°一∠4,∠ECF=90°一∠ACH∠ACH=∠4 ∠AEC=∠ECF.CF=EF.∴EF=AFO为AB中点,OF为△ABE的中位线∴OF=12BE9.线段AC与EF互相平分.理由是:∵四边形ABCD是平行四边形.∴AB∥CD,即AE∥CF,AB=CD,∵BE=DF,∴AE=CF∴四边形AECF是平行四边形,∴AC与EF互相平分.10.是平行四边形,△AOE≌△COF.11是平行四边形,四边形AMCN、BMDN是平行四边形.。
人教版 八年级数学下 四边形测试题 2011年06月03日整理

八年级下第十九章四边形测验班别__________ 姓名_____________ 成绩__________一、选择题(每小题5分,共25分)1.下列图形中,是中心对称图形而不是轴对称图形的是( )(A )平行四边形 (B )等腰梯形 (C )正三角形 (D )正方形2.下列命题中,真命题的个数是( )(1) 平行四边形是中心对称图形。
(2) 两个全等三角形一定成中心对称。
(3) 对称中心是连接两对称点线段的中点。
(4) 是轴对称图形一定不是中心对称图形。
(5) 是中心对称图形一定不是轴对称图形。
(A )1个 (B )2个 (C )3个(D )4个3.顺次连接对角线相等的平行四边形四边中点所得的四边形必是( ) (A )梯形 (B )菱形 (C )矩形 (D )正方形 4.如果等腰梯形两底之差等于一腰的长,那么这个等腰梯形的锐角是( ) (A )60° (B )30° (C )45° (D )15° 5.正方形的对角线长为a ,则它的对角线的交点到它的边的距离为( )(A )a 22(B )a 42 (C )2a (D )a 22二、填空题(每小题5分,共25分)6. 四边形ABCD 为菱形,∠A=60°, 对角线BD 长度为10cm , 则此菱形的周长______cm . 7.已知正方形的一条对角线长为8cm ,则其面积是 cm2.8.平行四边形ABCD 中, AB=6cm ,AC+BD=14cm ,则△AOC 的周长为 . 9.在平行四边形ABCD 中,∠A=70°,∠D= , ∠B= .10.等腰梯形ABCD 中,AD ∥BC ,∠A=120°,两底分别是15cm 和49cm ,则等腰梯形的腰长为 .三、解答题(共50分)11、(8分)如图,在等腰梯形ABCD 中,AB ∥CD ,AB ﹥CD ,AD=BC ,BD 平分∠ABC ,∠A=60°,AB 的长是10厘米,求DC 的长。
八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇第十九章2函数函数的图象

初二数学第十九章 19.1函数(函数的图象)同步练习(答题时间:60分钟)微课程:函数图象的应用同步练习一、选择题1. (湖北黄石)如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成。
若往此容器中注水,设注入水的体积为y ,高度为x ,则y 关于x 的函数图象大致是( )yOx A.yOxB .yO x C . yO xD .*2. (湖北鄂州)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
用x 表示注水时间,用y 表示浮子的高度,则用来表示y 与x 之间关系的选项是( )A B C D**3. (湖北仙桃)小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行。
他们的路程差s (米)与小文出发时间t (分)之间的函数关系如图所示。
下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③24=a ;④480=b 。
其中正确的是( )A. ①②③B. ①②④C. ①③④D. ①②③④t /分 9 a 720O b1915 s /米4. 早晨,小张去公园晨练,下图是他离家的距离y (千米)与时间t (分钟)的函数图象,根据图象信息,下列说法正确的是( )1y(千米)x(分钟)20OA. 小张去时所用的时间多于回家所用的时间B. 小张在公园锻炼了20分钟C. 小张去时的速度大于回家的速度D. 小张去时走上坡路,回家时走下坡路二、填空题5. 已知函数y =ax +b 的图象经过点M (2,0)和N (1,-6)两点,则a =_______,b =_____。
6. 如图,射线l 甲,l 乙分别表示甲,乙两名运动员在自行车比赛中所走路程S 与时间t 的函数关系图象,则甲的速度_______乙的速度(用“>”,“=”,“<”填空)。
人教版八年级数学下册各单元及期中期末测试题及答案

人教版八年级数学下册各单元及期中期末测试题及答案 精品全套 共7套第十六章 分式单元测试题时间90分钟 满分100分班级____________姓名____________学号____________成绩______一、选一选请将唯一正确答案代号填入题后的括号内;每小题3分;共30分 1.已知x ≠y;下列各式与x yx y-+相等的是 .A ()5()5x y x y -+++B 22x yx y-+ C 222()x y x y -- D 2222x y x y -+2.化简212293m m +-+的结果是 . A269m m +- B 23m - C 23m + D 2299m m +- 3.化简3222121()11x x x x x x x x --+-÷+++的结果为 .Ax-1 B2x-1 C2x+1 Dx+14.计算11()a a a a -÷-的正确结果是 . A 11a + B1 C 11a - D-1 5.分式方程1212x x =-- . A 无解 B 有解x=1 C 有解x=2 D 有解x=0 6.若分式21x +的值为正整数;则整数x 的值为A0 B1 C0或1 D0或-17.一水池有甲乙两个进水管;若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开;那么注满空池的时间是A11a b + B 1ab C 1a b + D ab a b+ 8.汽车从甲地开往乙地;每小时行驶1v km;t 小时可以到达;如果每小时多行驶2v km;那么可以提前到达的小时数为A212v t v v + B 112v t v v + C 1212v vv v + D 1221v t v t v v -9.下列说法:①若a ≠0;m;n 是任意整数;则a m.a n=a m+n; ②若a 是有理数;m;n 是整数;且mn>0;则a mn =a mn ;③若a ≠b 且ab ≠0;则a+b 0=1;④若a 是自然数;则a -3.a 2=a -1.其中;正确的是 .A ①B ①②C ②③④D ①②③④10.张老师和李老师同时从学校出发;步行15千米去县城购买书籍;张老师比李老师每小时多走1千米;结果比李老师早到半小时;两位老师每小时各走多少千米 设李老师每小时走x 千米;依题意;得到的方程是:A1515112x x -=+ B 1515112x x -=+ C 1515112x x -=- D 1515112xx -=- 二、填一填每小题4分;共20分 11.计算22142a a a -=-- . 12.方程 3470x x=-的解是 . 13.计算 a 2b 3ab 2-2= . 14.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式;从而打开了光谱奥秘的大门;请你按这种规律写出第七个数据是 .15.如果记 221x y x =+ =fx;并且f1表示当x=1时y 的值;即f1=2211211=+;f 12表示当x=12时y 的值;即f 12=221()12151()2=+;……那么f1+f2+f 12+f3+f 13+…+fn+f 1n=结果用含n 的代数式表示.三、做一做16.7分先化简;再求值:62393m m m m -÷+--;其中m=-2.17.7分解方程:11115867x x x x +=+++++.18.8分有一道题“先化简;再求值: 2221()244x x x x x -+÷+-- 其中;x=-3”小玲做题时把“x=-3”错抄成了“x=3”;但她的计算结果也是正确的;请你解释这是怎么回事19.9分学校用一笔钱买奖品;若以1支钢笔和2本日记本为一份奖品;则可买60份奖品;若以1支钢笔和3本日记本为一份奖品;则可买50份奖品;问这笔钱全部用来买钢笔或日记本;可买多少20.9分A 、B 两地相距80千米;甲骑车从A 地出发1小时后;乙也从A 地出发;以甲的速度的1.5倍追赶;当乙到达B 地时;甲已先到20分钟;求甲、乙的速度.四、试一试21.10分在数学活动中;小明为了求2341111122222n+++++的值结果用n 表示;设计如图1所示的几何图形.1请你利用这个几何图形求2341111122222n+++++的值为 ; 2请你利用图2;再设计一个能求2341111122222n+++++的值的几何图形.12212图2图1第十七章 反比例函数单元测试题时间90分钟 满分100分班级____________姓名__________________座号____________成绩____________ 一、选择题每题4分;共24分1.下列函数关系式中不是表示反比例函数的是 A .xy=5 B .y=53x C .y=-3x -1 D .y=23x - 2.若函数y=m+1231m m x++是反比例函数;则m 的值为A .m=-2B .m=1C .m=2或m=1D .m=-2或-1 3.满足函数y=kx-1和函数y=kxk ≠0的图象大致是4.在反比例函数y=-1x的图象上有三点x 1;y 1;x 2;y 2;x 3;y 3;若x 1>x 2>0>x 3;则下列各式正确的是 A .y 3>y 1>y 2 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 1>y 3>y 25.如图所示;A 、C 是函数y=1x的图象上的任意两点;过A 点作AB ⊥x 轴于点B;过C•点作CD ⊥y 轴于点D;记△AOB 的面积为S 1;△COD 的面积为S 2;则A .S 1>S 2B .S 1<S 2C .S 1=S 2D .无法确定 6.如果反比例函数y=kx的图象经过点-4;-5;那么这个函数的解析式为 A .y=-20x B .y=20x C .y=20x D .y=-20x 二、填空题每题5分;共30分 7.已知y=a-122a x-是反比例函数;则a=_____.8.在函数y=25x -+13x -中自变量x 的取值范围是_________.9.反比例函数y=kxk ≠0的图象过点-2;1;则函数的解析式为______;在每一象限内 y 随x 的增大而_________.10.已知函数y=kx的图象经过-1;3点;如果点2;m•也在这个函数图象上;•则m=_____. 11.已知反比例函数y=12mx-的图象上两点A x 1;y 1;Bx 2;y 2;当x 1〈0〈x 2时有y 1〈y 2;则m 的取值范围是________.12.若点A x 1;y 1;Bx 2;y 2在双曲线y=kxk>0上;且x 1>x 2>0;则y 1_______y 2. 三、解答题共46分 13.10分设函数y=m-2255m m x -+;当m 取何值时;它是反比例函数 •它的图象位于哪些象限 求当12≤x ≤2时函数值y 的变化范围. 14.12分已知y =y 1+y 2;y 1与x 成正比例;y 2与x 成反比例;并且当x=-1时;y=-1;•当x=2时;y=5;求y 关于x 的函数关系式.15.10分水池内储水40m3;设放净全池水的时间为T小时;每小时放水量为Wm3;规定放水时间不得超过20小时;求T与W之间的函数关系式;指出是什么函数;并求W的取值范围.16.14分如图所示;点A、B在反比例函数y=kx的图象上;且点A、B•的横坐标分别为a、2aa>0;AC⊥x轴于点C;且△AOC的面积为2.1求该反比例函数的解析式.2若点-a;y1、-2a;y2在该函数的图象上;试比较y1与y2的大小. 3求△AOB的面积.第18章勾股定理单元测试时间:100分钟 总分:120分班级 学号 姓名 得分一、相信你一定能选对每小题4分;共32分1. 三角形的三边长分别为6;8;10;它的最短边上的高为A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7;8;9;②12;9;15;③m 2 + n 2; m 2–n 2; 2mnm ;n 均为正整数;m >n ;④2a ;12+a ;22+a .其中能组成直角三角形的三边长的是 A . ①② B . ②③ C . ①③ D . ③④3. 三角形的三边为a 、b 、c ;由下列条件不能判断它是直角三角形的是A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=b+cb-cD . a :b :c =13∶5∶124. 三角形的三边长为ab c b a 2)(22+=+;则这个三角形是A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4;则第三边长是 A .5 B .25 C .7 D .5或76.已知Rt △ABC 中;∠C =90°;若a +b =14cm ;c =10cm ;则Rt △ABC 的面积是A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm27.直角三角形中一直角边的长为9;另两边为连续自然数;则直角三角形的周长为A .121B .120C .90D .不能确定8. 放学以后;小红和小颖从学校分手;分别沿东南方向和西南方向回家;若小红和小颖行走的速度都是40米/分;小红用15分钟到家;小颖20分钟到家;小红和小颖家的直线距离为 A .600米 B . 800米 C . 1000米 D. 不能确定 二、你能填得又快又对吗 每小题4分;共32分9. 在△ABC 中;∠C=90°; AB =5;则2AB +2AC +2BC =_______.10. 如图;是2002年8月北京第24届国际数学家大会会标;由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4;那么一个直角三角形的两直角边的和等于 .11.直角三角形两直角边长分别为5和12;则它斜边上的高为_______. 12.直角三角形的三边长为连续偶数;则这三个数分别为__________.13. 如图;一根树在离地面9米处断裂;树的顶部落在离底部12米处.树折断之前有______米. 14.如图所示;是一个外轮廓为矩形的机器零件平面示意图;根据图中标出尺寸单位:mm 计算两圆孔中心A 和B 的距离为 .15.如图;梯子AB 靠在墙上;梯子的底端A 到墙根O 的距离为2米;梯子的顶端B 到地面的距6012014060BA C 第10题图 第13题图 第14题图 第15题图离为7米.现将梯子的底端A向外移动到A’;使梯子的底端A’到墙根O的距离等于3米;同时梯子的顶端B下降至B’;那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.16.小刚准备测量河水的深度;他把一根竹竿插到离岸边1.5m远的水底;竹竿高出水面0.5m;把竹竿的顶端拉向岸边;竿顶和岸边的水面刚好相齐;河水的深度为 .三、认真解答;一定要细心哟共72分17.5分右图是由16个边长为1的小正方形拼成的;任意连结这些小正方形的若干个顶点;可得到一些线段;试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.6分已知a、b、c是三角形的三边长;a=2n2+2n;b=2n+1;c=2n2+2n+1n为大于1的自然数;试说明△ABC为直角三角形.19.6分小东拿着一根长竹竿进一个宽为3米的城门;他先横着拿不进去;又竖起来拿;结果竿比城门高1米;当他把竿斜着时;两端刚好顶着城门的对角;问竿长多少米20.6分如图所示;某人到岛上去探宝;从A处登陆后先往东走4km;又往北走1.5km;遇到障碍后又往西走2km;再折回向北走到4.5km处往东一拐;仅走0.5km就找到宝藏..问登陆点A与宝藏埋藏点B之间的距离是多少AB41.524.50.521.7分如图;将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中;求细木棒露在盒外面的最短长度是多少22.8分印度数学家什迦逻1141年-1225“平平湖水清可鉴;面上半尺生红莲; 出泥不染亭亭立;忽被强风吹一边;渔人观看忙向前;花离原位二尺远; 能算诸君请解题;湖水如何知深浅 ” 请用学过的数学知识回答这个问题. 23.8分如图;甲乙两船从港口A 同时出发;甲船以16海里/时速度向北偏东40°航行;乙船向南偏东50°航行;3小时后;甲船到达C 岛;乙船到达B 岛.若C 、B 两岛相距60海里;问乙船的航速是多少24.10分如图;有一个直角三角形纸片;两直角边AC =6cm ;BC =8cm ;现将直角边AC 沿 ∠CAB 的角平分线AD 折叠;使它落在斜边AB 上;且与AE 重合;你能求出CD 的长吗25.10分如图;铁路上A 、B 两点相距25km ; C 、D 为两村庄;若DA =10km ;CB =15km ;DA ⊥AB 于A ;CB ⊥AB 于B ;现要在AB 上建一个中转站E ;使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处26.10分如图;一个牧童在小河的南4km 的A 处牧马;而他正位于他的小屋B 的西8km 北7km处;他想把他的马牵到小河边去饮水;然后回家.他要完成这件事情所走的最短路程是多少时间90分钟 满分100分小河A B班级 学号 姓名 得分一、选择题每小题3分;共24分1.在平行四边形ABCD 中;∠B =110°;延长AD 至F ; 延长CD 至E ;连结EF ;则∠E +∠F = A .110°B .30°C .50°D .70°2.菱形具有而矩形不具有的性质是 A .对角相等B .四边相等C .对角线互相平分D .四角相等3.如图;平行四边形ABCD 中;对角线AC 、BD 交于点O;点E 是BC 的中点.若OE =3 cm ;则AB 的长为 A .3 cm B .6 cm C .9 cm D .12 cm 4.已知:如图;在矩形ABCD 中;E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2;AD =4;则图中阴影部分的面积为A .8B .6C .4D .35.用两块全等的含有30°角的三角板拼成形状不同的平行四边形;最多可以拼成 A .1个B .2个C .3个D .4个6.如图是一块电脑主板的示意图;每一转角处都是直角;数据如图所示单位:mm ;则该主板的周长是 A .88 mm B .96 mm C .80 mmD .84 mm7.如图;平行四边形ABCD 中;对角线AC 、BD 相交于点O ;E 、F 是AC 上的两点;当E 、F 满足下列哪个条件时;四边形DEBF 不一定是平行四边形 A .∠ADE =∠CBF B .∠ABE =∠CDF C .OE =OFD .DE =BF8.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49;小正方形的面积为4;若用x 、y 表示小矩形的两边长x >y ;请观察图案;指出以下关系式中不正确的是A .7=+y xB .2=-y x第7题第6题C .4944=+xyD .2522=+y x二、填空题每小题4分;共24分9.若四边形ABCD 是平行四边形;请补充条件 写一个即可;使四边形ABCD 是菱形.10.如图;在平行四边形ABCD 中;已知对角线AC 和BD 相交于点O ;△ABO 的周长为15;AB =6;那么对角线AC +BD = 11.如图;延长正方形ABCD 的边AB 到E ;使BE =AC ;则∠E= °.12.已知菱形ABCD 的边长为6;∠A =60°;如果点P 是菱形内一点;且PB =PD =32;那么AP 的长为 .13.在平面直角坐标系中;点A 、B 、C 的坐标分别是A -2;5;B -3;-1;C1;-1;在第一象限内找一点D ;使四边形ABCD 是平行四边形;那么 点D 的坐标是 .14.如图;四边形ABCD 的两条对角线AC 、BD 互相垂直;A 1B 1C 1D 1是中点四边形.如果AC =3;BD =4; 那么A 1B 1C 1D 1的面积为 三、解答题52分15.8分如图;在矩形ABCD 中;AE 平分∠BAD ;∠1=15°.1求∠2的度数.2求证:BO =BE .16.8分已知:如图;D 是△ABC 的边BC 上的中点;DE ⊥AC ;DF ⊥AB ;垂足分别为E 、F ;且BF =CE .当∠A 满足什么条件时;四边形AFDE 是正方形 请证明你的结论.第14题第10题 第11题17.8分如图;在平行四边形ABCD中;O是对角线AC的中点;过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.18.8分已知:如图;在正方形ABCD中;AC、BD交于点O;延长CB到点F;使BF=BC;连结DF交AB于E.求证:OE=BF在括号中填人一个适当的常数;再证明.19.8分在一次数学探究活动中;小强用两条直线把平行四边形ABCD分割成四个部分;使含有一组对顶角的两个图形全等.1根据小强的分割方法;你认为把平行四边形分割成满足以上全等关系的直线有组.2请在下图的三个平行四边形中画出满足小强分割方法的直线.3由上述实验操作过程;你发现所画的两条直线有什么规律20.12分已知:如图;在△ABC中;AB=AC;若将△ABC绕点C顺时针旋转180°得到△FEC.1试猜想线段AE与BF有何关系说明理由.2若△ABC的面积为3cm2;请求四边形ABFE的面积.3当∠ACB为多少度时;四边形ABFE为矩形说明理由.第二十章数据分析单元测试班级____________姓名____________学号____________成绩______一、填空题每空4分;共32分1.对于数据组3;3;2;3;6;3;6;3;2中;众数是_______;平均数是______;•极差是_______;中位数是______.2.数据3;5;4;2;5;1;3;1的方差是________.3.某学生7门学科考试成绩的总分是560分;其中3门学科的总分是234分;则另外4门学科成绩的平均分是_________.4.在n个数中;若x1出现f1次;x2出现f2次;…x k出现f k次;且f1+f2+…+f k=n;则它的加权平均数x=________略.5.一组数据同时减去80;实得新的一组数据的平均数为 2.3;•那么原数据的平均数为__________.二、选择题每题5分;共20分6.已知样本数据为5;6;7;8;9;则它的方差为.A.10 B.2 D7.8个数的平均数12;4个数的平均为18;则这12个数的平均数为.A.12 B.18 C.14 D.128.甲、乙两个样本的容量相同;甲样本的方差为0.102;乙样本的方差是0.06;那么.A.甲的波动比乙的波动大 B.乙的波动比甲的波动大C.甲、乙的波动大小一样 D.甲、乙的波动大小无法确定9.在某次数学测验中;随机抽取了10份试卷;其成绩如下:85;81;89;81;72;82;77;81;79;83则这组数据的众数、平均数与中位数分别为.A.81;82;81 B.81;81;76.5C.83;81;77 D.81;81;81三、解答题每题16分;共48分10.某公司员工的月工资如下:员工经理副经理职员A 职员B 职员C 职员D 职员E月工资元 6000 3500 1500 1500 1500 1100 10001求该公司员工月工资的中位数、众数、平均数;2用平均数还是用中位数和众数描述该公司员工月工资的一般水平比较恰当11.为了了解学校开展“尊敬父母;从家务事做起”活动的实施情况;•该校抽取初二年级50名学生;调查他们一周按七天计算的家务所用时间单位:小时;•得到一组数据;并绘制成下表;请根据该表完成下列各题:1填写频率分布表中未完成的部分;2这组数据的中位数落在什么范围内;3由以上信息判断;每周做家务的时间不超过1.5小时的学生所占的百分比.12.小红的奶奶开了一个金键牛奶销售店;主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”;可奶奶经营不善;经常有品种的牛奶滞销没卖完或脱销量不够;造成了浪费或亏损;细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况;并绘制了下表:1计算各品种牛奶的日平均销售量;并说明哪种牛奶销量最高2计算各品种牛奶的方差保留两位小数;并比较哪种牛奶销量最稳定3假如你是小红;你会对奶奶有哪些好的建议.附加题10分下图是某篮球队队员年龄结构直方图;根据图中信息解答下列问题: 1该队队员年龄的平均数;2该队队员年龄的众数和中位数.八年级下期期中数学综合测试时间:120分钟 总分:120分班级 学号 姓名 得分一、选择题每小题3分;共30分1. 在式子a 1;π xy 2;2334a b c ;x + 65; 7x +8y ;9 x +y 10 ;x x 2 中;分式的个数是A .5B .4C .3D .2 2. 下列各式;正确的是A .1)()(22=--a b b a B .ba b a b a +=++122 C .b a b a +=+111 D .x x ÷2=2 3. 下列关于分式的判断;正确的是A .当x =2时;21-+x x 的值为零 B .无论x 为何值;132+x 的值总为正数 C .无论x 为何值;13+x 不可能得整数值 D .当x ≠3时;xx 3-有意义4. 把分式)0,0(22≠≠+y x yx x中的分子分母的x 、y 都同时扩大为原来的2倍;那么分式的值将是原分式值的A .2倍B .4倍C .一半D .不变 5. 下列三角形中是直角三角形的是A .三边之比为5∶6∶7B .三边满足关系a +b =cC .三边之长为9、40、41D .其中一边等于另一边的一半 6.如果△ABC 的三边分别为12-m ;m 2;12+m ;其中m 为大于1的正整数;则 A .△ABC 是直角三角形;且斜边为12-m ;B .△ABC 是直角三角形;且斜边为m 2 C .△ABC 是直角三角形;且斜边为12+m ; D .△ABC 不是直角三角形 7.直角三角形有一条直角边为6;另两条边长是连续偶数;则该三角形周长为 A. 20 B . 22 C . 24 D . 26 8.已知函数xky =的图象经过点2;3;下列说法正确的是 A .y 随x 的增大而增大 B.函数的图象只在第一象限 C .当x <0时;必有y <0 D.点-2;-3不在此函数的图象上 9.在函数xky =k >0的图象上有三点A 1x 1; y 1 、A 2x 2; y 2、A 3x 3; y 3 ;已知x 1<x 2<0<x 3;则下列各式中;正确的是A.y 1<y 2<y 3B.y 3<y 2<y 1C. y 2< y 1<y 3D.y 3<y 1<y 2 10.如图;函数y =kx +1与xky =k <0在同一坐标系中;图象只能是下图中的二、填空题每小题2分;共20分11.不改变分式的值;使分子、分母的第一项系数都是正数;则________=--+-yx yx .12.化简:3286ab a =________; 1111+--x x =___________. 13.已知a 1 -b1 =5;则b ab a b ab a ---2232+ 的值是 .14.正方形的对角线为4;则它的边长AB = .15.如果梯子的底端离建筑物9米;那么15米长的梯子可以到达建筑物的高度是______米. 16.一艘帆船由于风向的原因先向正东方向航行了160km;然后向正北方向航行了120km;这时它离出发点有____________km.17.如下图;已知OA =OB ;那么数轴上点A 所表示的数是____________.18.某食用油生产厂要制造一种容积为5升1升=1立方分米的圆柱形油桶;油桶的底面面积s与桶高h 的函数关系式为 . 19.如果点2;3和-3;a 都在反比例函数xk y = 的图象上;则a = . 20.如图所示;设A 为反比例函数xky =图象上一点;且矩形ABOC 的面积为3;则这个反比例函数解析式为 .三、解答题共70分21.每小题4分;共16分化简下列各式:1422-a a +a -21 . 2)()()(3222a b a b b a -÷-⋅-.ABCD第14题图1-30-1-2-4231BA 第20题图3)252(423--+÷--x x x x . 4y x x - -y x y -2 ·y x xy 2- ÷x 1 +y 1 .22.每小题4分;共8分解下列方程:1223-x +x -11 =3. 2482222-=-+-+x x x x x .23.6分比邻而居的蜗牛神和蚂蚁王相约;第二天上午8时结伴出发;到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训;于是给蚂蚁王留下一纸便条后提前2小时独自先行;蚂蚁王按既定时间出发;结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍;求它们各自的速度.24.6分如图;某人欲横渡一条河;由于水流的影响;实际上岸地点C偏离欲到达地点B相距50米;结果他在水中实际游的路程比河的宽度多10米;求该河的宽度AB为多少米B CA25.6分如图;一个梯子AB长2.5 米;顶端A靠在墙AC上;这时梯子下端B与墙角C距离为1.5米;梯子滑动后停在DE的位置上;测得BD长为0.5米;求梯子顶端A下落了多少米26.8分某空调厂的装配车间原计划用2个月时间每月以30天计算;每天组装150台空调.1从组装空调开始;每天组装的台数m单位:台/天与生产的时间t单位:天之间有怎样的函数关系2由于气温提前升高、厂家决定这批空调提前十天上市;那么装配车间每天至少要组装多少空调27.10分如图;正方形OABC 的面积为9;点O 为坐标原点;点B 在函数xky =k >0;x >0的图象上;点Pm 、n 是函数xky =k >0;x >0的图象上任意一点;过点P 分别作x 轴、y 轴的垂线;垂足分别为E 、F ;并设矩形OEPF 和正方形OABC 不重合部分的面积为S .1求B 点坐标和k 的值;2当S =错误!时;求点P 的坐标;3写出S 关于m 的函数关系式.28.10分如图;要在河边修建一个水泵站;分别向张村A 和李庄B 送水;已知张村A 、李庄B到河边的距离分别为2km 和7km;且张、李二村庄相距13km .1水泵应建在什么地方;可使所用的水管最短 请在图中设计出水泵站的位置;2如果铺设水管的工程费用为每千米1500元;为使铺设水管费用最节省;请求出最节省的铺设水管的费用为多少元AB河边l人教实验版八年级下期末测试题学校______班级_______姓名______得分_________一、选择题每题2分;共24分1、下列各式中;分式的个数有31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个 2、如果把223y x y-中的x 和y 都扩大5倍;那么分式的值 A 、扩大5倍 B 、不变 C 、缩小5倍 D 、扩大4倍3、已知正比例函数y =k 1xk 1≠0与反比例函数y =2k xk 2≠0的图象有一个交点的坐标为 -2;-1;则它的另一个交点的坐标是A. 2;1B. -2;-1C. -2;1D. 2;-1 4、一棵大树在一次强台风中于离地面5米处折断倒下;倒下部分与地面成30°夹角;这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行;并且对角线互相垂直且相等的四边形是A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、把分式方程12121=----xx x 的两边同时乘以x-2; 约去分母;得A .1-1-x=1B .1+1-x=1C .1-1-x=x-2D .1+1-x=x-2 7、如图;正方形网格中的△ABC;若小方格边长为1;则△ABC 是A 、直角三角形B 、锐角三角形C 、钝角三角形D 、以上答案都不对第7题 第8题 第9题8、如图;等腰梯形ABCD 中;AB ∥DC;AD=BC=8;AB=10;CD=6;则梯形ABCD 的面积是 A 、1516 B 、516 C 、1532 D 、17169、如图;一次函数与反比例函数的图像相交于A 、B 两点;则图中使反比例函数的值小于一次函数的值的x 的取值范围是A 、x <-1B 、x >2C 、-1<x <0;或x >2D 、x <-1;或0<x <210、在一次科技知识竞赛中;两组学生成绩统计如下表;通过计算可知两组的方差为2S 172甲=;2S 256乙=..下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80;但成绩≥80的人数甲组比乙组多;从中位数来看;甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多;高分段乙组成绩比甲组好..其中正确的共有 .分数 50 60 70 80 90 100 人 数甲组251013146乙组 4 4 16 2 12 12A2种 B3种 C4种 D5种11、小明通常上学时走上坡路;途中平均速度为m 千米/时;放学回家时;沿原路返回;通常的速度为n 千米/时;则小明上学和放学路上的平均速度为 千米/时A B CD A BCAB C DEGA 、2n m + B 、 n m mn + C 、 n m mn +2 D 、mnnm + 12、李大伯承包了一个果园;种植了100棵樱桃树;今年已进入收获期..收获时;从中任选并采樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为A. 2000千克;3000元B. 1900千克;28500元C. 2000千克;30000元D. 1850千克;27750元 二、填空题每题2分;共24分 13、当x 时;分式15x -无意义;当m = 时;分式2(1)(3)32m m m m ---+的值为零 14、各分式121,1,11222++---x x x x x x 的最简公分母是_________________15、已知双曲线xky =经过点-1;3;如果A 11,b a ;B 22,b a 两点在该双曲线上;且1a <2a <0;那么1b 2b .16、梯形ABCD 中;BC AD //;1===AD CD AB ;︒=∠60B 直线MN 为梯形ABCD 的对称轴;P 为MN 上一点;那么PD PC +的最小值 .. 第16题 第17题 第19题17、已知任意直线l 把□ABCD 分成两部分;要使这两部分的面积相等;直线l 所在位置需满足的条件是 _________ 18、如图;把矩形ABCD 沿EF 折叠;使点C 落在点A 处;点D 落在点G 处;若∠CFE=60°;且DE=1;则边BC 的长为 .19、如图;在□ABCD 中;E 、F 分别是边AD 、BC 的中点;AC 分别交BE 、DF 于G 、H;试判断下列结论:①ΔABE ≌ΔCDF ;②AG=GH=HC ;③EG=;21BG ④S ΔABE =S ΔAGE ;其中正确的结论是 __ 个 20、点A 是反比例函数图象上一点;它到原点的距离为10;到x 轴的距离为8;则此函数表达式可能为_________________A E DH CB F GD21、已知:24111A Bx x x =+--+是一个恒等式;则A =______;B=________.. 22、如图; ΔP 1OA 1 、ΔP 2A 1A 2是等腰直角三角形;点1P 、2P 在函数4(0)y x x=>的图象上;斜边1OA 、12A A 都在x 轴上;则点2A 的坐标是____________.第24题 23、小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分;第二单元得76分;第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时、期中、期末的权重分别为10%、30%、60%计算;那么小林该学期数学书面测验的总评成绩应为_____________分..24、在直线l 上依次摆放着七个正方形如图所示..已知斜放置的三个正方形的面积分别是1、2、3;正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4;则S 1+S 2+S 3+S 4=_______.. 三、解答题共52分25、5分已知实数a 满足a 2+2a -8=0;求22213211143a a a a a a a +-+-⨯+-++的值.26、5分解分式方程:22416222-+=--+x x x x x -27、6分作图题:如图;Rt ΔABC 中;∠ACB=90°;∠CAB=30°;用圆规和直尺作图;用两种方法把它分成两个三角形;且要求其中一个三角形的等腰三角形..保留作图痕迹;不要求写作法和证l321S 4S 3S 2S 1第22题明28、6分如图;已知四边形ABCD 是平行四边形;∠BCD 的平分线CF 交边AB 于F ;∠ADC 的平分线DG 交边AB 于G .. 1求证:AF=GB ;2请你在已知条件的基础上再添加一个条件;使得△EFG 为等腰直角三角形;并说明理由.29、6分张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”;对两位同学进行了辅导;并在辅导期间进行了10次测验;两位同学测验成绩记录如下表:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次王军 68 80 78 79 81 77 78 84 83 92 张成86807583857779808075利用表中提供的数据;解答下列问题:平均成绩 中位数 众数 王军8079.5AB C ABC1填写完成下表:2张老师从测验成绩记录表中;求得王军 10次测验成绩的方差2S 王=33.2;请你帮助张老师计算张成10次测验成绩的方差2S 张;3请你根据上面的信息;运用所学的统计知识;帮助张老师做出选择;并简要说明理由..30、8分制作一种产品;需先将材料加热达到60℃后;再进行操作.设该材料温度为y ℃;从加热开始计算的时间为x 分钟.据了解;设该材料加热时;温度y 与时间x 成一次函数关系;停止加热进行操作时;温度y 与时间x 成反比例关系如图.已知该材料在操作加工前的温度为15℃;加热5分钟后温度达到60℃.1分别求出将材料加热和停止加热进行操作时;y 与x 的函数关系式;2根据工艺要求;当材料的温度低于15℃时;须停止操作;那么从开始加热到停止操作;共经历了多少时间31、6分甲、乙两个工程队合做一项工程;需要16天完成;现在两队合做9天;甲队因有其他任务调走;乙队再做21天完成任务..甲、乙两队独做各需几天才能完成任务张成 80 80。
八年级数学下册 《第十九章 四边形》章节检测(无答案) 新人教版

图10D C B A 八年级数学第十九章《四边形》章节检测题时间:90分钟 满分:100分一、选择题(本大题8个小题,每小题3分,共24分)1、如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于………………( )A 、18° B、36° C、72° D、108°2、如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,AB=5,BC=3,则EC 的长…………………………………………………………………………………( )A 、1B 、1.5C 、2D 、33、顺次连结任意四边形四边中点所得的四边形一定是………………………( )A 、平行四边形B 、矩形C 、菱形D 、正方形4、正方形具有而菱形不一定具有的性质是………………………………………( )(A )四条边相等 (B )对角线互相垂直平分(C )对角线平分一组对角 (D )对角线相等5、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是………………………………………………………………( )A 、3:4B 、5:8C 、9:16D 、1:26、下列命题中,真命题是……………………………………………………………( )A 、有两边相等的平行四边形是菱形B 、有一个角是直角的四边形是直角梯形C 、四个角相等的菱形是正方形D 、两条对角线相等的四边形是矩形7、如图10,在梯形ABCD 中,AD ∥BC ,AB=CD ,那么它的四个内角按一定顺序的度数比可能为……………………………………………………………………( )A 、3:4:5:6B 、4:5:4:5C 、2:3:3:2D 、2:4:3:3 8、如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF,AE 、BF 相交于点O,下列结论①AE=BF;②AE ⊥BF;③AO=OE;④S △AOB =S 四边形DEOF 中,错误的有………………………………………………………………………( )A.1个B.2个C.3个D.4个A B C D 第5题图 E D C B A 第2题图 A B C D E A B C E D F O 第8题图第1题图二、填空题(本大题7个小题,每小题3分,共21分)9、如图,□ABCD 中,AE ⊥CD 于E ,∠B=55°,则∠DAE= °.10、如图,△ABC 、△ACE 、△ECD 都是等边三角形,则图中的平行四边形有 个。
八年级数学下册平行四边形的判定练习题

BDCAO图1FEDCBA图2F E D CBA HG FEOAB C DOM ABCD图1FE DCB A4321图3F ED CBA H G 图2F E DCB A八年级数学下册平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵ , ∴四边形ABCD 是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.5)定理:两组对角分别相等的四边形是平行四边形∵∴四边形ABCD 是平行四边形. 二、平行四边形性质与判定的综合应用例1: 如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。
求证:四边形BFDE 是平行四边形变式一:在□ABCD 中,E ,F 为AC 上两点,BE//DF .求证:四边形BEDF 为平行四边形.变式二:在□ABCD 中,E,F 分别是AC 上两点,BE ⊥AC 于E ,DF ⊥AC 于F.求证:四边形BEDF 为平行四边形想一想:在□ABCD 中, E ,F 为AC 上两点, BE =DF .那么可以证明四边形 BEDF 是平行四边形吗?例2:如图,平行四边形ABCD 中,AF =CH ,DE =BG 。
求证:EG 和HF 互相平分。
练习1、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,那么请说明AM=DC 且AM ∥DC:1、以不在同一直线上的三点为顶点作平行四边形,最多能作( )A 、4个B 、3个C 、2个D 、1个 2、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC = 6cm ,P ,Q 分别从A ,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形ABQP 成为平行四边形?1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。
八年级下四边形章末测试题(1)

⼋年级下四边形章末测试题(1)第⼗九章四边形测试题(满分120分时间90分钟)姓名:得分:排名:⼀、选择题(每⼩题2分,共30分)1.如图,□ABCD中,AE平分∠DAB,∠B=100°,则∠DAE等于()A 100°B 80°C 60°D 40°2.在⼀般平⾏四边⾏形、矩形、菱形、正⽅形、等腰梯形、直⾓梯形中,不是轴对称图形的有()A 1个B 2个C 3个D 4个3.下列说法正确的是()A ⼀组对边相等,⼀组对⾓相等的四边形是平⾏四边形B 两条对⾓线相等的四边形是矩形C 四条边都相等的四边形是正⽅形D 四条边都相等的四边形是菱形4.如图在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BD平分∠ABC,如果这个梯形的周长为30,则AB的长为()A 4B 5C 6D 75.已知菱形的边长等于2cm,⼀条对⾓线长也是2cm,则另⼀条对⾓线长是()A 4cmB 2 3 cmC 3 cmD 3cm6.等腰梯形的腰长为13cm,两底差为10cm,则⾼为()A cmB 12cmC 69cmD 144cm7.如图,梯形ABCD中,AD∥BC,设AC,BD交于点O,则图中⾯积相等的三⾓形共有()A 2对B 3对C 4对D 5对8.下列判断:①正⽅形⼀定是矩形;②正⽅形⼀定是菱形;③矩形⼀定不是菱形;④菱形⼀定不是矩形。
其中正确结论的个数是()A 1B 2C 3D 49.如图,已知□ABCD是⼀块菜地,AC,BD,是对⾓线,BC=6,BC边上的⾼为4.若李⼤伯想在空⽩部分种⾲菜,阴影部分种⼤蒜,则阴影部分的⾯积为()A 3B 6C 12D 2410.如图,四边形OABC是正⽅形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的⼀动点,则PD+PA的最⼩值是()A 40B 10C 4D 611.正⽅形ABCD中,两条对⾓线的交点为O,∠BAC的平分线交BD于点E,若正⽅形的边长是2cm,则DE的长是()cmA 1cmB 2cmC 3cm D412.下列说法:①矩形的对⾓线互相垂直平分;②菱形的四条边相等,四个⾓相等;③等腰梯形的两个底⾓相等;④正⽅形的两条对⾓线互相垂直平分且相等,其中正确的有()A 1个B 2个C 3个D 4个13.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FEP等于()A 40°B 45°C 50°D 55°14.如图所⽰,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长为()B 3C 4 3 cmD 3cm15.如图,等腰梯形ABCD中,AD∥BC,AB=CD,E为CD的中点,AD=2,BC=8,BE把梯形周长分成差为3的两部分,则AB的长为()A 3B 9C 3或9D 不能确定⼆、填空题(每⼩题3分,共36分)16.如图,EF是△ABC的中位线,M,N分别是EB,FC的中点,若BC=8cm,那么EF= cm,MN= cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E 第18题图ODBA一.填空题(每小题3分,共30分)1.平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD =cm 。
2.若边长为4cm 的菱形的两邻角度数之比为1∶2,则该菱形的 面积为cm 2。
3. 如图2,△ABC 中,EF 是它的中位线,M 、N 分别是EB 、CF 的 中点,若BC=8cm ,那么EF=cm ,MN=cm ;4.若矩形的对角线长为8cm ,两条对角线的一个交角为600, 则该矩形的面积为cm 2。
5.如上图,若梯形的两底长分别为4cm 和9cm ,两条对角线长分别为5cm 和12cm ,则该梯形的 面积为cm 2。
6、 如图矩形ABCD 中,AB =8㎝,CB =4㎝, E 是DC 的中点,BF =41BC ,则四边形DBFE 的面积为。
7.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB =2,BC =3.则图中阴影部分的面积为. 二.单选题(每小题3分,共30分)1.关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC 和BD 相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有( )。
(A ) 1个(B )2个(C )3个(D )4个 2.能够判定一个四边形是菱形的条件是( )。
(A ) 对角线相等且互相平分 (B )对角线互相垂直且互相平分 (C )对角线相等且互相垂直 (D )对角线互相垂直 3.矩形、菱形、正方形都具有的性质是( )A 、对角线相等B 、对角线互相平分C 、对角线互相垂直D 、对角线平分对角 4.若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( ) A 、菱形 B 、对角线相互垂直的四边形C 、正方形D 、对角线相等的四边形5.下列命题中,真命题是( )A、有两边相等的平行四边形是菱形B、有一个角是直角的四边形是矩形C、四个角相等的菱形是正方形D、两条对角线互相垂直且相等的四边形是正方形6.如右图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BD平分∠ABC.如果这个梯形的周长为30,则AB的长为().(A)4 (B)5(C)6 (D)77.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A、36oB、9oC、27oD、18o8、如图,E F G H,,,分别为正方形ABCD的边AB,BC,CD,DA上的点,且13AE BF CG DH AB====,则图中阴影部分的面积与正方形ABCD的面积之比为()A.25B.49C.12D.359、如图,把矩形ABCD沿EF对折后使两部分重合,若150∠=,则AEF∠=()A.110°B.115° C.120° D.130°10 如图,在ABCD中,AC与BD相交于点O,点E是边BC的中点,4AB=,则OE的长是(A)2(B)2(C)1(D)12三.解答题:1如图5,在梯形ABCD中,AB∥DC, DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.EODCBA第24题图F EDCBA(1)求证:梯形ABCD 是等腰梯形. (2)若∠BDC =30°,AD =5,求CD 的长2.如图,在ABCD 中,点E ,F 是对角线BD 上的两点,且BE=DF , 求证:(1)ABE CDF (2)//AE CFFDACB E3、如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB =DC ,AD =2,BC =4,延长BC 到E ,使CE =AD . (1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(5分)(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.(5分)4 如图,分别以Rt ΔABC 的直角边AC 及斜边AB 向外作等边ΔACD 、等边ΔABE .已知∠BAC=030,EF ⊥AB ,垂足为F ,连结DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.5、在梯形ABCD 中,AB ∥CD ,∠A =90°, AB =2,BC =3,CD =1,E 是AD 中点. 求证:CE ⊥BE .6 如图,在四边形ABCD 中,AD ∥BC ,AB =DC =AD , ∠C =60°,AE ⊥BD 于点E ,F 是CD 的中点.求证:四边形AEFD 是平行四边形.F EDCBAACBDE参考答案一.1.4; 2.83; 3.4,6; 4.163;5.30; 6、10㎝27. 3;二. 1-5 CBBBC , 6-10 CDABA 三、1、(1)证明:∵AE ∥BD, ∴∠E =∠BDC ∵DB 平分∠ADC ∴∠ADC =2∠BDC 又∵∠C =2∠E ∴∠ADC =∠BCD∴梯形ABCD 是等腰梯形(2)解:由第(1)问,得∠C =2∠E =2∠BDC =60°,且BC =AD =5 ∵ 在△BCD 中,∠C =60°, ∠BDC =30° ∴∠DBC =90° ∴DC =2BC =102 证明:(1) 四边形ABCD 是平行四边形, ∴AB//CD ,AB=CDABE=CDF ∴∠∠ 在ABE 和CDF 中AB=CD ABE=CDF BE=DF ⎧⎪∠∠⎨⎪⎩ABE CDF ∴≅(2) ABE CDF ≅ AEB=CFD ∴∠∠ AED=CFB ∴∠∠ AE//CF ∴3、解:(1)△CDA ≌△DCE ,△BAD ≌△DCE ; ①△CDA ≌△DCE 的理由是: ∵AD ∥BC ,∴∠CDA =∠DCE .又∵DA =CE ,CD =DC , ∴△CDA ≌△DCE .或 ②△BAD ≌△DCE 的理由是:∵AD ∥BC ,∴∠CDA =∠DCE .又∵四边形ABCD 是等腰梯形, ∴∠BAD =∠CDA , ∴∠BAD =∠DCE . 又∵AB =CD ,AD =CE , ∴△BAD ≌△DCE .(2)当等腰梯形ABCD 的高DF =3时,对角线AC 与BD 互相垂直. 理由是:设AC 与BD 的交点为点G ,∵四边形ABCD 是等腰梯形, ∴AC =DB .又∵AD =CE ,AD ∥BC ,BF EDCBA G∴四边形ACED 是平行四边形, ∴AC =DE ,AC ∥DE . ∴DB =DE . 则BF =FE ,又∵BE =BC +CE =BC +AD =4+2=6, ∴BF =FE =3. ∵DF =3,∴∠BDF =∠DBF =45°,∠EDF =∠DEF =45°, ∴∠BDE =∠BDF +∠EDF =90°, 又∵AC ∥DE∴∠BGC =∠BDE =90°,即AC ⊥BD .(说明:由DF =BF =FE 得∠BDE =90°,同样给满分.) 4(1)解:在Rt ΔABC ,∠BAC=030,∴∠ABC=060等边ΔABE 中,∠ABE=060,且AB=BE ∵EF ⊥AB∴∠EFB=090∴Rt ΔABC ≌Rt ΔEBF ∴AC=EF(2)证明:等边ΔACD 中,∠DAC=060,AD=AC 又∵∠BAC=030 ∴∠DAF=090∴AD ∥EF 又∵AC=EF ∴AD=EF∴四边形ADFE 是平行四边形.5、证明: 过点C 作CF ⊥AB ,垂足为F . ∵ 在梯形ABCD 中,AB ∥CD ,∠A =90°, ∴∠D =∠A =∠CFA =90°. ∴四边形AFCD 是矩形. AD=CF, BF=AB -AF=1. 在Rt △BCF 中, CF 2=BC 2-BF 2=8, ∴ CF=22. ∴AD=CF=22. ∵E 是AD 中点, ∴DE=AE=21AD=2. ACBDEF第24题图FE DCB A 在Rt △ABE 和 Rt △DEC 中, EB 2=AE 2+AB 2=6, EC 2= DE 2+CD 2=3,EB 2+ EC 2=9=BC 2. ∴∠CEB =90°. ∴EB ⊥EC .6 证明:∵AB =AD ,AE ⊥BD∴BE =DE 又 DF =CF∴EF 是△BDC 的中位线.∴EF ∥BC ,EF =BC. 又 AD ∥BC ,∠ABD =∠ADB ,∴∠ABD =∠DBC.又 四边形ABCD 是等腰梯形, ∠ABC =∠C =60°,∴∠DBC =30° ∴△BDC 是Rt △. ∴CD =BC. ∴AD =BC.∴AD ∥EF ,AD =EF. ∴四边形AEFD 是平行四边形.。