三角函数及平面向量知识点总结
三角函数与平面向量

第二部分三角函数与平面向量一、知识框图:二、基础知识要点剖析:1、与角α终边相同的角的集合{}Z k k ∈+=,2|απββ; 十六条终边所对应的角能记住吗?集合⎭⎬⎫⎩⎨⎧∈±=Z k k ,3|ππγγ表示怎样的终边的角?区分锐角、小于090的角、090~0的角、钝角、对顶角、区域角、区间角、象限角等。
2、弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈3、三角函数的定义(r y x ,,三个量的比值):r y =αsin ,r x =αcos ,)0(tan ≠=x xyα。
㈠任意角的三角函数值在各个象限的符号知道吗?特别是特殊角的三角函数值记准了吗?㈡正弦线、余弦线、正切线会画吗?利用它们求三角不等式很简便哦!有印象吗? ㈢常见三角不等式:(1)若(0,)2x π∈,则sin tan x x x <<,(2) 若(0,)2x π∈,则1sin cos 2x x <+≤(3) 2cos sin 1,≤+≤∈x x R x 则若.4、同角三角函数的基本关系式 :①22sin cos 1θθ+=,②tan θ=θθcos sin ,注意公式变形:2)cos (sin cos sin 21)1(θθθθ±=±.)42sin(22cos2sinsin 1πθθθθ±=±=± 2sin2cos 1θθ=-, 2cos2cos 1θθ=+(2)如t =±ααcos sin ,d =ααcos sin ,αtan 之间互相转换懂吗?知一求二:(3)若t =+ααcos sin ,则21c o s s i n 2-=t αα;12sin 2-=t α;22cos sin t -±=-αα(4)若t =ααcos sin ,则t 21cos sin +±=+αα;t 21cos sin -±=-αα.5、诱导公式分两大类:为偶数与奇数)k k(2απ±。
三角函数的基本关系与计算平面向量的共线与垂直关系

三角函数的基本关系与计算平面向量的共线与垂直关系三角函数是数学中重要的一部分,它描述了一个角度与其对应的三角比例之间的关系。
在平面向量的应用中,我们也经常需要判断向量之间的共线与垂直关系。
本文将从三角函数的基本关系和计算平面向量的共线与垂直关系两个方面进行探讨。
一、三角函数的基本关系三角函数包括正弦函数、余弦函数和正切函数,它们的定义如下:1. 正弦函数(sine):在直角三角形中,对于一个锐角θ,其正弦值为对边与斜边的比值,记为sinθ。
2. 余弦函数(cosine):在直角三角形中,对于一个锐角θ,其余弦值为邻边与斜边的比值,记为cosθ。
3. 正切函数(tangent):在直角三角形中,对于一个锐角θ,其正切值为对边与邻边的比值,记为tanθ。
这三个函数之间存在基本的关系,可以通过定义和几何关系来推导,具体推导如下:1. tanθ = sinθ / cosθ;2. sin^2θ + cos^2θ = 1,两边同时除以cos^2θ,得到tan^2θ + 1 =sec^2θ,其中secθ为secant函数的值;3. cos^2θ + sin^2θ = 1,两边同时除以sin^2θ,得到1 + cot^2θ =csc^2θ,其中cscθ为cosecant函数的值。
这些基本关系在解三角方程和求解三角函数的值时非常有用。
二、计算平面向量的共线与垂直关系平面向量是在平面内具有大小和方向的量,可以通过坐标或者位移来表示。
当我们需要判断向量之间的共线与垂直关系时,可以利用向量的内积和外积来进行计算。
1. 共线关系若两个向量a和b共线,则它们的数量积等于零,即a·b = 0。
这可以通过向量的坐标表示进行计算。
假设向量a = (x1, y1)和向量b = (x2,y2),则它们的数量积为x1 * x2 + y1 * y2。
若两个向量的数量积等于零,则它们是共线的。
2. 垂直关系若两个向量a和b垂直,则它们的数量积等于零,即a·b = 0。
平面向量与三角函数的关系

平面向量与三角函数的关系在数学中,平面向量和三角函数是两个重要的概念,它们之间存在着紧密的关联。
平面向量主要用来表示空间中的方向和大小,而三角函数则描述了角度和长度之间的关系。
本文将探讨平面向量与三角函数之间的关系,并介绍其在数学和物理中的应用。
一、平面向量的表示与性质平面向量可以用有序的数对表示,其中第一个数表示向量在x轴上的分量,第二个数表示向量在y轴上的分量。
例如,向量a可以表示为(a1, a2),其中a1为x轴分量,a2为y轴分量。
平面向量有以下性质:1. 向量的模:向量的模表示向量的大小,可以通过勾股定理计算得到。
对于向量a(a1, a2),它的模可以表示为|a| = √(a1² + a2²)。
2. 向量的方向角:向量的方向角表示向量与x轴正方向的夹角。
根据三角函数的定义,可以得到向量的方向角θ = arctan(a2 / a1)。
3. 向量的单位向量:单位向量是模为1的向量,可以表示为a/|a|。
单位向量的方向与原向量相同,但大小为1。
二、三角函数的定义与性质三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)等。
它们的定义如下:1. 正弦函数:在直角三角形中,正弦函数表示对边与斜边的比值。
正弦函数的定义域为实数集,值域在[-1, 1]之间。
2. 余弦函数:在直角三角形中,余弦函数表示邻边与斜边的比值。
余弦函数的定义域为实数集,值域在[-1, 1]之间。
3. 正切函数:在直角三角形中,正切函数表示对边与邻边的比值。
正切函数的定义域为实数集,值域为全体实数。
三、平面向量与三角函数之间存在着一种重要的关系,即向量的模可以与其方向角的三角函数相关联。
具体而言,对于向量a(a1, a2),有以下关系:1. a的模与sinθ的关系:|a| = √(a1² + a2²) = √[(|a1|^2 + |a2|^2) * (sin²θ + cos²θ)] = √(sin²θ + cos²θ) * √(|a1|^2 + |a2|^2) = √(|a1|^2 + |a2|^2)2. a的模与cosθ的关系:|a| = √(a1² + a2²) = √[(|a1|^2 + |a2|^2) * (sin²θ + cos²θ)] = √(sin²θ + cos²θ) * √(|a1|^2 + |a2|^2) = √(|a1|^2 + |a2|^2)3. a的模与tanθ的关系:|a| = √(a1² + a2²) = √[(|a1|^2 + |a2|^2) * (sin²θ + cos²θ)] = √(sin²θ + cos²θ) * √(|a1|^2 + |a2|^2) = √(|a1|^2 + |a2|^2)由上述关系可知,向量的模与其方向角的三角函数之间存在着简洁的关系,通过利用这些关系,我们可以在计算中更加方便地处理向量的模和角度。
三角函数、三角变换、解三角形、平面向量

三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx .(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2.3. y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法:设X =ωx +φ,X 取0,π2,π,3π2,2π时求相应的x 值、y 值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点(-φω,0)作为突破口. (3)图象变换y =sin x ―――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ).第二讲 三角变换与解三角形1. 两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β.2. 二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α. (2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)tan 2α=2tan α1-tan 2α.3. 三角恒等变换的基本思路(1)“化异为同”,“切化弦”,“1”的代换是三角恒等变换的常用技巧. “化异为同”是指“化异名为同名”,“化异次为同次”,“化异角为同角”. (2)角的变换是三角变换的核心,如β=(α+β)-α,2α=(α+β)+(α-β)等. 4. 正弦定理a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A , b =2R sin B , c =2R sin C .sin A =a 2R , sin B =b 2R , sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 5. 余弦定理a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc , cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab .6. 面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7. 三角形中的常用结论(1)三角形内角和定理:A +B +C =π. (2)A >B >C ⇔a >b >c ⇔sin A >sin B >sin C . (3)a =b cos C +c cos B .第三讲 平面向量1.向量的概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2)长度等于1个单位长度的向量叫单位向量,a 的单位向量为±a|a |.(3)方向相同或相反的向量叫共线向量(平行向量).(4)如果直线l 的斜率为k ,则a =(1,k )是直线l 的一个方向向量. (5)向量的投影:|b |cos 〈a ,b 〉叫做向量b 在向量a 方向上的投影. 2.向量的运算(1)向量的加法、减法、数乘向量是向量运算的基础,应熟练掌握其运算规律.(2)平面向量的数量积的结果是实数,而不是向量,要注意运算数量积与实数运算律的差异,平面向量的数量积不满足结合律与消去律.a ·b 运算结果不仅与a ,b 的长度有关而且与a 与b 的夹角有关,即a ·b =|a ||b |cos 〈a ,b 〉. 3.两非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2), 则a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0. a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.可利用它处理几何中的两线平行、垂直问题,但二者不能混淆.。
高中数学平面向量,三角函数,一元二次不等式知识点

高中数学知识点一、平面向量1.1 平面向量的定义和表示平面向量是在平面上具有大小和方向的量,可以用有向线段来表示。
平面向量的表示方法有两种:坐标表示和数量与方向表示。
•坐标表示:设平面向量$\\vec{AB}$的起点为A(A1,A1),终点为A(A2,A2),则向量$\\vec{AB}$的坐标表示为$\\vec{AB}=(x_2-x_1,y_2-y_1)$。
•数量与方向表示:设平面向量$\\vec{AB}$的起点为A,终点为A,则向量$\\vec{AB}$的数量表示为$|\\vec{AB}|=\\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$,方向表示是线段AA的方向。
1.2 平面向量的运算平面向量的运算有加法、减法和数量乘法。
•加法:设有平面向量$\\vec{A}$和$\\vec{B}$,则它们的和为$\\vec{A}+\\vec{B}=(x_1+x_2, y_1+y_2)$。
•减法:设有平面向量$\\vec{A}$和$\\vec{B}$,则它们的差为$\\vec{A}-\\vec{B}=(x_1-x_2, y_1-y_2)$。
•数量乘法:设有平面向量$\\vec{A}$和实数A,则$k\\vec{A}=(kx, ky)$。
1.3 平面向量的性质平面向量的性质主要包括以下几点:•相等性:两个向量相等的充分必要条件是它们的坐标或起点和终点相同。
•共线性:若两个向量的方向相同或相反,它们为共线向量。
•共面性:若三个向量共面,则它们必定落在同一个平面上。
•数量乘法:向量的数量乘法可以改变向量的大小和方向。
二、三角函数2.1 弧度制和角度制在三角函数中,角度可以用弧度制或角度制来表示。
•弧度制:弧度制是以圆的半径为单位来度量角的大小。
一个圆的周长为$2\\pi$,一周所对应的角为$2\\pi$弧度。
常见的角度制与弧度制的换算关系是$180^\\circ=\\pi$弧度。
•角度制:角度制是以度为单位来度量角的大小。
高二数学知识点总结归纳

高二数学知识点总结归纳高二数学最新知识点总结归纳第一章:三角函数。
考试必考题。
诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及等变化时图像及性质的`变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。
第二章:平面向量。
个人觉得这一章难度较大,这也是我掌握最差的一章。
向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。
向量共线和垂直的数学表达,这是计算当中经常要用的公式。
向量的共线定理、基本定理、数量积公式。
难点在于分点坐标公式,首先要准确记忆。
向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。
有同样情况的同学建议多看有关题的图形。
第三章:三角恒等变换。
这一章公式特别多。
和差倍半角公式都是会用到的公式,所以必须要记牢。
由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。
而且的三角函数变换都有一定的规律,记忆的时候可以结合起来去记。
除此之外,就是多练习。
要从多练习中找到变换的规律,比如一般都要化等等。
这一章也是考试必考,所以一定要重点掌握。
高二年级数学知识点讲解大全1、圆的定义平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(x-a)^2+(y-b)^2=r^2(1)标准方程,圆心(a,b),半径为r;(2)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程一定两解(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2练习题:2.若圆(x-a)2+(y-b)2=r2过原点,则()A.a2-b2=0B.a2+b2=r2C.a2+b2+r2=0D.a=0,b=0解析选B.因为圆过原点,所以(0,0)满足方程,即(0-a)2+(0-b)2=r2,所以a2+b2=r2.高二数学知识点梳理等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。
三角函数平面向量知识与公式总结

三角函数平面向量知识与公式总结三角函数和平面向量是数学中非常重要的概念,它们在解决几何问题、物理问题和工程问题中起着重要的作用。
本文将对三角函数和平面向量的知识进行总结,并介绍常用的公式和性质。
一、三角函数2. 余弦函数:在直角三角形中,余弦函数被定义为邻边与斜边的比值。
其定义域为实数集R。
常用的余弦函数记作cos(x)。
余弦函数也具有周期性,即cos(x+2π)=cos(x)。
3. 正切函数:在直角三角形中,正切函数被定义为对边与邻边的比值。
其定义域为实数集R-{(2k+1)π/2, k∈Z}。
常用的正切函数记作tan(x)。
正切函数也具有周期性,即tan(x+π)=tan(x)。
4. 余切函数:在直角三角形中,余切函数被定义为邻边与对边的比值。
其定义域为实数集R-{kπ, k∈Z}。
常用的余切函数记作cot(x)。
余切函数也具有周期性,即cot(x+π)=cot(x)。
5. 正割函数:在直角三角形中,正割函数被定义为斜边与邻边的比值。
其定义域为实数集R-{(2k+1)π/2, k∈Z}。
常用的正割函数记作sec(x)。
正割函数也具有周期性,即sec(x+2π)=sec(x)。
6. 余割函数:在直角三角形中,余割函数被定义为斜边与对边的比值。
其定义域为实数集R-{kπ, k∈Z}。
常用的余割函数记作csc(x)。
余割函数也具有周期性,即csc(x+2π)=csc(x)。
三角函数之间有一些重要的关系:1.三角函数的互逆关系:sin(x) = 1/csc(x)cos(x) = 1/sec(x)tan(x) = 1/cot(x)cot(x) = 1/tan(x)sec(x) = 1/cos(x)csc(x) = 1/sin(x)2.三角函数的和差化积公式:sin(x+y) = sin(x)cos(y) + cos(x)sin(y)cos(x+y) = cos(x)cos(y) - sin(x)sin(y)tan(x+y) = (tan(x)+tan(y))/(1-tan(x)tan(y))3.三角函数的倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x)tan(2x) = 2tan(x)/(1-tan^2(x))4.三角函数的半角公式:sin(x/2) = ±√((1-cos(x))/2)co s(x/2) = ±√((1+cos(x))/2)tan(x/2) = ±√((1-cos(x))/(1+cos(x)))二、平面向量1.平面向量的定义:平面向量是具有大小和方向的量。
平面向量与三角函数的关系

平面向量与三角函数的关系在数学中,平面向量和三角函数是两个重要的概念,并且它们之间存在着一定的关系。
本文将介绍平面向量与三角函数的相关性质和应用。
一、向量在直角坐标系中的表示在直角坐标系中,一个向量可以由其在横轴上的分量和在纵轴上的分量来表示。
假设有一个平面向量a,其水平分量为a₁,垂直分量为a₂,则可以用有序数对(a₁, a₂)表示向量a。
其中,a₁沿着横轴的正方向表示,a₂沿着纵轴的正方向表示。
二、向量的模和角度表示向量的模表示向量的长度,也叫作向量的大小。
设向量a的模为|a|,则有|a| = √(a₁² + a₂²)。
其中,a₁和a₂分别为向量a在横轴和纵轴上的分量。
另外,向量还可以用角度来表示。
假设有一个向量a,与横轴之间的夹角为θ,则有tanθ = a₂/a₁,即θ = arctan(a₂/a₁)。
其中,arctan表示反正切函数。
三、平面向量的加法和减法平面向量的加法和减法可以类比数的加法和减法。
设有两个向量a和b,分别表示为(a₁, a₂)和(b₁, b₂)。
向量的加法可以表示为a + b = (a₁ + b₁, a₂ + b₂)。
也就是将两个向量的分量对应相加。
向量的减法可以表示为a - b = (a₁ - b₁, a₂ - b₂)。
也就是将两个向量的分量对应相减。
四、向量与三角函数的关系1. 向量的模和三角函数在直角坐标系中,一个向量的模可以表示为|a| = √(a₁² + a₂²)。
根据直角三角形的性质,我们可以知道,a₁/|a| = cosθ,a₂/|a| = sinθ。
其中,θ表示向量a与横轴之间的夹角。
2. 向量的加法与三角函数设有两个向量a和b,分别表示为(a₁, a₂)和(b₁, b₂)。
根据向量的加法性质,a + b = (a₁ + b₁, a₂ + b₂)。
根据向量的模和三角函数的关系,可以得到|a + b| = √((a₁ + b₁)² + (a₂ + b₂)²) = √(a₁² + a₂² + b₁² + b₂² + 2(a₁b₁ + a₂b₂))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数
1. 正角:逆时针旋转;负角:顺时针旋转。
2. 时针在1小时内所转的角度为-30; 分针在1小时内所转的角度为-360。
3. 一般地,与角α终边相同的角的集合为:{}360,k k ββα=•+∈。
4. 终边落在直线上的角用180k α•+表示。
5. 1,,2
L S LR R α===弧长弧度数即面积半径
(经常联系起来考察)。
6. 180()rad π=。
7. 对任意角α
:(()
sin cos tan 0y
r r x
r y
x x
ααα=
==
=≠正弦:余弦:正切: 8.
+ + - + - + - - - + + -
sin α cos α tan /cot αα
9. 22sin sin cos 1,tan cos ααααα
+== “知其一就可以求其二”。
10.
()()()sin sin cos cos tan tan αααααα-=--=-=-奇函数
偶函数奇函数
诱导公式关键步骤:(1)把α看成锐角;(2)确定符号;(3)确定函数名称。
(π±同名函数,322
ππ±±或需换函数名称)
11. 周期函数:()()f
x T f x +=。
不是任何函数都有最小正周期。
12. 一般地,()sin y A x ωϕ=+及()cos y A x ωϕ=+()
,,A ωϕ其中为常数的周期2T πω=;()tan y A x ωϕ=+的周期T πω
=。
13. 函数图象:
y =tanx y =cotx
14. 函数性质: (注:表中k 均为整数)
15. 图象平移:以sin y x =变换到4sin(3)3
y x π=+为例
sin y x =向左平移3π
个单位 (左加右减) sin 3y x π⎛
⎫=+ ⎪⎝⎭
横坐标变为原来的
13倍(纵坐标不变) sin 33y x π⎛
⎫=+ ⎪⎝
⎭
纵坐标变为原来的4倍(横坐标不变) 4sin 33y x π⎛⎫
=+ ⎪⎝
⎭
sin y x =横坐标变为原来的1
3
倍(纵坐标不变)()sin 3y x =
向左平移
9π个单位 (左加右减) sin 39y x π⎛⎫=+ ⎪⎝⎭sin 33x π⎛
⎫=+ ⎪⎝
⎭
纵坐标变为原来的4倍(横坐标不变)4sin 33y x π⎛⎫=+ ⎪
⎝
⎭
注意:在变换中改变的始终是X 。
注意:阅读章节后链接的内容,特别是反三角的表示。
平 面 向 量
1. 向量:既有大小又有方向的量。
零向量:长度为0的向量;与任何向量都平行,方向是任意的! 单位向量:长度为1的向量。
2. 平行向量(共线向量):方向相同或相反的非零向量。
3. 相等向量:大小相等方向相同。
4.
B
C
O A 三角形法则:OA AB OB += 平行四边形法则: OA OB OC += 5. 向量共线定理:()
0a b a b a λ≠⇔=
6. 平面内任何向量都可以用两个不共线的向量表示,即:1122a e e λλ=+
7. 向量的坐标表示:
()()22
,,,,a x y xi y j a x y a x y λλλ==+==
+
()()()())()()1122121212121212
1122
1221
12121122,,,,,,,00,,a x y b x y a b x x y y a b x x y y a b x x y y b a a b x y x y x y x y a b x x y y x y x y λ==+=++-=--•=+⎛⎫⎧=⎪ ⎪⇔⎨ ⎪-=⎪⎩⎝⎭
⎛⎫
⎪
⊥⇔+= ⎪⎝⎭
设:
()()()(11222121,,,A x y B x y AB x x y y AB x ===--=
设:则,
8. 一个向量的坐标表示等于该向量终点的坐标减去起点坐标(如上)
9.
[]()
()1212211cos ,01800180900cos a b a b a b a b a b a b a b a b a b a b x x y y x x y y a b a b
x y θθθθθθθ•=∈︒︒⎧=︒•=⎪⎨
=︒•=-⎪⎩
⊥=︒•=+=+•=
=
+为与的夹角,同向,反向,即:,有 10. cos b θ是b
在
a
方向上的投影,它是数量。
11. 起点()111,P x y 终点()222
,P x y 分点(),P x y 满足:()1
2
1PP PP λλ=≠- (起点到分点,分点到终点),则分点(),P x y 满足:12
1211x x x y y y λλλλ
+⎧=⎪⎪
+⎨
+⎪=⎪+⎩
三角恒等变换
1. 两角和、差公式:
()()()()()()()[]cos cos cos sin sin cos cos cos sin sin sin sin cos cos sin sin sin cos cos sin tan tan tan 1tan tan tan tan tan 1tan tan ,1tan 45αβ
αβαβαβα
βαβαβαβαβαβαβαβαβαβαβ
αβαβαβ+=-⎧⎪⎨-=+⎪⎩+=+⎧⎪⎨-=-⎪⎩±±=±=±=︒注意几种变形例如:等
2. 二倍角公式:
222
2
2sin 22sin cos cos 2cos sin 2cos 1cos 2cos 1sin 2tan tan 21tan αααααα
ααααα
αα
==-=-⇒==-⇒==
-半角公式:
3. 辅助角公式:
()sin cos tan a a x b x x b ϕϕ⎛
⎫+=+= ⎪⎝
⎭其中
4. 注意几种角的变形:
()()()()ααββααββααβαβ=+-=-+=++-,,2 还要注意互余、互补、特殊角间的灵活变形。