传感器在检测技术中的应用及发展的研究

合集下载

传感器技术在食品安全检测中的应用

传感器技术在食品安全检测中的应用

传感器技术在食品安全检测中的应用民以食为天,食以安为先。

食品安全一直是社会关注的焦点问题,直接关系到人们的身体健康和生命安全。

随着科技的不断发展,传感器技术在食品安全检测领域发挥着越来越重要的作用。

传感器作为一种能够感知和响应环境变化的装置,可以快速、准确地检测食品中的各种成分和污染物,为保障食品安全提供了有力的技术支持。

一、传感器技术的分类目前,应用于食品安全检测的传感器技术主要包括生物传感器、化学传感器和物理传感器三大类。

生物传感器是利用生物活性物质(如酶、抗体、核酸等)作为识别元件,与待测物质发生特异性反应,通过换能器将反应信号转化为可测量的电信号或光信号。

例如,酶传感器可以检测食品中的农药残留、兽药残留等;免疫传感器则能够对食品中的细菌、病毒等病原体进行检测。

化学传感器主要是基于化学物质之间的相互作用来检测目标分析物。

常见的有电化学传感器、光学化学传感器等。

电化学传感器通过测量电极表面的电流、电位或电导变化来确定物质的浓度;光学化学传感器则利用物质对光的吸收、发射或折射特性进行检测。

物理传感器则是通过测量物理量(如温度、压力、湿度等)的变化来间接反映食品的质量和安全状况。

例如,近红外光谱传感器可以快速检测食品中的水分、蛋白质、脂肪等含量。

二、传感器技术在食品安全检测中的具体应用(一)农药残留检测农药的广泛使用虽然提高了农作物的产量,但也带来了潜在的食品安全风险。

传统的农药残留检测方法通常需要复杂的样品前处理和昂贵的仪器设备,费时费力。

而传感器技术的应用则大大提高了检测效率和准确性。

例如,基于乙酰胆碱酯酶的生物传感器可以快速检测有机磷和氨基甲酸酯类农药残留,其检测限低,操作简便,适用于现场快速检测。

(二)兽药残留检测在畜牧业中,为了预防和治疗动物疾病,常常会使用兽药。

然而,兽药残留超标会对人体健康造成危害。

免疫传感器在兽药残留检测方面表现出色,能够特异性地检测出肉类、蛋类和奶制品中的抗生素、激素等兽药残留。

传感器技术在生物学中的应用

传感器技术在生物学中的应用

传感器技术在生物学中的应用在生物学中,传感器技术的应用越来越广泛。

传感器可以用来检测生物体内的化学物质、生物分子等,从而对生物体的生理状况进行监测。

传感器还可以应用于环境污染检测、食品安全检测、药物研发等领域。

本文将重点讨论传感器技术在生物学中的应用,并探讨其未来的发展方向。

一、传感器技术在生物检测中的应用1.生物体内化学物质检测传感器可用于检测生物体内的化学物质,例如葡萄糖、乳酸和尿素等。

这些化学物质的浓度与某些疾病相关,因此传感器技术可用于疾病预防与治疗。

例如,可用光学或电化学传感器测量血液中的葡萄糖浓度,对于糖尿病患者进行有效的血糖控制非常重要。

2.生物分子检测传感器还可用于生物分子的检测,例如蛋白质、DNA、RNA等。

这一技术在癌症诊断、药物研发等领域中具有重要应用。

例如,一些光学传感器可用于捕捉癌细胞表面的特定蛋白质,从而诊断癌症类型,并为治疗方案提供数据支持。

3.环境污染检测传感器还可用于环境污染检测。

通过检测水中的有害物质或土壤中的有毒物质,可以及时发现污染情况,从而减少生态破坏的损失。

例如,现在有机会利用生物传感器监测饮用水源地中的微量元素、重金属及有机物污染,这种做法不但简单、实用,而且具有灵敏度、特异性和经济性。

二、传感器技术的未来发展方向1.微纳技术微纳技术是传感器领域的一个重要发展方向。

借助于微纳技术,可以制造出小巧精密的传感器,并将其用于生物学的各个领域。

例如,通过微纳加工技术,可以制造出微型电子生物芯片,上面可储存大量生物信息,包括基因序列、蛋白结构等。

2.多功能传感器多功能传感器是未来的发展趋势之一。

传感器不再仅仅用于单一的检测任务,而是能够实现多种检测任务。

例如,一种兼具多功能的传感器可以用于检测蛋白质、核酸等,同时还能检测细胞活性和形态。

3.智能传感器系统随着大数据和人工智能技术的发展,深度学习技术也被引入到传感器技术中。

通过智能传感器系统,可以对生物检测数据进行分析、处理和预测,从而提供更准确、更可靠的生物信息。

传感器技术在食品安全监测中的应用研究

传感器技术在食品安全监测中的应用研究

传感器技术在食品安全监测中的应用研究在当今社会,食品安全问题备受关注。

从农田到餐桌,食品要经历多个环节,任何一个环节出现问题都可能影响食品的质量和安全。

为了保障公众的健康,确保食品的安全性,各种先进的技术被应用于食品安全监测领域,其中传感器技术发挥着日益重要的作用。

传感器技术是一种能够感知和检测物理、化学或生物量,并将其转化为可测量和可处理信号的技术。

在食品安全监测中,传感器技术凭借其快速、灵敏、准确等特点,成为了保障食品安全的有力手段。

首先,化学传感器在食品安全监测中有着广泛的应用。

例如,用于检测食品中的农药残留。

农药的不当使用可能导致农产品中的农药残留超标,对人体健康造成潜在威胁。

通过化学传感器,可以快速检测出食品中农药的种类和含量。

这类传感器通常基于特定的化学反应或物质相互作用,能够对目标化合物产生特异性的响应。

再比如,检测食品中的重金属含量。

重金属如铅、汞、镉等一旦进入人体,会在体内积累,对神经系统、肾脏等造成损害。

化学传感器能够准确检测出食品中这些重金属的存在及含量,为食品安全把关。

生物传感器也是食品安全监测中的重要工具。

以检测食品中的致病菌为例,常见的致病菌如沙门氏菌、大肠杆菌等,如果食品被这些病菌污染,可能引发食物中毒等严重后果。

生物传感器利用生物识别元件(如抗体、酶、核酸等)与致病菌特异性结合的特性,实现对致病菌的快速检测。

此外,生物传感器还可用于检测食品中的抗生素残留。

在养殖过程中,为了预防和治疗动物疾病,可能会使用抗生素。

但如果抗生素残留超标,会影响人体的肠道菌群平衡,甚至导致耐药性的产生。

通过生物传感器,能够及时发现食品中抗生素残留是否超标,保障消费者的健康。

物理传感器在食品安全监测中同样不可或缺。

比如在食品包装过程中,通过压力传感器可以监测包装的密封性,确保食品在储存和运输过程中不受外界污染。

温度传感器则可以用于监控食品的储存和运输温度。

对于一些需要特定温度条件保存的食品,如冷链食品,温度的控制至关重要。

生物传感器和智能检测技术的研究和应用

生物传感器和智能检测技术的研究和应用

生物传感器和智能检测技术的研究和应用生物传感器和智能检测技术近年来取得了快速发展。

这些技术的研究和应用,不仅极大地推动了生物医药、食品安全、环境监测等领域的发展,也为人们提供了更加精准快速的检测手段。

传统的检测方法需要进行多次重复的实验,所需时间长、费用高。

而生物传感器和智能检测技术具有响应速度快、检测结果准确、便于操作等特点,能够快速、逐步进行有效的监测。

生物传感器和智能检测技术不仅在应用领域中发挥了重要作用,同时也推动了相关技术和理论的研究。

生物传感器的研究与应用生物传感器是利用生物体系中高度选择性的生物识别分子(如酶、抗体、细胞等)与传感器技术相结合,用于检测分子、细胞、生物体以及其它生物质的一种技术。

生物传感器的种类繁多,其中最常见的是基于酶、抗体和DNA的传感器。

以酶传感器为例,酶传感器是一种将酶与传感电极融合,利用酶的催化作用及其生成的电流、电压、荧光、发光等信号来测定检测物的一种传感器。

酶传感器具有灵敏度高、选择性好、响应迅速等特点,并且易于制造,因此得到了广泛研究和应用。

同时,酶传感器还有着广泛的应用领域,如生物医药、食品检测、环境监测等。

抗体传感器则是利用免疫体系中抗体与分子结合力强、选择性高的优点,通过有机改性材料或生物材料将抗体固定在电极表面上,当待测分子进入生物传感器时,与之对应的抗体分子与之结合,从而发生变化引起电信号的变化。

抗体传感器在食品安全、临床生物医药、农业和环境监测等领域有着重要的应用。

DNA传感器则是以DNA序列为靶,利用DNA分子中特异性配对基对—腺嘌呤(A)-胸腺嘧啶(T),胞嘧啶(C)-鸟嘌呤(G)的规律作为检测原理的一种生物传感器。

DNA传感器通过一系列生物学技术和纳米技术,将特定的DNA序列捕获在传感器上,当目标DNA片段进入到生物传感器内部时,由于其具有完全的序列互补性,两段DNA分子之间能够高效结合,产生震荡信号,从而实现了DNA序列的精准检测。

传感器技术在水质监测中的应用研究

传感器技术在水质监测中的应用研究

传感器技术在水质监测中的应用研究水是生命之源,对于人类的生存和发展至关重要。

然而,随着工业化和城市化的快速推进,水资源受到了不同程度的污染。

为了保障水资源的安全和可持续利用,水质监测成为了一项至关重要的任务。

传感器技术作为一种先进的检测手段,在水质监测中发挥着越来越重要的作用。

一、传感器技术概述传感器是一种能够感知并检测物理量、化学量或生物量等信息,并将其转换为可测量的电信号或其他形式输出的装置。

在水质监测中,传感器能够实时、连续地监测水质参数,为水质评估和管理提供重要的数据支持。

传感器的工作原理通常基于物理、化学或生物反应。

例如,物理传感器可以通过测量水温、水压、电导率等物理参数来反映水质状况;化学传感器则利用化学反应来检测水中的化学物质浓度,如溶解氧、酸碱度、重金属离子等;生物传感器则基于生物分子(如酶、抗体)与污染物的特异性结合来实现对水质的监测。

二、传感器技术在水质监测中的应用1、物理参数监测水温是水质监测中的一个重要参数,它对水生生物的生存和水生态系统的平衡有着重要影响。

温度传感器能够准确测量水体的温度变化,为研究水生态环境提供基础数据。

水压传感器可以监测水的压力,对于水利工程和地下水监测具有重要意义。

电导率传感器用于测量水中的离子浓度,从而间接反映水质的纯度和污染程度。

2、化学参数监测溶解氧是衡量水体自净能力和水生生物生存环境的关键指标。

溶解氧传感器能够实时监测水中溶解氧的含量,及时发现水体缺氧情况。

酸碱度(pH 值)传感器可以准确测量水体的酸碱性,对于判断水体的化学性质和污染物的存在形态具有重要作用。

重金属离子传感器能够快速检测水中的重金属离子,如铅、汞、镉等,对于防止重金属污染对人体健康和生态环境造成危害至关重要。

3、生物参数监测生物传感器在水质监测中的应用也越来越广泛。

例如,利用酶传感器可以检测水中的有机物含量,如酚类、农药等。

免疫传感器基于抗体与抗原的特异性结合,能够检测水中的微生物和病原体,如大肠杆菌、病毒等,对于保障饮用水安全具有重要意义。

海洋环境监测中的传感器技术应用与研究

海洋环境监测中的传感器技术应用与研究

海洋环境监测中的传感器技术应用与研究【引言】海洋是人类赖以生存的重要资源,也是全球环境变化的重要指标之一。

随着现代化技术的发展,海洋环境监测的手段越来越精细化和智能化,其中传感器技术是不可缺少的重要环节。

本文将重点介绍海洋环境监测中传感器技术的应用与研究。

【传感器技术在海洋环境监测中的应用】1.浮标传感器浮标传感器是一种重要的海洋环境监测设备,主要用于测量海洋表层温度和盐度等参数。

根据海洋温度和盐度的变化可对海洋环境的变化趋势进行分析和预测。

一些高端的浮标传感器还可以测量海流、氧气含量等参数,可以满足海洋环境监测的多种需求。

2.水下传感器水下传感器是一种用于在海洋底部或者水下进行环境检测的设备。

主要用于监测海洋底部生态环境、水下气体、泥沙等参数。

同时,水下传感器还可以用于探测沉船遗迹及其周围环境,其应用范围非常广泛。

3.可穿戴式传感器可穿戴式传感器可以通过佩戴在人体表面或者动物体表面,对周围环境和身体状态等参数进行实时监测。

在海洋环境监测中,可穿戴式传感器主要用于对海洋动物的运动状态、心率、呼吸等体征的监测。

得益于其便携、低成本的优点,可穿戴式传感器在海洋生态研究领域具有广阔的应用前景。

【传感器技术在海洋环境监测中的研究进展】1.多功能传感器的研发多功能传感器集成了多种传感器功能,是目前研究的热点之一。

通过在一个传感器内部集成多个传感器模块,可以大幅度提升传感器的智能度和可靠性。

这种多功能传感器的研发不仅可以应用于海洋环境监测,还可以应用于机器人、智能家居等领域。

2.传感器网络技术的研究传感器网络技术可以将多个传感器相互联通,形成一个强大的传感器网络,实现对更广范围内的海洋环境进行监测。

传感器网络技术可以实现数据的快速传输和共享,提升监测效率和准确性。

此外,传感器网络技术还可以实现监测结果的实时反馈和联动控制,为环保治理和应急处置等方面的应用提供更强大的技术支持。

【结论】传感器技术在海洋环境监测中具有重要的应用和研究价值。

生物传感器技术的发展与应用

生物传感器技术的发展与应用随着科技的飞速发展,越来越多的生物传感器技术被研发出来并得到了广泛应用。

生物传感器是一种能够检测生物体内化学、物理和生理性质的设备,常用于医学、环境保护、食品安全等方面。

本文将介绍生物传感器技术的发展与应用,并对其前景进行展望。

一、生物传感器技术的发展历程生物传感器技术的最早研究可以追溯到20世纪50年代。

当时,科学家们首次研发出能够检测葡萄糖的生物传感器,但由于技术水平和设备限制,其检测效果并不理想。

直到70年代末期,随着纳米技术和信息技术等新技术的发展,生物传感器技术才得以大幅提升。

进入21世纪,生物传感器技术实现了跨越式发展。

新型的材料、微纳加工和微电子技术的应用使得生物传感器的灵敏度、选择性和稳定性得到了大幅提升。

此外,智能化和自动化技术的应用也使得生物传感器成为了现实生活中的重要工具。

二、生物传感器技术的应用领域1. 医学领域生物传感器是医学领域中最为重要的工具之一。

例如在糖尿病患者的日常生活中,通过佩戴连续血糖监测器,患者可以随时随地观察自己的血糖水平。

同时,同步传输到医生端的数据也能帮助医生及时调节患者的药物使用和饮食习惯。

生物传感器在其他疾病的诊断和治疗方面也有着广泛的应用,比如应用于血压、呼吸等实时生命监测。

2. 环境保护领域在近年来,生物传感器技术也被广泛应用于环境保护领域。

例如,通过生物传感器检测水环境中的浓度和种类,可以有效地预测和监控水的质量状况,避免水污染造成的环境危害。

此外,生物传感器还可以应用于大气质量监测、土壤质量分析等多个方面。

3. 食品安全领域生物传感器技术也被应用于食品安全领域。

通过生物传感器检测食品中的毒素、微生物等潜在的食品安全隐患,可以有效地预防食品中毒事件的发生。

三、生物传感器技术的未来发展及前景随着技术的日新月异,生物传感器技术的应用前景十分广阔。

由于生物传感器技术的突出优势,未来的生物传感器技术将会朝着以下几个方面得到不断的创新和拓展。

浅谈传感器技术在食品检测中的应用

浅谈传感器技术在食品检测中的应用经过12周前沿讲座的科普,我对电信这个专业及其领域的最新发展有了更多的了解,这些领域的发展应用都给我留下了深刻印象,其中,朱启兵老师及其团队所在研究的传感器技术在食品检测中的应用最为吸引我。

针对咱们学校较强的食品专业及社会近来普遍发生的食品安全问题,我想在本论文中,就传感器技术在食品检测中的应用聊一聊。

一、传感器技术传感器(transducer/sensor)是一种检测装置,能检测被测量的信息,并将其按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

传感器技术就是通过这种传感器装置进行检测的技术。

传感器技术是信息获取的重要手段,与通信技术和计算机技术共同构成信息技术的三大支柱。

传感器的种类及其繁多,应用领域更是涉及人类生活的各个部分,如工业自动化、农业现代化、航天技术、军事工程、环境监测、医疗诊断、交通运输、家用电器等。

虽然传感器因为其微型化、数字化、智能化、多功能化、系统化、网络化的特点使得传感器技术得以广泛应用,但是传感器设置的场所并非是理想的,在温度、湿度、压力等效应的综合影响下,可引起传感器零点漂移和灵敏度的变化,已成为使用中的严重问题,而这也将成为未来我们攻克传感器技术的重点及注意事项。

二、传感器技术在食品检测中的应用上述对传感器技术的简介中,粗略地提到了传感器技术在人类生活的应用。

对于“民以食为天”的传统思想以及近年来频发的地沟油、三鹿奶粉、肯德肉质问题等,一些简便、敏感、准确、省力、省成本的快速检测方法越来越多地被运用到食品安全性检测中。

其中,生物传感器作为一种快速、灵敏的检测技术,正成为食品快速检测技术研究的新热点。

生物传感器是以固定化生物活性物质(酶、蛋白质、微生物、DNA及生物膜等)作敏感元件与适当的物理或化学换能器有机结合而组成的一种先进分析检测装置,其工作原理是:待测物质经扩散作用进入分子识别元件(生物活性材料) ,经分子识别作用与分子识别元件特异性结合,发生生物化学反应, 产生的生物学信息通过相应的信号转换元件转换为可以定量处理的光信号或电信号,再经电子测量仪的放大、处理和输出,即可达到分析检测的目的。

新型传感器的研究现状及未来发展趋势

新型传感器的研究现状及未来发展趋势传感器是一种现代化技术所必需的元件,它能够将各种物理量转化为电信号。

传感器的应用范围广泛,例如自动化生产、交通运输、医疗诊断、安全监测等领域,因此传感器技术的发展对现代化生产、生活、科学技术的发展有着非常重要的作用。

传感器的种类很多,根据测量的物理量不同,可以分为温度传感器、压力传感器、流量传感器、湿度传感器、加速度传感器、光学传感器等等。

在这些传感器中,新型传感器是一种备受关注的技术。

一、新型传感器的研究现状1. MEMS技术传感器MEMS是微电子机械系统(Micro-Electro-Mechanical System)的缩写,它是一种微型化的电气机械系统,它能够将机械元件和电子元件进行集成化处理。

因此,MEMS技术传感器的优势在于体积很小、功耗低、响应速度快、可靠性高、价格便宜等等。

如今,MEMS技术传感器的应用已经非常广泛,例如手机中的加速度传感器、陀螺仪、磁力计、压力传感器等等,这些传感器的应用大大提升了手机的功能和用户体验。

2. 光纤传感器光纤传感器是一种基于光学原理的传感器,它使用光的传输来测量物理量。

与传统传感器相比,光纤传感器具有很多优势,例如高灵敏度、抗干扰能力强、安全可靠、经济实用,能够实现长距离传递、分布式检测等等。

目前,光纤传感器主要应用在石油天然气、交通运输、环境监测、生命科学等领域。

例如,在石油天然气开采中,光纤传感器可以测量油井的温度、压力、流量等参数,可以帮助确定油井的产量和工作状态,并且可以提高油井的生产效率。

3. 生物传感器生物传感器主要是应用在医疗诊断领域中的,它能够检测人体内的生物分子、细胞和组织等信息。

例如,可以测量血液中的血糖、白细胞计数、酸碱度等指标,可以帮助医生进行疾病的诊断和治疗。

目前,生物传感器技术发展非常迅速,尤其是以DNA、RNA 等为基础的生物传感器,它可以快速、准确地检测病原体、基因变异等信息,有望成为未来医疗诊断中的主要手段。

传感器技术的发展与应用前景

传感器技术的发展与应用前景随着科技的迅速发展,越来越多的新兴技术被应用在工业制造、医疗、农业等领域。

其中,传感器技术作为一项应用广泛的关键技术,其发展速度也非常迅速。

传感器技术是工业自动化和信息科学中不可或缺的重要组成部分,通过实时采集和反馈物理量信息,控制和调节生产过程,提高工业生产的精度和效率,降低生产成本。

本文将从传感器的概念、传感器技术的发展历程及现状、传感器在各行业的应用前景等方面来探讨传感器技术的发展与应用前景。

一、传感器的概念传感器是将感应信号转换为可供测量或处理的输出信号的一种装置,它可以将任意物理量如温度、湿度、压力等转变成电信号,通过传输到某种处理装置进行测量和计算。

传感器主要由感受器、信号处理器和输出器三部分组成,感受器负责将感应信号转换成电信号,信号处理器负责将电信号进行数学处理,输出器负责将处理后的信号输出。

二、传感器技术的发展历程传感器技术的发展历程可以追溯到20世纪初,在那个信息传输技术非常落后的时期,人们主要采用机械仪表来进行物理量的检测。

但是,机械仪表存在精度低、易受干扰等问题,为实现精度高、智能化的检测需求需要寻求新的解决方案。

20世纪50年代,电子技术的发展促进了传感器技术的进步。

其后,微机技术、计算机技术、通信技术不断发展,人们对传感器技术的研究和应用也不断深入。

随着信息技术和物联网技术的发展,传感器技术得到了广泛的应用,并在医疗、交通、车联网等领域内产生了显著的效益。

三、传感器技术的现状目前,传感器技术已经非常成熟,种类也越来越多,包括光学、机械、电磁等多种类型。

而且,现代传感器技术的应用领域也越来越广泛,静态物理量如温度、湿度、气压、流量等及动态物理量如加速度、速度、旋转角度、姿态角等均能通过传感器来检测。

西门子、思科、爱立信等公司在进口传感器技术方面处于国际领先地位,国内主要的传感器公司包括华盛仪器、燕京仪器、中南传感器等。

目前,传感器已经广泛应用于工业、交通、医疗、农业等领域,为我们的工作、生活带来了便捷和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器在检测技术中的应用及发展的研究一:传感器在检测技术中的作用及地位检测(Detection)是利用各种物理、化学效应,选择合适的方法与装置,将生产、科研、生活等各方面的有关信息通过检查与测量的方法赋予定性或定量结果的过程。

能够自动的完成整个检测处理过程的技术称为自动检测与转换技术。

检测技术是现代化领域中很有发展前途的技术,他在国民经济中起着极其重要的作用。

近几十年来,自动控制理论和计算机技术迅速发展,并已应用到生产和生活的各个领域。

但是,由于作为“感觉器官”的传感器技术没有与计算机技术协调发展,出现了信息处理功能发达、检测功能不足的局面。

目前许多国家已投入大量人力、物力,发展各类新型传感器,检测技术在国民经济中的地位也日益提高。

传感器是能感受规定的被测量并按一定规律转换成可用输出信号的器件或装置,主要用于检测机电一体化系统自身与操作对象、作业环境状态,为有效控制机电一体化系统的运作提供必须的相关信息。

随着人类探知领域和空间的拓展,电子信息种类日益繁多,信息传递速度日益加快,信息处理能力日益增强,相应的信息采集——传感技术也将日益发展,传感器也将无所不在。

传感器技术是实现自动控制、自动调节的关键环节,也是机电一体化系统不可缺少的关键技术之一,其水平高低在很大程度上影响和决定着系统的功能;其水平越高,系统的自动化程度就越高。

在一套完整的机电一体化系统中,如果不能利用传感检测技术对被控对象的各项参数进行及时准确地检测出并转换成易于传送和处理的信号,我们所需要的用于系统控制的信息就无法获得,进而使整个系统就无法正常有效的工作。

传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。

对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。

我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。

传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。

传感器的动态特性则指的是对于输入量随着时间变化的响应特性。

动态特性通常采用传递函数等自动控制的模型来描述。

通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节. 人们为了从外界获取信息,必须借助于感觉器官。

而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。

为适应这种情况,就需要传感器。

因此可以说,传感器是人类五官的延长,又称之为电五官新技术革命的到来,世界开始进入信息时代。

在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。

在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。

因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。

在基础学科研究中,传感器更具有突出的地位。

现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到cm的粒子世界,纵向上要观察长达数十万年的天体演化,短到s的瞬间反应。

此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁砀等等。

显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。

许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。

一些传感器的发展,往往是一些边缘学科开发的先驱。

传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。

可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器由此可见传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。

世界各国都十分重视这一领域的发展。

相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。

二:检测技术常用传感器的类型、特点、结构及用途传感器工作原理的分类物理传感器应用的是物理效应,诸如:压电效应、磁致伸缩现象,离化、极化、热电、光电、磁电等效应。

被测信号量的微小变化都将转换成电信号。

化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。

有些传感器既不能划分到物理类,也不能划分为化学类。

大多数传感器是以物理原理为基础运作的。

化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。

常见传感器的应用领域和工作原理1 按照其用途,传感器可分类为:压力敏和力敏传感器、位置传感器、液面传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、热敏传感器2.按照其原理,传感器可分类为:振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等。

3 以其输出信号为标准可将传感器分为:模拟传感器——将被测量的非电学量转换成模拟电信号。

数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。

膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。

开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。

它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。

从所应用的材料观点出发可将传感器分成下列几类:(1)按照其所用材料的类别分:金属、聚合物、陶瓷、混合物(2)按材料的物理性质分:导体、绝缘体、半导体、磁性材料(3)按材料的晶体结构分:单晶、多晶、非晶材料与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。

(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。

(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。

现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。

传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。

按照其制造工艺,可以将传感器区分为:集成传感器、薄膜传感器、厚膜传感器、陶瓷传感器集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。

通常还将用于初步处理被测信号的部分电路也集成在同一芯片上;薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。

使用混合工艺时,同样可将部分电路制造在此基板上。

厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形;陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。

完成适当的预备性操作之后,已成形的元件在高温中进行烧结。

厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。

每种工艺技术都有自己的优点和不足。

由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。

传感器的特性传感器静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。

因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。

表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。

(1)线性度:指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。

定义为在全量程范围内实际特性曲线与拟合直线之间的最大偏差值与满量程输出值之比。

(2)灵敏度:灵敏度是传感器静态特性的一个重要指标。

其定义为输出量的增量与引起该增量的相应输入量增量之比。

用S表示灵敏度。

(3)迟滞:传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象成为迟滞。

对于同一大小的输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。

(4)重复性:重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。

(5)漂移:传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,次现象称为漂移。

产生漂移的原因有两个方面:一是传感器自身结构参数;二是周围环境(如温度、湿度等)。

传感器动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。

在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。

这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。

最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

传感器的线性度通常情况下,传感器的实际静态特性输出是条曲线而非直线。

在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。

拟合直线的选取有多种方法。

如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。

传感器的灵敏度灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。

它是输出一输入特性曲线的斜率。

如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。

否则,它将随输入量的变化而变化。

灵敏度的量纲是输出、输入量的量纲之比。

例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。

当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。

相关文档
最新文档