求数列通项公式的种方法

合集下载

求数列通项公式的十种常用方法

求数列通项公式的十种常用方法

求数列通项公式的十种常用方法一、构造法构造法是最常见的求解数列通项公式的方法,是根据已知的数列的前几项逐步构造出数列的通项公式的过程,主要包括归纳法、设数据项法、递推法等。

1.归纳法归纳法是根据已知数列中前几项,把同一个数列中的每一项视为全体项的一部分,由以已知项为特例,讨论出全体项的总体规律。

2.设数据项法设数据项法是根据数列的某项与它的前面几项的关系来建立通项公式的方法。

设数据项始终指代着形式未知却已给出它跟前几项关系的某一项,而根据设数据项得出的数列形式叫做设数据项形式,其通项公式就是设数据项形式的通项公式。

3.递推法递推法是根据数列中任一项与它的后面几项的关系,从已知项不断向前推出未知项,从而推出数列的通项公式的方法。

二、方程法方程法是利用数列的某一项与此数列的其它项的关系式组成的线性方程组或者非线性方程组,求解通项公式的概念,虽然它给出的通项公式也不易求解,但是它与构造法相比,可能会在某些情况下得到更简洁的通项公式,所以它也成为了求解数列通项公式常用的方法之一。

三、数学归纳法数学归纳法是一种利用一般性原理来更加正规地寻求数列通项公式的方法,它具有比构造法更多的优点,比如说,它可以处理更加复杂的情形(例如次通项不是已知项的一个常数倍)。

四、分析法分析法是指用分析几何和代数几何方法,通过考察数列中某几个项的构成方式,来推导出整个数列的通项公式的抽象方法。

五、导数比导数比是指根据数列的前几项来推算下一项的一种技巧,以项数为横坐标,相邻两项的比值为纵坐标构成一幅函数图象,然后根据曲线图象分析可以推出数列的某种规律,从而推出数列的通项公式。

六、逆序法逆序法是反其道而行之,以数列的最后一项为起点,根据已知的数列的前几项和最后一项的运算关系,得出最后一项的前一项,以此类推,一直到起始项,从而得出数列的通项公式的一种方法。

七、特殊函数解特殊函数解法是指利用特殊函数及其组合函数构成的数列通项公式的解法,在实际问题中,特殊函数有对数函数、指数函数、三角函数等,使用这些函数可以构成一种数列,从而求出数列的通项公式。

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。

下面将列举十种常见的方法来求解数列的通项公式。

方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。

通项公式可以直接通过公式计算得出。

方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。

可以通过求和公式推导出等差数列的通项公式。

方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。

通项公式可以直接通过公式计算得出。

方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。

可以通过求和公式推导出等比数列的通项公式。

方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。

例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。

方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。

例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。

方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。

例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。

方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。

例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。

方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。

求数列通项公式的各种方法

求数列通项公式的各种方法

求数列通项公式的各种方法
1、数列通项公式的求法
正确求解数列通项公式需要正确使用正确的数学方法,一般有以下几
种方法:
(1)数值计算法
数值计算法是运用一定的运算规则进行计算,可以求出数列通项公式。

运用的计算规则可以是把数列值转化到一个函数中求解,也可以是求出数
列中一组值的和,从而求出数列的一般项的系数。

(2)函数拟合法
函数拟合法是一种采用曲线拟合的方法来求解数列通项公式,它通过
将数列中的数据拟合到其中一种函数形式上来求出数列的通项公式。

一般
来说,采用函数拟合法求解数列的通项公式,需要先建立一种准确的函数
模型,然后通过拟合得到数列的通项公式。

(3)递推法
递推法是一种利用给出的数列中的两项或几项来求出数列中剩余的项,从而求出数列的通项公式的方法。

这种方法的原理是:当给出数列中的两
项或几项时,如果能够找到他们之间的关系或规律,就可以利用这种规律
来求出其他的项,最终求出数列的通项公式。

(4)特殊数列通项公式
特殊数列通项公式是一种将给出数列中的几项拆分开来,再套用一些
特殊的数列通项公式,从而求出数列的通项公式的方法。

常见的特殊数列
通项公式有等差数列的通项公式、等比数列的通项公式和其他一些特殊数列的通项公式。

求数列通项公式常用的八种方法

求数列通项公式常用的八种方法

求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。

数列求通项公式的9种方法

数列求通项公式的9种方法


9:已知数列{an} 满足 a1
1 , an1

an an
2
,求{an} 的通项公式.
例 10(拓展).设由 a1
1, an

an1
2n 1an1
n
1

2,3,定义数列an ,试将 an 用 n 来表示
变式训练 11
已知数列 {an }
满足
a1

1 , an1
变式训练 14
已知数列{an} 满足 a1
2 , an1

1 2 an
2n ,求{an} 的通项公式.
变式训练 15 已知数列{an} 满足 a1 1 , an1 2an 3 2n1 ,求{an} 的通项公式.
七、型如 an1 pan A0n B0 的数列
四、加法构造
型如 an1 kan b ( k、b 为常数)的数列构造{an } 为等比数列
例 7 已知数列{an} 满足 a1 2 , an1 2an 3 ,求{an} 的通项公式.
变式训练 9 已知数列{an} 满足 a1 1 , an1 3an 2 ,求{an} 的通项公式.
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d an=am+(n-m)d
2、等比数列通项公式: an= a1·qn-1 am= a1·qn-m
一、利用 an 与 Sn 关系求 an
an=SS1n,-Sn-1,
n=1, n≥2.
例1 已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+ n+3.
变式训练 10

求数列通项公式的三种方法

求数列通项公式的三种方法

一般地,数列的通项公式可用数列的第n 项表示出来,因此求数列的通项公式,关键是根据数列各项之间的规律,求得数列第n 项的表达式.求数列的通项公式问题可采用公式法、逐差相加法、逐商相减法来求解.一、公式法对于求数列的通项公式来说,公式法是最简单,也最直接的方法,但该方法只适用于求解等差、等比数列的通项公式问题.在解题时,需首先根据等差、等比数列的定义判定数列的类型,然后求出数列的首项、公差、公比,再根据等差数列的通项公式:a n =a 1+(n -1)d ;等比数列的通项公式:a n =a 1q n -1来求解.例1.已知数列{a n }满足a 1=0,且11-a n +1-11-a n =1,求数列{a n }的通项公式.解:∵11-a n +1-11-a n =1,a 1=0,∴11-a 1=1,∴数列{}11-a n是以1为首项,1为公差的等差数列,∴11-a n =11-a 1+(n -1)×1=n ,∴数列{a n }的通项公式为a n =n -1n .由等差数列的定义:从第2项起,每一项与它的前一项的差都等于同一个常数,可知数列{}11-a n是等差数列,求得数列的首项、公差,便可利用等差数列的通项公式求出数列{}11-a n 的通项公式,通过运算,即可得到a n 的表达式.二、逐差相加法逐差相加法也叫做累加法,是求数列通项公式的常用方法之一.当遇到形如a n +1-a n =f (n )的递推式时,可采用逐差相加法求数列的通项公式.首先令n =1,2,3,…,n ,得到a n +1-a n =f (n ),a n -1-a n -2=f (n -1),…,a 2-a 1=f (1),再将各项相加可得a n -a 1=(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)=f (n )+f (n -1)+…+f (1).通过正负相消,即可求得a n 的表达式.例2.若数列{a n }满足a n +1=a n +2n +1,a 1=1,求数列{a n }的通项公式.解:∵a n +1=a n +2n +1,∴a n +1-a n =2n +1,a n -a n -1=2n -1,...a 3-a 2=3=3,a 2-a 1=1.将上述式子累加可得(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)=[2(n -1)+1]+[2(n -2)+1]+…+(2×2+1)+(2×1+1)=2[(n -1)+(n -2)+…+2+1]+(n -1)=2×(n -1)n 2+(n -1)=n 2-1,∴a n =n 2,即数列{a n }的通项公式为a n =n 2.有些数列的递推式并不满足n =1的情况,因此运用逐差相加法求数列的通项公式,要注意考虑n =1的情况是否满足所求得的数列通项公式.三、逐商相乘法逐商相乘法也叫做累乘法,主要适用于求解由形如a n +1a n=f (n )的递推式求数列的通项公式问题.在解题时,需先分别令n =1,2,3,…,n ,得到=f (n ),a n -1a n -2=f (n -1),…,a 2a 1=f (1),再将各项相乘可得a n a 1=a n +1a n ·a n -1a n -2·…·a 2a 1=f (n )·f (n -1)·…·f (1).通过约分,即可求得a n 的表达式.例3.已知数列{a n }是首项为1的正项数列,(n +1)a 2n +1-na 2n +a n +1a n =0,求数列{a n }的通项公式.解:(n +1)a 2n +1-na 2n +a n +1a n =(a n +1+a n )[(n +1)a n +1-na n ]=0,∵a n +1+a n >0,∴(n +1)a n +1=na n ,∴a n +1a n =n n +1,∴a 2a 1=12,a 3a 2=23,a 4a 3=34,…,a n a n -1=n -1n ,将上述n -1个式子相乘可得a n a 1=1n ,∴数列{a n }的通项公式为a n =1n.将数列的递推公式变形后,便可得到形如a n +1a n=f (n )的式子,于是采用逐商相乘法来求解,就能得到数列{a n }的通项公式.总之,无论运用哪种方法求解,都需仔细研究数列的各项或递推式,将其进行适当的变形,使其转化为a n +1-a n =d 、a n +1-a n =f (n )、a n +1a n =d 、a n +1a n =f (n )的形式,然后采用定义法、逐差相加法、逐商相乘法来求出数列的通项公式.(作者单位:甘肃省庆阳市环县第五中学)杜海坤探索探索与与研研究究50。

求数列通项公式的十种办法

求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。

下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。

通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。

例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。

2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。

例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。

3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。

例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。

4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。

例如斐波那契数列可以通过矩阵的特征值和特征向量求得。

5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。

例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。

6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。

例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。

7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。

例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。

8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。

首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。

求数列的通项公式的十种方法

求数列的通项公式的十种方法

求数列通项公式的十种方法一.SA 法⎩⎨⎧≥-==-)2(1)(n11n S S S S n nn 注意具体可分为两种方法 1.改写相减,消去S n2.S n -S n-1直接替换掉a n ,求出S n ,再求出a n例 1. 已知各项均为正数的数列{n a }的前n 项和为n S 满足1S >1且6n S =(1)(2)n n a a ++ n ∈N * 求{n a }的通项公式。

的通项公式和,求数列项和为的前,数列项和为的前:已知数列例}{}{2}{22}{12n n n n n n n b a b T n b n n S n a -=+=的通项公式求各项均为正数,满足:已知数列例}{,21}{2n n nn n a S a a a =+的通项公式并求数列试确定常数最大值为的且项和的前:已知数列练习}{,.8),(21}{12n n n n a k S N k kn n S n a *∈+-=nn n n n a S a n n S 求)已知(求)已知(:练习,2232,732122-⋅=-+-=二.累加累乘法(也可用迭代法求解)用“累加”形如二用“累乘”形如一)()(),()(11n f a a n f a a n n n n +==++的通项公式求满足:已知数列例}{,1,21}{1211n n n n a nn a a a a ++==+的通项公式求项和前中,:已知数列例}{,32,1}{21n n n a a n S n a a +==的通项公式求,满足:已知数列练习n n n n a n a n n a a a ),1(23133}{111≥+-==+的通项公式求数列满足:已知数列练习}{a ,a a ,5a }{a 2n 2)1(311nn nn n ++==三.差商法实质是已知数列的前n 项和或前n 项积,求数列的通项公式的通项公式求数列满足:已知数列例}{),(4444}{113221n n n n a N n na a a a a *-∈=+++}{,2,1}{223211n n n a n a a a a n N n a a 求时都有且对所有中,:已知数列例=⋅⋅≥∈=*四.构造法”“)(1n f pa a n n +=+ ,只能用此法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的7种方法:累加法、 累乘法、 待定系数法、 倒数变换法、 由和求通项 定义法(根据各班情况适当讲)二。

基本数列:等差数列、等比数列。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一。

例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。

例2已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

二、累乘法1.适用于:1()n n a f n a +=----------这是广义的等比数列 累乘法是最基本的二个方法之二。

2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ 例4.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+n n na a ,即11+=+n na a n n∴2≥n 时,nn a a n n 11-=-∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1. 评注:本题是关于n a 和1+n a 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到n a 与1+n a 的更为明显的关系式,从而求出n a .练习.已知11(1),1n n n a na a ++==,求数列{n a }的通项公式.三、待定系数法适用于1()n n a qa f n +=+基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

1.形如0(,1≠+=+c d ca a n n ,其中a a =1)型例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。

解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……练习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a 。

答案:1)21(1+=-n n a2.形如:nn n q a p a +⋅=+1(其中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项方法有以下三种方向:i.两边同除以1+n p .目的是把所求数列构造成等差数列即:nnn n n qp p q a p a )(111⋅+=++,令n nn p a b =,则nn n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.两边同除以1+n q .目的是把所求数列构造成等差数列。

即:q q a q p q a n n n n 111+⋅=++,令n nn q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目的是把所求数列构造成等差数列 设)(11n n n n p a p q a ⋅+=⋅+++λλ.通过比较系数,求出λ,转化为等比数列求通项.注意:应用待定系数法时,要求p ≠q ,否则待定系数法会失效。

例7已知数列{}n a 满足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式。

解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列, 所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(两边同除以1+n q):两边同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略 解法三(两边同除以1+n p ):两边同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略 **3.形如b kn pa a n n ++=+1(其中k,b 是常数,且0≠k )例8在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法) 解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得2)(311+-=--+n n n n a a a a .令n n n a a b -=+1,则231+=-n n b b 利用类型5的方法知2351+⋅=-n n b 即13511-⋅=--+n n n a a ②再由累加法可得213251--⋅=-n a n n .亦可联立①②解出213251--⋅=-n a n n .**5.形如21 n n n a pa qa ++=+时将n a 作为()f n 求解分析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的形式,比较系数可求得λ,数列{}1n n a a λ++为等比数列。

例11已知数列{}n a 满足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式。

解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,不妨取2λ=-,(取-3结果形式可能不同,但本质相同) 则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅练习.数列{}n a 中,若2,821==a a ,且满足03412=+-++n n n a a a ,求n a . 答案:nn a 311-=.四、倒数变换法适用于分式关系的递推公式,分子只有一项 例16已知数列{}n a 满足112,12nn n a a a a +==+,求数列{}n a 的通项公式。

解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公差为12,112(1),21n n n a a n ∴=+∴=+ 五、由和求通项已知数列{}n a 的各项均为正数,且前n 项和n S 满足2132,2n S n n a =-=求数列{}n a 的通项公式。

例19已知数列{}n a 的各项均为正数,且前n 项和n S 满足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式。

解:∵对任意n N +∈有1(1)(2)6n n n S a a =++⑴∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整理得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --= 当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去 所以32n a n =-练习。

相关文档
最新文档