有理数的加法运算律PPT课件

合集下载

《有理数的加减混合运算》PPT课件

《有理数的加减混合运算》PPT课件

1、加减混合运算的基本步骤
⑴把混合运算中的减法转变为加法,写成前面是加号的形式;⑵省略加号和括号;⑶恰当运用加法交换律和结合律简化计算;⑷在每一步的运算中都须先定符号,后计算数值。
2、加减混合运算的常用方法
⑴按照运算顺序,从左到右逐一加以计算;⑵把加减法混合运算统一成加法,写成和式的形式后,再运用运算律进行计算。
例题3
(1)(a+b)-(a-c) (2)2(a-b)+(b+c)-IcI (3)4(a-c)-(a+b+c) (4)IaI+IbI+IcI-(a+b+c)
思维方式:
先化简,再把所给值代入后运用有理数加减混合运算法则及加法运算律进行计算。
有理数加减混合运算
- .
复习回顾
(1)有理数的加法法则是什么?(2)有理数的减法法则是怎样的?
有理数的加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)互为相反数的两个数相加得零; (4)一个数与零相加,仍得这个数;
解答
(1)(a+b)-(a-c) = a+b-a+c = b+c
(2)2(a-b)+(b+c)-IcI =2a-2b+b+c- IcI=2a-b+c-IcI
(3)4(a-c)-(a+b+c) =4a-4c-a-b-c =3a-b-5c
【分析】将行驶记录相加,若结果为正,则在原出发地A地的正北方向;若结果为负,则在原出发地A地的正南方向。汽车耗油跟方向无关,只跟行驶的总路程有关。而每段路程即记录的绝对值,总路程即每段路程绝对值的和。解:(+18)+(-9)+(-7)+(-14)+(-6)+(+13)+(-6)+(-8)=-5(千米) 所以,B地在A地的南方,距A地5千米处。 |+18|+|-9|+|-7|+|-14|+|-6|+|+13|+|-6|+|-8|=81(千米)81X a=81 a答:A地在B地的南方距B地5千米。求该天共耗油81 a升

课件有理数的加法ppt_北师大版七年级数学上册ppt

课件有理数的加法ppt_北师大版七年级数学上册ppt

二级能力提升练
11. 已知a是最大的负整数,b是绝对值最小的整数,c
是最小的正整数,则a+b+c等于( B )
A. -1
B. 0
C. 1
D. 2
12. 填空:
(1)绝对值小于2的所有整数的和是 0

(2)已知a是最小的正整数,b是a的相反数,c的绝
对值为3,则a+b+c=
3或-3 .
13.小虫从某点A出发在一直线上来回爬行,假定向右爬
小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:
厘米)+5,-3,+10,
(2)小虫离开原点最远是多少厘米?
第二章 第8课 有理数的加法(2)
答:小虫最后回到出发点A.
有理数及其运算
(1)绝对值小于2的所有整数的和是

答:从A地出发到收工时共耗油33.
(2)若每千米耗油0.5升,从A地出发到收工时共 耗油多少升? (2)|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+
|-2|+|+12|+|+8|+|+5| =10+3+4+2+8+13+2+12+8+5=67, 67×0.5=33.5 (升). 答:从A地出发到收工时共耗油33.5升.
(1)问收工时距A地多远?
第二次爬行距离原点是(+5)+(-3)=2(cm),
第四次爬行距离原点是(+12)+(-8)=4(cm),

有理数加法的运算律PPT授课课件

  有理数加法的运算律PPT授课课件
的海域位于图中( D ) A.甲 B.乙 C.丙 D.丁
图1-1-5
练拔高
7.下列关于我国海洋国土的说法,正确 的是( A ) A.我国的领海宽度为12海里 B.四大边缘海中,面积最大的是东海 C.钓鱼岛是中沙群岛中面积最大的岛 屿 D.黄岩岛是三沙市的政府驻地
图1-1-5
训基础
2.【大同一中阶段检测】我国陆地面积仅次于哪两个 国家( A ) A.俄罗斯、加拿大 B.俄罗斯、美国 C.加拿大、美国 D.俄罗斯、巴西
-0.3,+0.3,则这5袋大米共超过或不足多少
千克?总质量为多少?
导引: 先利用称重记录数据求出超过或不足的千克
数,再用5袋的标准总质量加上这个数,即得
最后总质量.
感悟新知
解:(+0.5)+(-0.2)+0+(-0.3)+(+0.3)
知2-练
=[(+0.5)+(-0.2)]+0+[(-0.3)+(+0.3)]
练拔高
1.【大同一中阶段检测】我国的地理位置十分优越,下列说法 不可信的是( B ) A.我国海陆兼备,背靠亚欧大陆,面朝太平洋 B.我国地理位置优越,大部分位于北温带,少部分在寒带 C.我国有着辽阔的海域,便于发展海洋事业和对外贸易 D.我国陆上邻国较多,有漫长的大陆海岸线
【点拨】我国大部分位于北温带,没有地区位于寒带。
释疑解惑
2.识记我国的邻国 以朝鲜为起点,按逆时针方 向依次记忆我国的14个陆上 邻国;按顺时针方向依次记 忆我国的6个隔海相望的国家。 图1-1-3中文字为国家名称的 第一个字或简称。
图1-1-3
核心笔记
2.疆域 我国陆地面积约960万平方千米,居世界第三位。 我国陆地国界线长22 000多千米,陆上邻国14__个; 大陆海岸线长约18 000千米,隔海相望的国家有6个。

华师大七年级数学上册《有理数加法的运算律》课件

华师大七年级数学上册《有理数加法的运算律》课件

讲解 请你当老师
符号相同
计算:
的先结合
互为相反数
(1)(-23)+(+58)+(-17) 的先结合
(2)(-2.8)+(-3.6)+(-1.5)+3.6
(3) —16 + (- —27 ) + (- —65 ) + (+ —57 )
分母相同的 先结合
例3 有一批食品罐头,标准质量为每听454克. 现抽取10 听样品进行检测, 结果如下表(单位: 克):
听号
1
2345
与标准质量的差值 -10 + 5 0 + 5 0
听号
6
7 8 9 10
与标准质量的差值
0 - 5 0 + 5 + 10
这10听罐头与标准质量差值的和为
(10) 5 0 5 0 0 (5) 0 5 10 [(10) 10] [(5) 5] 5 5 10(克).
有理数的加法
2. 有理数加法的运算律
回顾旧知 1.有理数加法法则要点
(1)同号两数相加, 取 相同的符号, 并把绝对值相加 . (2)异号两数相加, 绝对值相等时,和为0; 绝对值不等时,取绝对值较大加数的符号,
并用较大的绝对值减去较小的绝对值.
(3)一个数同零相加仍得这个数.
2、抢 答
(1)(-10)+(-8)= -18 (2)(-6)+(+9)= 3 (3)(-37)+0= -37 (4)(-3.86)+(+3.86)= 0 (5)(+416)+0= +416
(6)(+6)+(+9)= 15
有理数加法运算律
加法的交换律: a+b=b+a 加法的结合律: (a+b)+c=a+(b+c)

1.3.1有理数的加法(1)PPT课件

1.3.1有理数的加法(1)PPT课件

+5
+3
西

-1 0 1 2 3 4 5 6 7 8
+8
用算式 表示是
(+5)+(+3)=+8
.
11
情形 22、向西走5米,再向西走3米,两
次一共向东走了多少米 ?
-3
-5
西

-8 -7 -6 -5 -4 -3 -2 -1 0 1
-8
用算式
表示是
(-5)+(-3)= .
-
8
12
情形2 - 3
-5
3 6
1
2
.
2 、 3 .4 ( 4 .3 )
2、解: 原式 (4.33.4) 0.9
28
3 、 (3)(2)
4 、 ( 15)0.62
43
8
3、解:原式 ( 3 2)
43
17 12
4、 解 : 原式(15 0.625) 8
(1.6250.625)
1 .
29


+ -

.
15-5 17+6 18-8 8+6 10-5
小明在一条东西向的跑道上,先走了 5米,又走了3米,能否确定他现在位于 原来位置的哪个方向,与原来位置相距 多少米?
因为小明最后的位置与行走方向有关!
规定:向东为正,向西为负
思考:有哪几种不同的情况?写出
数学式子,并计算出结果.
.
10
情形1
1、 向东走5米,再向东走3米,
两次一共向东走了多少米 ?
(3)在爬行过程中,如果爬行1厘米奖励一粒 芝麻,则蚂蚁一共得到多少粒芝麻? 54粒
.
32

人教版七年级数学上册第一章 有理数第2课时 有理数的加法运算律 优秀课件

人教版七年级数学上册第一章 有理数第2课时 有理数的加法运算律   优秀课件

= 40 +(- 60)
怎样使计算
= -20.
简化的?根 据是什么?
把正数和负数分别相加,从而使计算简化. 这样做的依据是加法的交换律和结合律.
练习:教科书第20页 1.计算: (1)23 + (-17) + 6 + (-22) (2)(-2) + 3 + 1 + (-3) + 2 + (-4)
解:(1)23 +(-17) + 6 +(-22) = 23 + 6 + [(-17) +(-22)] = 29 +(-39) = -10
解:(2) (-2) + 3 + 1 +(-3) + 2 +(-4) = 3 + 1 + 2 + [(-2) +(-3) +(-4)] = 6 +(-9) = -3
例3 10袋小麦称后记录如图所示(单位:kg) (1)10袋小麦一共多少kg? 麦总计(超2)过如多果少每千袋克小或麦不以足9多0 k少g为kg标哪?在 们准些计 可,运算 以1算中 使0袋律我 用小?
运用运算律
计算恰当的是( A )
A.
1 2
1 4
2 5
3 10
C.
1 2
1 4
2 5
3 10
B.
1 4
2 5
1 2
3 10
D. 以上都不对
综合应用 2.有8筐白菜,以每筐25kg为标准,超过的千
克数记作正数,不足的千克数记作负数,称后的 记录如下:1.5,-3,2,-0.5,1,-2,-2, -2.5.这8筐白菜一共多少千克?
数学 七年级 上册 R
第 一 章 有理数
1.3 有理数的加减法
1.3.1 有理数的加法
第2课时 有理数的加法运算律
新课导入
我们以前学过加法交换律、结合律,在有理 数的加法中它们还适用吗?

2.1.1 有理数的加法(第2课时 有理数的加法运算律)(课件)七年级数学上册(人教版2024)

2.1.1 有理数的加法(第2课时 有理数的加法运算律)(课件)七年级数学上册(人教版2024)

=-25(km).
答:将最后一名老人送到目的地时,小王在出发点的西边,距离是25 km.
(2)若出租车耗油量为0.08 L/km,这天上午小王的出租车
共耗油多少升?
【解】|+15|+|-4|+|+13|+|-10|+|
-12|+|+3|+|-13|+|-17|=87(km),
0.08×87=6.96(L).
)
A. 5+(-3)=3+5
B. 8+(-5)+9=(-5)+8+9
C. [6+(-3)]+5=[6+(-5)]+3

D. +(-2)+











+(+2)
典例剖析
例1(新课本ห้องสมุดไป่ตู้2 )计算:
(1)8+(-6)+(-8);
(2)16+(-25)+24+(-35).
解:(1)8+(-6)+(-8)
人教版(2024)七年级数学上册 第二章 有理数的运算
2.1.1 有理数的加法
(第二课时) 有理数的加法运算律
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.能概括出有理数的加法交换律和结合律.
2.灵活熟练地运用加法交换律、结合律简化运算(重点、
难点)
情景导入


解: 原式=[(-2.125)+
=3+0=3.

+

]+[

+

+(-3.2)]
14. 出租车司机小张某天下午的营运全是在东西走向的大道上进行的,如果规

1.2 有理数的加法与减法(第2课时 有理数加法运算律)(课件)六年级数学上册(沪教版2024)

1.2  有理数的加法与减法(第2课时 有理数加法运算律)(课件)六年级数学上册(沪教版2024)





- +3.2+


=- + −
=-







)
+7.8
+3.2+7.8
+(3.2+7.8).
A. 加法交换律
C. 先用加法交换律,再用加法结合律
B. 加法结合律
D. 先用加法结合律,再用加法交换律
知识点2 加法运算律的应用


2. 能与-

相加得0的是( C
)




B. +




新知探究
1.加法交换律
观察
(1)分别计算下面的算式,比较每组算式中两个加数的位置和运算结果,你
能得出什么结论?
(-40)+(-30),(-30)+(-40);
(-3)+8.1,8.1+(-3)
(2)再任取两个数相加,并交换加数的位置,还能得出同样的结论吗?
两个有理数相加时,交换加数的位置,和不变,即
+ (−)+







=[(-5)+(-9)+17+(-3)]+[( - )
+(源自- )+ +( - )]=0+




=-1 .
上面这种方法叫作拆数法,依照上面的方法,请你计算:




+ −



+4 048+



.



,可以



【解】 −
=[(-2 023)+ −
加法运算律的灵活运用,解决实际问题(重点).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凑整
凑整
例题:计算
(-12)+(-8)+(-7)+(+39)+7
凑整十 互为相反数相加
解:原式=[(-12)+(-8)]+[(-7)+7]+(+39)
2 填空题: (1) (+_18)+ 5 = 23 (2) 5 + (_- 8) = -3 (3) 3 + (-_12) + (- 5) = - 14 (4) (-_3) + (- 4) + (- 5) = - 12 (5) 15 + (-_4) + (- 11) = 0
解:16+(-25)+24+(-35) 解:16+(-25)+24+(-35)
=(-9)+24+(-35) =16+24+(-25)+(-35) (加法交换律)
=15+(-35)
=[16+24]+[(-25)+(-35)] (加法结合 律)
=-20
通过计算比较那=种40+(-60) (同号相加法则)
计算: (1) (-14)+(+12)+(-6)+13 (2) 2.36+(-25)+(-2)+2.64+(-6) (3) 12+(-3)+(-15)+(+6) (4) -15+(-19)+15+(-21) (5) -9+15+(-11)
3.用两种不同的方法计算 16+(-25)+24+(-32).
三个数相加,先把前两个数相加, 或者先把后两个数相加,和不变.
加法结合律:(a+b)+c=a+(b+c)
使用运算律通常有下列情形:
(1)符号相同的数可以先相加。 (2)互为相反数的两个数可先相加; (3)几个数相加得整数时,可先相加; (4)同分母的分数可以先相加;
例.计算
(-1.75)+(+7.5)+(-2.25)+(-8.5)
运算简高便?、正确=率-20 (异号相加法则)
将 -4、-3、-2、-1、0、1、2、 3、4,这9个数分别填入图所示的9 个空格中,使得所有横行、竖行、 斜行对的3个数相加为0
3
-4
1
-2
0
2
-1
4
-3பைடு நூலகம்
本节课里我的收获是…… 加法交换律:
a+b=b+a
加法结合律:
a+( b+ c )=( a +b )+c
计算下列各题,并说明是根据哪 一条运算法则?
(1) (-9.18) + 6.18; (2) 6.18 + (-9.18); (3) (-2.37) + (-4.63) (4) (-4.63) + (-2.37)
两个数相加,交换加数的位置,
和不变.加法交换律:a+b=b+a
(1) [8+(-5)]+(-4); (2) 8+[(-5)+(-4)]; (3) [(-22)+(-27)]+(+27); (4) (-22)+[(-27)+(+27)].
相关文档
最新文档