呼吸波形监测
呼吸麻醉教学资料呼吸波形分析

05
CATALOGUE
呼吸波形分析的教学与培训
呼吸波形分析的教学内容与方法
呼吸波形的基本概念
01
解释呼吸波形的定义、组成和意义,以及其在麻醉教学中的重
要性。
呼吸波形分析的方法
02
介绍如何通过观察和解读呼吸波形来评估患者的呼吸状态和麻
醉深度,包括波形特征、参数解读等。
呼吸波形分析的教学案例
03
提供典型病例的呼吸波形图谱,通过实际案例分析帮助学生理
呼吸波形分析的历史与发展
早期的呼吸波形分析主要依赖于人工观察和记录,随着技术的发展,逐渐出现了自 动化的呼吸监测设备和分析软件。
目前,随着计算机技术和信号处理技术的不断发展,呼吸波形分析的准确性和可靠 性得到了显著提高,其在临床上的应用也越来越广泛。
未来,随着人工智能和机器学习技术的进一步发展,呼吸波形分析有望。
解和掌握呼吸波形分析的技巧。
呼吸波形分析的实践操作培训
实践操作环境与设备
介绍进行呼吸波形分析所需的设备和环境,如呼吸机、监护仪等 。
实践操作步骤与注意事项
详细说明如何正确连接设备、采集呼吸波形数据,以及在操作过程 中应注意的事项。
实践操作考核与评估
制定实践操作的考核标准和方法,以便对学生的学习成果进行评估 和反馈。
呼吸波形分析的局限性
信号噪声干扰
呼吸波形信号常常受到各种噪声的干扰,如呼吸机机械振动、患 者体动等,影响分析的准确性。
呼吸模式多样性与个体差异
不同患者的呼吸模式存在差异,如正常呼吸、浅快呼吸、深慢呼吸 等,对波形分析带来挑战。
呼吸波形特征提取难度
呼吸波形复杂多变,特征提取难度较大,需要高精度的算法和模型 支持。
呼吸功能监测

呼吸功能监测
呼吸功能监测是一种重要的临床手段,用于评估患者的呼吸状况和功能。
它可以提供关于呼吸频率、深度、节律和气体交换等方面的关键信息,帮助医生判断患者是否存在呼吸问题,并制定相应的治疗方案。
常见的呼吸功能监测方法包括四种:观察法、体表导联法、血气分析和肺功能测试。
观察法是最简单、常用的方法之一。
通过观察患者的胸部起伏、腹部运动和呼吸节律等情况,可以初步判断患者的呼吸是否正常。
但是观察法存在主观性较强、精确度不高的问题。
体表导联法主要是运用心电图的导联仪原理,将导联仪的电极贴在患者的胸前,记录患者的呼吸电位(呼吸波形电图)。
这种方法可以观察到呼吸波形的起伏、幅度和呼吸频率等指标,对呼吸问题的判断具有一定的参考价值。
血气分析是一种精确度比较高的呼吸功能监测方法。
通过采集患者的动脉血样本,测定其血气指标,如氧分压、二氧化碳分压、血酸碱平衡等。
这些指标可以反映患者的气体交换情况和酸碱平衡状态,帮助医生评估患者的呼吸功能是否正常。
肺功能测试是一种比较全面、综合性的呼吸功能监测方法。
通过呼吸仪器的辅助,测定患者在不同呼气和吸气状态下的肺活量、通气功能和气道阻力等指标。
这些指标可以揭示患者的肺功能状态,帮助评估患者是否存在肺部问题,如慢性阻塞性肺
疾病、哮喘等。
总结起来,呼吸功能监测是一种重要的临床手段,可以提供关于患者呼吸状况和功能的关键信息。
不同的监测方法具有各自的优缺点,医生可以根据具体情况选择合适的方法来进行监测和评估。
呼吸监测技术

呼吸监测技术概述呼吸监测技术是指通过使用特定设备和方法来测量和监测人体的呼吸活动。
这些技术对于评估呼吸系统功能和健康状况至关重要。
本文将介绍几种常见的呼吸监测技术。
病人监护仪病人监护仪是一种常见的用于呼吸监测的设备。
它通常通过连接到病人的身体上的传感器来测量呼吸频率和深度。
这些设备能够实时监测病人的呼吸活动,并显示相关的数据和图形。
呼吸模式分析呼吸模式分析是一种通过分析呼吸波形的技术,来评估呼吸系统的功能和异常。
这种技术可以通过呼吸机或其他设备获取呼吸波形,并通过算法进行数据分析。
通过分析呼吸波形的形状、频率和振幅等特征,可以检测和诊断呼吸系统的问题。
气道压力测量气道压力测量是一种常用的呼吸监测技术。
它通过测量呼吸过程中气道内的压力变化来评估呼吸功能和气道阻力。
这些测量可以帮助医生判断病人是否存在呼吸道狭窄、堵塞或其他异常情况。
呼气末二氧化碳测量呼气末二氧化碳测量是一种用于评估呼吸功能和肺通气情况的技术。
它可以通过检测呼气末二氧化碳浓度的变化来监测呼吸通气量和呼吸代谢情况。
这些测量可以帮助医生了解病人的呼吸状态,并辅助诊断和治疗过程。
声音分析声音分析是一种用于评估呼吸功能和异常的非侵入性技术。
通过分析病人呼吸时产生的声音特征,可以检测呼吸音异常和准确评估呼吸问题。
这种技术对于诊断呼吸系统疾病和睡眠呼吸障碍具有较高的准确性和敏感性。
结论呼吸监测技术在诊断和治疗呼吸系统疾病中起着重要的作用。
病人监护仪、呼吸模式分析、气道压力测量、呼气末二氧化碳测量和声音分析是常见的呼吸监测技术。
通过应用这些技术,医生能够准确评估病人的呼吸功能和健康状况,并针对性地进行治疗和护理。
呼吸力学波形分析与临床意义

呼吸力学波形分析与临床意义概述:呼吸力学波形分析是通过监测和分析患者的呼吸波形来评估其呼吸功能和机械通气支持的效果。
该技术已经在临床上广泛应用,在重症监护科、康复医学和呼吸科等领域发挥了重要作用。
本文将探讨呼吸力学波形分析的原理、临床应用意义以及相关的研究进展。
一、呼吸力学波形分析的原理呼吸力学波形是通过呼吸机、气道插管或面罩等设备采集到的呼吸相关信号,包括压力、流速和容积等参数。
这些信号可以通过传感器转化为电信号,并经过信号处理后显示为图形波形。
呼吸力学波形分析基于呼吸波形的形状和特征,来评估患者的呼吸机械特性和肺功能状况。
二、呼吸力学波形分析的临床应用意义1. 监测呼吸机械通气效果:呼吸力学波形分析可以实时监测患者的呼吸机械通气效果,帮助调整通气参数和预测治疗效果。
例如,通过观察呼气末正压波形的趋势和形态,可以判断患者肺顺应性的变化,评估肺泡塌陷的情况,并调整呼气末正压水平,以提高患者的通气效果。
2. 诊断和评估肺病变:呼吸力学波形分析可以帮助诊断患者的肺病变,并评估其严重程度。
例如,通过观察流速波形的平坦度和上升时间,可以判断患者是否存在患者呼吸道阻塞,如哮喘和慢性阻塞性肺疾病等。
通过观察容积波形的形态和波峰时间,可以评估患者的肺顺应性和气道阻力,辅助判断ARDS等严重肺疾病的程度。
3. 指导机械通气策略:呼吸力学波形分析可以为临床医生提供指导机械通气策略的信息。
例如,通过观察呼吸系统压力波形和流速波形的相位关系和形态,可以判断患者呼吸机和患者的呼吸同步状况,辅助调整呼气末正压水平和呼吸机触发敏感度,以提高通气效果和减少不适感。
三、呼吸力学波形分析的研究进展随着对呼吸力学波形的深入研究,人们不断探索和发现其在临床上的新应用。
例如,部分研究表明,呼吸力学波形分析可以预测ARDS的发生和预后,有助于早期干预和预防。
另外,通过结合机器学习和人工智能等技术,呼吸力学波形分析还有望在未来实现自动化和个体化的呼吸支持治疗。
呼吸功能监测和呼吸波形分析

呼吸功能监测和呼吸波形分析上海第二医科大学附属仁济医院张小先通气量监测(一)潮气量和通气量正常情形下,潮气量(V T)和每分钟通气量(V E)因性别、年龄和体表面积不同而有不同,男性V T约为7.8ml/kg,女性为6.6ml/kg,V E为5~7L/min。
呼吸抑制(如麻醉、镇痛药、肌松药等)和呼吸衰竭时V T 减少,手术刺激和PaCO2升高时,V T增加。
如潮气量减少,频率相应增加(V E=V T×f),假设超过25~30bpm,那么提示呼吸机械运动已不能知足机体需要,而且可致使呼吸肌疲劳。
机械通气时,成人V T需要8~10ml/kg,小儿为10~12ml/kg,可依照PaCO2或呼气末CO2分压(P ET CO2)进行调剂,V T过大时,使气道压力升高,阻碍循环功能。
V E>10L/min,不能撤离呼吸机。
(二)死腔气和潮气量之比正常成人解剖死腔约150ml,占潮气量的1/3。
肺弹性组织减少和肺容量增加,支气管扩张时,解剖死腔增加。
肺内通气/血流(V/Q)比率增大,那么形成肺泡死腔。
例如在肺动脉压下降,肺梗塞,休克和心力衰竭时。
另外,机械通气时的V T过大,气道压力太高也阻碍肺内血流灌注。
面罩、气管导管、麻醉机、呼吸机的接头和回路等都可使机械死腔增加。
死腔气量/潮气量比率(V D/V T)反映通气功能,正常值为0.3,计算方式依照以下公式:V D/V T=(PaCO2-P E CO2)/PaCO2或V D/V T=(P ET CO2-P E CO2)/P ET CO2(三)肺活量是在用最大力量吸气后,所能呼出的最大气量。
约占肺总量的3/4,和年龄呈反比,男性大于女性,反映呼吸肌的收缩强度和储蓄力量。
以实际值/预期值的比例表示肺活量的转变,如≥80%那么表示正常。
肺活量为30~70ml/kg,假设减少至30ml/kg以下,清除呼吸道分泌物的功能将会受到损害;减少至10ml/kg时,将致使PaCO2持续升高,需要用机械通气辅助呼吸。
呼吸波形分析入门

呼吸波形分析入门呼吸波形分析是指对人体呼吸过程中产生的波形进行分析和解读的技术。
通过对呼吸波形的分析,可以了解人体的呼吸情况、肺功能以及一些疾病的发生与发展情况,具有重要的临床应用价值。
本文将介绍呼吸波形分析的基本原理、常用的呼吸波形参数及其临床意义,以及呼吸波形分析的应用领域。
呼吸波形是人体呼吸过程中产生的一种连续变化的曲线,它反映了呼吸肌肉的收缩与放松、胸腔的扩张与收缩。
通过对呼吸波形的分析,可以得到一系列的参数,如呼吸频率(RR)、潮气量(TV)、呼气末正压(PEEP)等,这些参数可以帮助医生了解患者的呼吸情况,判断肺功能是否正常以及是否存在呼吸衰竭。
在呼吸波形分析中,最常用的参数是呼吸频率(RR)。
呼吸频率是指每分钟呼吸次数,正常成人的呼吸频率为12-20次/分钟。
通过对呼吸频率的分析,可以判断患者的呼吸节律是否规律,是呼吸快还是呼吸慢,这对于判断患者是否存在呼吸障碍是非常重要的。
另一个常用的呼吸波形参数是潮气量(TV)。
潮气量是指每次正常呼吸时进出肺部的空气量,正常成人的潮气量为500-800ml。
通过对潮气量的分析,可以判断患者肺功能的情况,如患者是否存在过度通气或通气不足的情况,以及判断患者是否存在通气与灌注不匹配等问题。
此外,呼吸波形分析还可以得到呼吸时间、峰值呼气流速(PEF)和呼气末正压(PEEP)等参数。
呼吸时间是指从吸气开始到呼气结束的时间,正常成人的呼吸时间约为4-6秒。
峰值呼气流速是指呼气过程中的最大流速,反映患者的呼气能力。
呼气末正压是指在呼气末时,呼吸机对患者施加的正压情况,用于维持患者的肺泡开放和改善通气效果。
呼吸波形分析的应用领域非常广泛。
在重症监护室(ICU)中,呼吸波形分析可以帮助医生监测患者的呼吸状况,及时发现呼吸异常,是重症患者管理中的重要手段。
在麻醉领域中,呼吸波形分析可以帮助麻醉医生监测患者的呼吸情况,及时调整麻醉深度和通气参数,确保患者的安全。
在呼吸疾病的诊断和治疗中,呼吸波形分析可以帮助医生判断疾病的类型和严重程度,选择合适的治疗方案。
呼吸机波形基础知

02
呼吸机波形解析
正常波形
正常波形特征
呼吸机波形呈规则的周期性变化 ,包括吸气峰、吸气谷、呼气峰 和呼气谷,各阶段过渡平滑。
正常波形意义
表明呼吸机工作正常,患者呼吸 功能基本正常,气流、压力等参 数处于稳定状态。
异常波形
异常波形特征
呼吸机波形出现异常变化,如波形不 规则、峰或谷异常升高或降低等。
异常波形意义
可能表明呼吸机工作异常或患者呼吸 功能出现障碍,需要进一步检查和干 预。
波形异常的原因及处理
原因1
呼吸道分泌物过多或呼吸道痉挛,导致气流 不畅。
处理1
及时清理呼吸道分泌物,保持呼吸道通畅;使 用解痉药物缓解呼吸道痉挛。
原因2
疗效评估
通过比较治疗前后呼吸机波形的变化,医生可以评估个体化治疗的效果,为后续治疗提供 依据。
患者管理
结合呼吸机波形监测和个体化治疗策略,医生可以更有效地管理患者的呼吸状况,提高机 械通气效果和患者生存率。
05
呼吸机波形监测的注意事 项
监测设备的选择与校准
监测设备的选择
选择符合国际和国内标准的呼吸机波形监测设备,确保其准 确性和可靠性。
呼吸机波形基础知
目录 CONTENT
• 呼吸机波形概述 • 呼吸机波形解析 • 呼吸机波形与疾病诊断 • 呼吸机波形与治疗策略 • 呼吸机波形监测的注意事项
01
呼吸机波形概述
呼吸机波形的定义
01
呼吸机波形是指呼吸机在提供通 气支持时,通过监测气流或压力 变化所形成的动态图形。
02
这些波形可以反映患者的呼吸力 学、气体交换和呼吸系统病理生 理变化等信息。
呼吸机波形

2.3 调节压力上升时间(压力上升斜率或梯度)
压力上升时间是在吸气时间内使预设的气道压力达 到目标压力所需的时间, 事实上是呼吸机通过调节吸 气流速的大小,使达到预设压力的时间缩短或延长.
3.压力-容积环(P-V loop)
P(气道)=气体流量X气道粘性阻力 ; P(肺泡)=潮气量X肺泡弹性阻力; 斜率反映呼吸系统顺应性; a=PEEP,b=气道峰压,c=平台压
3.9 P-V 环反映肺过复膨张部分
3.10 呼吸机流速设置不够的P-V 环
自主呼吸在纵轴左侧负压启动,提示吸
气触发流速大于呼吸机的流速, 未提供 适当的流量, P-V环呈8 字形,说明吸 气有力,在本例中吸气负压达 – 10cmH2O 时才辅以正压吸气, 且呼气肢 突然下降至零,也说明病人吸气用力, 在此时需立即调整呼吸机的吸气流速, 以免人机对抗.
另外因疾病所致的阻力增 加亦可产生类似的环. 环 的吸气肢和呼气肢之间压 力差显著增加(肚大), 说明气道阻力增加.
增加PEEP ,在P-V 环上的效应?
左侧:虚线图为PEEP=0,
实线图PEEP=4 ,右侧图为同一病例PEEP增至8, 注意 与左图比较P-V 环的第一拐点右移而消 失,说明陷闭的小支气管巳开放, 而笫二 拐点也消失说明肺无过度充气. 潮气量基 本无改变. 在P-V 环上监测PEEP 效应建议使用 CMV 模式, 并以顺应性作为指标, 在同样 参数下取顺应性为最大时的PEEP为最佳 PEEP
1.流量-时间曲线(F-T curve)
各种吸、呼气流量波形
A.指数递减波
B.方波
C.线性递增波 D.线性递减波 E.正弦波
F.50%递减波
G.50%递增波
H.调整正弦波
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
呼吸功能监测和呼吸波形分析上海第二医科大学附属仁济医院张小先通气量监测(一)潮气量和通气量正常情况下,潮气量(V T)和每分钟通气量(V E)因性别、年龄和体表面积不同而有差异,男性V T约为7.8ml/kg,女性为6.6ml/kg,V E为5~7L/min。
呼吸抑制(如麻醉、镇痛药、肌松药等)和呼吸衰竭时V T减少,手术刺激和PaCO2升高时,V T增加。
如潮气量减少,频率相应增加(V E=V T×f),若超过25~30bpm,则提示呼吸机械运动已不能满足机体需要,并且可导致呼吸肌疲劳。
机械通气时,成人V T需要8~10ml/kg,小儿为10~12ml/kg,可根据PaCO2或呼气末CO2分压(P ET CO2)进行调节,V T过大时,使气道压力升高,影响循环功能。
V E>10L/min,不能撤离呼吸机。
(二)死腔气和潮气量之比正常成人解剖死腔约150ml,占潮气量的1/3。
肺弹性组织减少和肺容量增加,支气管扩张时,解剖死腔增加。
肺内通气/血流(V/Q)比率增大,则形成肺泡死腔。
例如在肺动脉压下降,肺梗塞,休克和心力衰竭时。
此外,机械通气时的V T过大,气道压力过高也影响肺内血流灌注。
面罩、气管导管、麻醉机、呼吸机的接头和回路等均可使机械死腔增加。
死腔气量/潮气量比率(V D/V T)反映通气功能,正常值为0.3,计算方法根据下列公式:V D/V T=(PaCO2-P E CO2)/PaCO2或V D/V T=(P ET CO2-P E CO2)/P ET CO2(三)肺活量是在用最大力量吸气后,所能呼出的最大气量。
约占肺总量的3/4,和年龄呈反比,男性大于女性,反映呼吸肌的收缩强度和储备力量。
以实际值/预期值的比例表示肺活量的变化,如≥80%则表示正常。
肺活量为30~70ml/kg,若减少至30ml/kg以下,清除呼吸道分泌物的功能将会受到损害;减少至10ml/kg时,将导致PaCO2持续升高,需要用机械通气辅助呼吸。
呼吸力学监测(一)胸肺顺应性由胸廓和肺组织弹性形成,是表示胸廓和肺扩张程度的一个指标,反映潮气量和吸气压力的关系(△V/△P)。
吸气时气道压力大部分用于克服胸肺组织的弹性阻力,使肺膨胀,肺容量增加。
小部分用于克服气道的非弹性阻力,将气体送入肺内。
测定肺顺应性需要计算经肺压(transpulmonary pressure,简称P TP)的变化。
吸气结束和呼气结束时(无气体流动)的经肺压之差,除潮气量所得值即为肺顺应性,其计算公式如下:Cr=Vr/△Cr。
使用具有吸气屏气性能的麻醉机或呼吸机,吸气期的气道压力出现吸气平台。
在屏气时,气道内没有气体流动,不产生阻力,平台压力完全用于克服肺弹性阻力,所以平台压力除潮气量所得值即为胸肺顺应性,其计算公式如下:Cr=Vr/平台压力。
监测胸肺顺应性的意义:(1)监测病情变化。
(2)判断肺疾患的严重性。
(3)观察治疗效果。
(4)判断是否可以停用呼吸机:顺应性<25ml/ cmH2O时,不能停机。
(二)呼吸道阻力呼吸道阻力由气体在呼吸道内流动时的摩擦和组织粘性形成,反映压力与通气流速的关系即(P1-P2/V)。
其正常值为每秒1~3cmH2O/L,呼气时阻力为每秒2~5cmH2O/L。
气道内压力出现吸气平台时,可以根据气道压力和平台压力之差计算呼吸道阻力。
其公式如下:气道阻力=气道压力-平台压力/V(流速),气道阻力=P A×60×吸气时间%/V E/100。
监测气道阻力的意义:(1)了解在各种病理情况下,特别是阻塞性肺疾患时,气道功能的变化。
(2)估计人工气道、加热湿化器和细菌滤网等对气道阻力的影响。
(3)观察支气管扩张药的疗效。
(4)帮助选择机械通气方式:如气道阻力增加明显,使气道压力上升过高时,大于2.5~3.0kPa(25~30 cmH2O),应选用压力控制(PCV)、压力支持(PSV)或双相压力通气(BIPAP)的通气方式,以降低气道压及改善肺内气体分布。
(5)判断病人是否可以停用呼吸机。
(三)气道压力气道内压力由潮气量(V T)、呼吸道阻力(受气道导管内径大小影响)和吸入气流速决定。
一般用压力表显示,也可用记录仪描记气道压力的变化图形。
机械通气时,吸气时压力为正压,成人约1.2~1.5kPa(12~15cmH2O),儿童约1~1.2kPa(10~12 cmH2O),呼气时压力迅速下降至0。
平均气道压过高时影响循环功能。
增大潮气量,加快呼吸频率和吸入气流速,以及使用PEEP时均使平均气道压升高。
为防止气道压力突然上升过高,现代麻醉机和呼吸器都具有限压装置。
监测气道压力变化可以及时了解V T和呼吸道阻力的变化。
V T和吸入气流速维持稳定不变,气道压力直接反映呼吸道阻力和胸肺顺应性。
如气道压力升高,则说明有呼吸道梗阻,顺应性下降以及肌张力增加等。
如气道压力降低,则说明管道漏气。
另一方面,如气道阻力和顺应性无变化,则气道压力下降说明潮气量减少。
(四)呼吸中枢驱动力(P0.1)是测定膈肌发生收缩时所需要的神经兴奋强度。
P0.1的改变与膈神经肌电图呈线性关系。
反映呼吸中枢兴奋性和呼吸驱动力。
P0.1已成为评估呼吸中枢功能的常用方法,并且也是决定撤离呼吸机的重要指标。
其正常值为0.2~0.4kPa(2~4cmH2O)。
小于0.6kPa(6cmH2O)方可停用呼吸器。
P0.1大于0.6kPa(6cmH2O)不能撤机。
其原因可能为:①当时呼吸肌负荷过重,呼吸中枢代偿性功能增强;②呼吸功能未完全恢复,收缩效率低,产生一定的收缩力需要更大的驱动力。
P0.1过高者用辅助呼吸时,病人触发呼吸机送气时增加呼吸作功。
它是决定病人能量消耗的一个主要因素。
此外也可能提示心肺功能有异常。
P0.1过低提示呼吸驱动减退。
波形监测(一)压力-容量环压力-容量环(pressure-volume loop)反映压力和容量之间的动态关系。
不同的通气方式其压力-容量环的形态也不相同。
如图1-A为控制呼吸的压力-容量环,其中下面的一段曲线代表吸气(a),上面的一段曲线代表呼气(b),图形在纵轴的右侧,描绘的走向是逆时钟方向移动。
自主呼吸时,吸气曲线(a)和吸气量均在纵轴左侧,并且是顺时钟方向移动(图1-B)。
辅助呼吸时,吸气开始,吸气波形曲线首先出现于纵轴左侧(病人自己吸气形成),随即转向右侧,并且是逆时钟方向转动(图1-C)。
压力-容量环的临床用于以下个几方面。
1、估计胸肺顺应性压力-容量环纵轴的移动代表了胸顺应性的变化。
如向左上方向移动,说明顺应性增加,如向右下移动则为顺应性减少。
如果吸气段曲线趋于平坦,就说明肺已过度膨胀。
此时虽然吸气压力继续上升,但潮气量并不再增加。
如果呼气段曲线呈球形,并且其纵轴向右下移动,则说明呼吸道阻力增加。
2、计算吸气面积和估计病人触发机器送气所做的功位于纵轴左侧的压力-容量环内的面积为吸气面积,反映病人触发机械通气所需做的功,不包括气管导管,病人气道阻力和顺应性的影响。
流量触发控制呼吸时的压力-容量环中的吸气面积明显减少,说明流量触发可以明显减少病人的呼吸作功。
3、指导调节PSV时的压力水平图2为PSV时的压力-容量环。
其中A为吸气的面积,代表病人吸气触发所做的功。
纵轴右面的斜线区代表呼吸机所做的功。
增加压力和用流量触发都可以减少病人呼吸做功。
4、发现呼吸异常情况气管插管后,如气道压力显著高于正常,而潮气量并未增加,则提示气管导管已进入一侧支气管内。
于纠正后,气道压力即恢复正常(图3-A)。
如果气管导管有曲折,气流受阻时,于压力-容量环上可见压力急剧上升,而潮气量减少(图3-B)。
5、监测双腔导管在气管内的位置双腔管移位时,其压力-容量环也立即发生变化(图4)。
其中上图为双腔管位置正确的压力-容量环。
①为双肺通气时;②为单肺通气时,其气道压力稍升高,而潮气量无变化。
下图为双腔管位置不正确时的压力-容量环。
①为双肺通气时;②为单肺通气时,其潮气量无变化,而气道压力显著升高。
(二)流量-容量环(阻力环)流量-容量环(flow-volume loop)显示呼吸时流量和容量的动态关系。
在肺疾患者,流量-容量环发生异常(图5)。
(三)阻力环监测临床用于以下几个方面:1、判断支气管扩张药的治疗效果呼气流量波形变化可反映气道阻力变化,从而判断用药后支气管可以扩张的程度,以及确切了解支气管扩张药的治疗效果。
如图6所示,左侧为对照环,中间和右侧为用药后的变化。
中间图中的呼气流量(A)明显减慢,且其后半部呈扇贝壳状(B),说明疗效不佳。
右侧图中呼气流量明显增加(A),并其后半部下降较平坦,说明疗效明显。
2、监测呼吸道回路有否漏气若呼吸道回路有漏气,则流量-容量环不能闭合,呈开放状,或面积缩小(图7)3、监测双腔导管在气管内的位置和内源性PEEP 双腔导管在气管内的位置移位,阻力环立即发生变化,呼气时流速减慢和阻力增加(图8)。
如果单肺通气时,气流阻力过大,流速过慢,致使呼气不充分,可发生内源性PEEP,阻力环上表现为持续的呼气气流(图9)。
此外,手术操作也可影响阻力环,使图形发生异常,应注意鉴别。
4、用于鉴别诊断急性呼吸困难病人,监测阻力环可协助诊断其致病原因。
因呼吸道梗阻引起者其阻力环具有特征性的变化。
(1)非固定性胸腔内呼吸道梗阻阻力环的吸气流速波形无变化。
当呼气时,由于胸腔正压压迫气道,使呼气流速被截断,其呼气高峰流速、中期流速、以及用力肺活量均明显下降,呈现独特的平坦的呼气流速波形。
(2)非固定性胸腔外上呼吸道梗阻在吸气时,由于在梗阻部位以下的气管腔内的明显负压,影响了阻力环的吸气流速,表现为缓慢而稳定波形,其吸气流速,高峰流速,第1秒的用力吸气量均明显下降,或被截断,而其呼气流速波形可以正常。
(3)固定性上呼吸道梗阻不论其梗阻部位是在胸腔内或外,其阻力环的波形变化均相似。
呼气高峰流速中度下降,呼气和吸气的流速波形均呈平坦。
呼吸功监测吸气时影响肺膨胀的两个主要因素为胸肺弹性阻力(胸肺顺应性)和非弹性阻力(气流阻力和组织粘性)。
呼吸肌收缩所产生的力,由变化的压力反映,用于克服上述两种阻力,使肺泡容量增加。
呼吸功(WOB)即为变化的压力(P)和变化的容量(dv)的积分。
即WOB=∫Pdv。
压力容量环反映呼吸做功,由其面积就可以计算呼吸功。
正常情况下,自主呼吸时,压力-容量环的描绘方向为顺时针方向移动,呼气是被动的,不做功(图10)。
现在临床上计算呼吸功的方法是用百康(Bicore)监测装置(Riverside CA),首先测定病人的胸壁顺应性,然后再根据潮气量和食管压力变化,用Campbell Diagram软件计算呼吸功。
1、监测内容因呼吸功能减退需要给予机械通气支持时,病人通过呼吸机自主呼吸所做的功,包括两部分:(1)生理功生理功(physiologic work WOBp)包括病人自主呼吸时,为克服弹性阻力所做的弹性功和克服气流阻力所做的阻力功。