高考数学全国卷完美版

合集下载

全国统一高考数学试卷及解析

全国统一高考数学试卷及解析

202X年全国统一高考数学卷子〔文科〕〔新课标版〕参考答案与真题解析一、选择题:本大题共12小题,每题5分,在每题给同的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕〔202X•新课标〕已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则〔〕A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.〔5分〕〔202X•新课标〕复数z=的共轭复数是〔〕A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.〔5分〕〔202X•新课标〕在一组样本数据〔x1,y1〕,〔x2,y2〕,…,〔x n,y n〕〔n≥2,x1,x2,…,x n不全相等〕的散点图中,假设全部样本点〔x i,y i〕〔i=1,2,…,n〕都在直线y=x+1上,则这组样本数据的样本相关系数为〔〕A.﹣1 B.0 C.D.14.〔5分〕〔202X•新课标〕设F1、F2是椭圆的左、右焦点,P 为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为〔〕A.B.C.D.5.〔5分〕〔202X•新课标〕已知正三角形ABC的顶点A〔1,1〕,B〔1,3〕,顶点C在第一象限,假设点〔x,y〕在△ABC内部,则z=﹣x+y的取值范围是〔〕A.〔1﹣,2〕 B.〔0,2〕C.〔﹣1,2〕D.〔0,1+〕6.〔5分〕〔202X•新课标〕如果执行右边的程序框图,输入正整数N〔N≥2〕和实数a1,a2,…,a n,输出A,B,则〔〕A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.〔5分〕〔202X•新课标〕如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为〔〕A.6 B.9 C.12 D.188.〔5分〕〔202X•新课标〕平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为〔〕A.π B.4πC.4πD.6π9.〔5分〕〔202X•新课标〕已知ω>0,0<φ<π,直线x=和x=是函数f〔x〕=sin〔ωx+φ〕图象的两条相邻的对称轴,则φ=〔〕A.B.C.D.10.〔5分〕〔202X•新课标〕等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x 的准线交于A,B两点,,则C的实轴长为〔〕A.B. C.4 D.811.〔5分〕〔202X•新课标〕当0<x≤时,4x<log a x,则a的取值范围是〔〕A.〔0,〕B.〔,1〕C.〔1,〕D.〔,2〕12.〔5分〕〔202X•新课标〕数列{a n}满足a n+1+〔﹣1〕n a n=2n﹣1,则{a n}的前60项和为〔〕A.3690 B.3660 C.1845 D.1830二.填空题:本大题共4小题,每题5分.13.〔5分〕〔202X•新课标〕曲线y=x〔3lnx+1〕在点〔1,1〕处的切线方程为.14.〔5分〕〔202X•新课标〕等比数列{a n}的前n项和为S n,假设S3+3S2=0,则公比q=.15.〔5分〕〔202X•新课标〕已知向量夹角为45°,且,则=.16.〔5分〕〔202X•新课标〕设函数f〔x〕=的最大值为M,最小值为m,则M+m=.三、解答题:解容许写出文字说明,证明过程或演算步骤.17.〔12分〕〔202X•新课标〕已知a,b,c分别为△ABC三个内角A,B,C的对边,〔1〕求A;〔2〕假设a=2,△ABC的面积为,求b,c.18.〔12分〕〔202X•新课标〕某花店每天以每枝5元的价格从农场购进假设干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.〔Ⅰ〕假设花店一天购进17枝玫瑰花,求当天的利润y〔单位:元〕关于当天需求量n〔单位:枝,n∈N〕的函数解析式.〔Ⅱ〕花店记录了100天玫瑰花的日需求量〔单位:枝〕,整理得下表:日需求量n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10〔i〕假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润〔单位:元〕的平均数;〔ii〕假设花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.〔12分〕〔202X•新课标〕如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.〔Ⅰ〕证明:平面BDC1⊥平面BDC〔Ⅱ〕平面BDC1分此棱柱为两局部,求这两局部体积的比.20.〔12分〕〔202X•新课标〕设抛物线C:x2=2py〔p>0〕的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;〔1〕假设∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;〔2〕假设A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.〔12分〕〔202X•新课标〕设函数f〔x〕=e x﹣ax﹣2.〔Ⅰ〕求f〔x〕的单调区间;〔Ⅱ〕假设a=1,k为整数,且当x>0时,〔x﹣k〕f′〔x〕+x+1>0,求k的最大值.22.〔10分〕〔202X•新课标〕如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC 的外接圆于F,G两点,假设CF∥AB,证明:〔1〕CD=BC;〔2〕△BCD∽△GBD.23.〔202X•新课标〕选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是〔φ为参数〕,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为〔2,〕.〔1〕求点A,B,C,D的直角坐标;〔2〕设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.〔202X•新课标〕已知函数f〔x〕=|x+a|+|x﹣2|〔1〕当a=﹣3时,求不等式f〔x〕≥3的解集;〔2〕假设f〔x〕≤|x﹣4|的解集包含[1,2],求a的取值范围.202X年全国统一高考数学卷子〔文科〕〔新课标版〕参考答案与真题解析一、选择题:本大题共12小题,每题5分,在每题给同的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕【专题】集合.【分析】先求出集合A,然后依据集合之间的关系可推断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不肯定在集合B中,例如x=∴B⊊A.应选B.【点评】此题主要考查了集合之间关系的推断,属于根底真题.2.〔5分〕【专题】计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.所以复数的共轭复数为:﹣1﹣i.应选D.【点评】此题考查复数的代数形式的混合运算,复数的根本概念,考查计算能力.3.〔5分〕【专题】规律型.【分析】全部样本点〔x i,y i〕〔i=1,2,…,n〕都在直线y=x+1上,故这组样本数据完全正相关,故其相关系数为1.【解答】解:由题设知,全部样本点〔x i,y i〕〔i=1,2,…,n〕都在直线y=x+1上,∴这组样本数据完全正相关,故其相关系数为1,应选D.【点评】此题主要考查样本的相关系数,是简单题.4.〔5分〕【专题】计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,依据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴应选C.【点评】此题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于根底题.5.〔5分〕【专题】计算题.【分析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而推断最大与最小值,即可求解范围【解答】解:设C〔a,b〕,〔a>0,b>0〕由A〔1,1〕,B〔1,3〕,及△ABC为正三角形可得,AB=AC=BC=2即〔a﹣1〕2+〔b﹣1〕2=〔a﹣1〕2+〔b﹣3〕2=4∴b=2,a=1+即C〔1+,2〕则此时直线AB的方程x=1,AC的方程为y﹣1=〔x﹣1〕,直线BC的方程为y﹣3=〔〕〔x﹣1〕当直线x﹣y+z=0经过点A〔1,1〕时,z=0,经过点B〔1,3〕z=2,经过点C〔1+,2〕时,z=1﹣∴应选A【点评】考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基此题型.6.〔5分〕【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再依据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再依据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数应选:C.【点评】此题主要考查了循环结构,解题的关键是建立数学模型,依据每一步分析的结果,选择恰当的数学模型,属于中档题.7.〔5分〕【专题】计算题.【分析】通过三视图推断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.应选B.【点评】此题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.〔5分〕【专题】计算题.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球的体积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.应选B.【点评】此题考查球的体积的求法,考查空间想象能力、计算能力.9.〔5分〕【专题】计算题.【分析】通过函数的对称轴求出函数的周期,利用对称轴以及φ的范围,确定φ的值即可.【解答】解:因为直线x=和x=是函数f〔x〕=sin〔ωx+φ〕图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin〔+φ〕与sin〔+φ〕分别是最大值与最小值,0<φ<π,所以φ=.应选A.【点评】此题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.10.〔5分〕【专题】计算题;压轴题.【分析】设等轴双曲线C:x2﹣y2=a2〔a>0〕,y2=16x的准线l:x=﹣4,由C与抛物线y2=16x 的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2〔a>0〕,y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A〔﹣4,2〕,B〔﹣4,﹣2〕,将A点坐标代入双曲线方程得=4,∴a=2,2a=4.应选C.【点评】此题考查双曲线的性质和应用,解题时要认真审题,认真解答,注意挖掘题设中的隐含条件,合理地进行等价转化.11.〔5分〕【专题】计算题;压轴题.【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1应选B【点评】此题主要考查了指数函数和对数函数的图象和性质,不等式恒成立问题的一般解法,属根底题12.〔5分〕【专题】等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和.【解答】解:由于数列{a n}满足a n+1+〔﹣1〕n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+〔15×8+〕=1830,应选D.【点评】此题主要考查数列求和的方法,等差数列的求和公式,注意利用数列的结构特征,属于中档题.二.填空题:本大题共4小题,每题5分.13.〔5分〕【专题】计算题.【分析】先求导函数,求出切线的斜率,再求切线的方程.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x〔3lnx+1〕在点〔1,1〕处的切线方程为y﹣1=4〔x﹣1〕,即y=4x﹣3.故答案为:y=4x﹣3.【点评】此题考查导数的几何意义,考查点斜式求直线的方程,属于根底题.14.〔5分〕【专题】计算题.【分析】由题意可得,q≠1,由S3+3S2=0,代入等比数列的求和公式可求q【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴〔q﹣1〕〔q+2〕2=0∵q≠1∴q=﹣2故答案为:﹣2【点评】此题主要考查了等比数列的求和公式的应用,解题中要注意公比q是否为1 15.〔5分〕【专题】计算题;压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】此题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法16.〔5分〕【专题】综合题;压轴题.【分析】函数可化为f〔x〕==,令,则为奇函数,从而函数的最大值与最小值的和为0,由此可得函数f〔x〕=的最大值与最小值的和.【解答】解:函数可化为f〔x〕==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f〔x〕=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.【点评】此题考查函数的最值,考查函数的奇偶性,解题的关键是将函数化简,转化为利用函数的奇偶性解题.三、解答题:解容许写出文字说明,证明过程或演算步骤.17.〔12分〕【专题】计算题.【分析】〔1〕由正弦定理及两角和的正弦公式可得sinAcosC+sinAsinC=sinB+sinC=sin 〔A+C〕+sinC=sinAcosC+sinCcosA+sinC,整理可求A〔2〕由〔1〕所求A及S=可求bc,然后由余弦定理,a2=b2+c2﹣2bccosA=〔b+c〕2﹣2bc﹣2bccosA可求b+c,进而可求b,c【解答】解:〔1〕∵acosC+asinC﹣b﹣c=0∴sinAcosC+sinAsinC﹣sinB﹣sinC=0∴sinAcosC+sinAsinC=sinB+sinC=sin〔A+C〕+sinC=sinAcosC+sinCcosA+sinC∵sinC≠0∴sinA﹣cosA=1∴sin〔A﹣30°〕=∴A﹣30°=30°∴A=60°〔2〕由由余弦定理可得,a2=b2+c2﹣2bccosA=〔b+c〕2﹣2bc﹣2bccosA即4=〔b+c〕2﹣3bc=〔b+c〕2﹣12∴b+c=4解得:b=c=2【点评】此题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的根底,解题的关键是熟练掌握根本公式18.〔12分〕【专题】综合题;概率与统计.【分析】〔Ⅰ〕依据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;〔Ⅱ〕〔i〕这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;〔ii〕当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率.【解答】解:〔Ⅰ〕当日需求量n≥17时,利润y=85;当日需求量n<17时,利润y=10n﹣85;〔4分〕∴利润y关于当天需求量n的函数解析式〔n∈N*〕〔6分〕〔Ⅱ〕〔i〕这100天的日利润的平均数为元;〔9分〕〔ii〕当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.〔12分〕【点评】此题考查函数解析式确实定,考查概率知识,考查利用数学知识解决实际问题,属于中档题.19.〔12分〕【专题】计算题;证明题.【分析】〔Ⅰ〕由题意易证DC1⊥平面BDC,再由面面垂直的判定定理即可证得平面BDC1⊥平面BDC;〔Ⅱ〕设棱锥B﹣DACC1的体积为V1,AC=1,易求V1=××1×1=,三棱柱ABC﹣A1B1C1的体积V=1,于是可得〔V﹣V1〕:V1=1:1,从而可得答案.【解答】证明:〔1〕由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1⊂平面BDC1,∴平面BDC1⊥平面BDC;〔2〕设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴〔V﹣V1〕:V1=1:1,∴平面BDC1分此棱柱两局部体积的比为1:1.【点评】此题考查平面与平面垂直的判定,着重考查线面垂直的判定定理的应用与棱柱、棱锥的体积,考查分析,表达与运算能力,属于中档题.20.〔12分〕【专题】综合题;压轴题.【分析】〔1〕由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.〔2〕由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:〔1〕由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为〔0,1〕,∴圆F的方程为x2+〔y﹣1〕2=8.〔2〕由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】此题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,认真解答,注意合理地进行等价转化.21.〔12分〕【专题】综合题;压轴题;分类商量;转化思想.【分析】〔Ⅰ〕求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a 的取值范围进行分类商量研究函数的单调性,给出单调区间;〔II〕由题设条件结合〔I〕,将不等式,〔x﹣k〕f´〔x〕+x+1>0在x>0时成立转化为k<〔x>0〕成立,由此问题转化为求g〔x〕=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:〔I〕函数f〔x〕=e x﹣ax﹣2的定义域是R,f′〔x〕=e x﹣a,假设a≤0,则f′〔x〕=e x﹣a≥0,所以函数f〔x〕=e x﹣ax﹣2在〔﹣∞,+∞〕上单调递增.假设a>0,则当x∈〔﹣∞,lna〕时,f′〔x〕=e x﹣a<0;当x∈〔lna,+∞〕时,f′〔x〕=e x﹣a>0;所以,f〔x〕在〔﹣∞,lna〕单调递减,在〔lna,+∞〕上单调递增.〔II〕由于a=1,所以,〔x﹣k〕f´〔x〕+x+1=〔x﹣k〕〔e x﹣1〕+x+1故当x>0时,〔x﹣k〕f´〔x〕+x+1>0等价于k<〔x>0〕①令g〔x〕=,则g′〔x〕=由〔I〕知,当a=1时,函数h〔x〕=e x﹣x﹣2在〔0,+∞〕上单调递增,而h〔1〕<0,h〔2〕>0,所以h〔x〕=e x﹣x﹣2在〔0,+∞〕上存在唯一的零点,故g′〔x〕在〔0,+∞〕上存在唯一的零点,设此零点为α,则有α∈〔1,2〕当x∈〔0,α〕时,g′〔x〕<0;当x∈〔α,+∞〕时,g′〔x〕>0;所以g〔x〕在〔0,+∞〕上的最小值为g〔α〕.又由g′〔α〕=0,可得eα=α+2所以g〔α〕=α+1∈〔2,3〕由于①式等价于k<g〔α〕,故整数k的最大值为2.【点评】此题考查利用导数求函数的最值及利用导数研究函数的单调性,解题的关键是第一小题应用分类的商量的方法,第二小题将问题转化为求函数的最小值问题,此题考查了转化的思想,分类商量的思想,考查计算能力及推理推断的能力,综合性强,是高考的重点题型,难度大,计算量也大,极易出错.22.〔10分〕【专题】证明题.【分析】〔1〕依据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF 是平行四边形,即可得到结论;〔2〕证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:〔1〕∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.〔2〕由〔1〕知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】此题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于根底题.23.〔202X•新课标〕【专题】综合题;压轴题.【分析】〔1〕确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;〔2〕利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:〔1〕点A,B,C,D的极坐标为点A,B,C,D的直角坐标为〔2〕设P〔x0,y0〕,则为参数〕t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】此题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.〔202X•新课标〕【专题】计算题;压轴题.【分析】〔1〕不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.〔2〕原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:〔1〕当a=﹣3时,f〔x〕≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.〔2〕原命题即f〔x〕≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】此题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,表达了分类商量的数学思想,属于中档题.。

2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)

2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)

2024年普通高等学校招生全国统一考试(新课标II 卷)数学本试卷共10页,19小题,满分150分.注意事项:1 .答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一个选项是正确的・请把正确的选项填涂在答题卡相应的位置上.1. 已知z = —1 —i,则()A. 0B. 1C. V2D. 22. 已知命题p : Vx e R , x +11> 1 ;命题 q : > 0 , x 3 = x ,贝I ( )A. p 和q 都是真命题B. ~^P 和q 都是真命题C. p 和「0都是真命题D. F 和「0都是真命题3. 已知向量口,直满足|4 = 1J q + 2,= 2,且— 则料=()A. |B. —C.匝D. 12 2 24. 某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表据表中数据,结论中正确的是()亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410A. 100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间5.已知曲线C:x2+y2=16(歹>0),从。

2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。

2023年高考全国乙卷数学(理)真题(解析版)

2023年高考全国乙卷数学(理)真题(解析版)

2023年普通高等学校招生全国统一考试理科数学一、选择题1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得z =2+i 1+i 2+i 5=2+i 1-1+i =i 2+i i2=2i -1-1=1-2i ,则z=1+2i.故选:B .2.设集合U =R ,集合M =x x <1 ,N =x -1<x <2 ,则x x ≥2 =()A.∁U M ∪NB.N ∪∁U MC.∁U M ∩ND.M ∪∁U N【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为x |x ≥2 即可.【详解】由题意可得M ∪N =x |x <2 ,则∁U M ∪N =x |x ≥2 ,选项A 正确;∁U M =x |x ≥1 ,则N ∪∁U M =x |x >-1 ,选项B 错误;M ∩N =x |-1<x <1 ,则∁U M ∩N =x |x ≤-1 或x ≥1 ,选项C 错误;∁U N =x |x ≤-1 或x ≥2 ,则M ∪∁U N =x |x <1 或x ≥2 ,选项D 错误;故选:A .3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:2×2×2 +4×2×3 -2×1×1 =30.故选:D .4.已知f (x )=xe xe ax -1是偶函数,则a =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为f x =xe x e ax-1为偶函数,则f x -f -x =xexe ax -1--x e-xe -ax -1=x e x -e a -1xe ax -1=0,又因为x 不恒为0,可得e x -e a -1 x=0,即e x =e a -1x,则x =a -1 x ,即1=a -1,解得a =2.故选:D .5.设O 为平面坐标系的坐标原点,在区域x ,y 1≤x 2+y 2≤4 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域x ,y |1≤x 2+y 2≤4 表示以O 0,0 圆心,外圆半径R =2,内圆半径r =1的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角∠MON =π4,结合对称性可得所求概率P =2×π42π=14.故选:C .6.已知函数f (x )=sin (ωx +φ)在区间π6,2π3 单调递增,直线x =π6和x =2π3为函数y =f x 的图像的两条对称轴,则f -5π12 =()A.-32B.-12C.12D.32【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入x =-5π12即可得到答案.【详解】因为f (x )=sin (ωx +φ)在区间π6,2π3单调递增,所以T 2=2π3-π6=π2,且ω>0,则T =π,w =2πT =2,当x =π6时,f x 取得最小值,则2⋅π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f x =sin 2x -5π6 ,则f -5π12 =sin -5π3 =32,7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有C 16种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有A 25种,根据分步乘法公式则共有C 16⋅A 25=120种,故选:C .8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120°,若△PAB 的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在△AOB 中,∠AOB =120°,而OA =OB =3,取AC 中点C ,连接OC ,PC ,有OC ⊥AB ,PC ⊥AB ,如图,∠ABO =30°,OC =32,AB =2BC =3,由△PAB 的面积为934,得12×3×PC =934,解得PC =332,于是PO =PC 2-OC 2=332 2-32 2=6,所以圆锥的体积V =13π×OA 2×PO =13π×(3)2×6=6π.9.已知△ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150°,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接CE ,DE ,因为△ABC 是等腰直角三角形,且AB 为斜边,则有CE ⊥AB ,又△ABD 是等边三角形,则DE ⊥AB ,从而∠CED 为二面角C -AB -D 的平面角,即∠CED =150°,显然CE ∩DE =E ,CE ,DE ⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面ABC =CE ,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而∠DCE 为直线CD 与平面ABC 所成的角,令AB =2,则CE =1,DE =3,在△CDE 中,由余弦定理得:CD =CE 2+DE 2-2CE ⋅DE cos ∠CED =1+3-2×1×3×-32=7,由正弦定理得DE sin ∠DCE =CDsin ∠CED,即sin ∠DCE =3sin150°7=327,显然∠DCE 是锐角,cos ∠DCE =1-sin 2∠DCE =1-3272=527,所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列a n 的公差为2π3,集合S =cos a n n ∈N * ,若S =a ,b ,则ab =()A.-1B.-12C.0D.12【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{a n }中,a n =a 1+(n -1)⋅2π3=2π3n +a 1-2π3,显然函数y =cos 2π3n +a 1-2π3的周期为3,而n ∈N ∗,即cos a n 最多3个不同取值,又{cos a n |n ∈N ∗}={a ,b },则在cos a 1,cos a 2,cos a 3中,cos a 1=cos a 2≠cos a 3或cos a 1≠cos a 2=cos a 3,于是有cos θ=cos θ+2π3 ,即有θ+θ+2π3 =2k π,k ∈Z ,解得θ=k π-π3,k ∈Z ,所以k ∈Z ,ab =cos k π-π3 cos k π-π3 +4π3 =-cos k π-π3 cos k π=-cos 2k πcos π3=-12.故选:B11.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-4【答案】D 【解析】【分析】根据点差法分析可得k AB ⋅k =9,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设A x 1,y 1 ,B x 2,y 2 ,则AB 的中点M x 1+x 22,y 1+y 22,可得k AB =y 1-y 2x 1-x 2,k =y 1+y 22x 1+x 22=y 1+y 2x 1+x 2,因为A ,B 在双曲线上,则x 21-y 219=1x 22-y 229=1,两式相减得x 21-x 22-y 21-y 229=0,所以k AB ⋅k =y 21-y 22x 21-x 22=9.对于选项A :可得k =1,k AB =9,则AB :y =9x -8,联立方程y =9x -8x 2-y 29=1 ,消去y 得72x 2-2×72x +73=0,此时Δ=-2×72 2-4×72×73=-288<0,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得k =-2,k AB =-92,则AB :y =-92x -52,联立方程y =-92x -52x 2-y 29=1,消去y 得45x 2+2×45x +61=0,此时Δ=2×45 2-4×45×61=-4×45×16<0,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得k =3,k AB =3,则AB :y =3x由双曲线方程可得a =1,b =3,则AB :y =3x 为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :k =4,k AB =94,则AB :y =94x -74,联立方程y =94x -74x 2-y 29=1,消去y 得63x 2+126x -193=0,此时Δ=1262+4×63×193>0,故直线AB 与双曲线有交两个交点,故D 正确;故选:D .12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO =2,则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA ⋅PD =12-22sin 2α-π4 ,或PA ⋅PD =12+22sin 2α+π4 然后结合三角函数的性质即可确定PA ⋅PD的最大值.【详解】如图所示,OA =1,OP =2,则由题意可知:∠APO =45°,由勾股定理可得PA =OP 2-OA 2=1当点A ,D 位于直线PO 异侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α+π4=1×2cos αcos α+π4=2cos α22cos α-22sin α =cos 2α-sin αcos α=1+cos2α2-12sin2α=12-22sin 2α-π4 0≤α≤π4,则-π4≤2α-π4≤π4∴当2α-π4=-π4时,PA ⋅PD 有最大值1.当点A ,D 位于直线PO 同侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α-π4=1×2cos αcos α-π4=2cos α22cos α+22sin α =cos 2α+sin αcos α=1+cos2α2+12sin2α=12+22sin 2α+π40≤α≤π4,则π4≤2α+π4≤π2∴当2α+π4=π2时,PA ⋅PD 有最大值1+22.综上可得,PA ⋅PD 的最大值为1+22.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点A 1,5 在抛物线C :y 2=2px 上,则A 到C 的准线的距离为.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为x =-54,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:5 2=2p ×1,则2p =5,抛物线的方程为y 2=5x ,准线方程为x =-54,点A 到C 的准线的距离为1--54 =94.故答案为:94.14.若x ,y 满足约束条件x -3y ≤-1x +2y ≤93x +y ≥7,则z =2x -y 的最大值为.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.详解】作出可行域如下图所示:z =2x -y ,移项得y =2x -z ,联立有x -3y =-1x +2y =9,解得x =5y =2,设A 5,2 ,显然平移直线y =2x 使其经过点A ,此时截距-z 最小,则z 最大,代入得z =8,故答案为:8.15.已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【解析】【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【详解】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.16.设a ∈0,1 ,若函数f x =a x +1+a x 在0,+∞ 上单调递增,则a 的取值范围是.【答案】5-12,1 【解析】【分析】原问题等价于f x =a x ln a +1+a x ln 1+a ≥0恒成立,据此将所得的不等式进行恒等变形,可得1+a a x ≥-ln aln 1+a ,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得f x =a x ln a +1+a x ln 1+a ≥0在区间0,+∞ 上恒成立,则1+a x ln 1+a ≥-a x ln a ,即1+a a x ≥-ln aln 1+a在区间0,+∞ 上恒成立,故1+a a 0=1≥-ln aln 1+a,而a +1∈1,2 ,故ln 1+a >0,故ln a +1 ≥-ln a 0<a <1即a a +1 ≥10<a <1 ,故5-12≤a <1,结合题意可得实数a 的取值范围是5-12,1.故答案为:5-12,1.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2,⋅⋅⋅10),试验结果如下试验序号i 12345678910伸缩率x i545355525754545659545312541868伸缩率y i536527543530560533522550576536记z i =x i -y i (i =1,2,⋯,10),记z 1,z 2,⋯,z 10的样本平均数为z,样本方差为s 2,(1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2s 210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)z =11,s 2=61;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出x ,y ,再得到所有的z i 值,最后计算出方差即可;(2)根据公式计算出2s 210的值,和z 比较大小即可.【小问1详解】x =545+533+551+522+575+544+541+568+596+54810=552.3,y =536+527+543+530+560+533+522+550+576+53610=541.3,z =x -y=552.3-541.3=11,z i =x i -y i 的值分别为:9,6,8,-8,15,11,19,18,20,12,故s 2=(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+0+(19-11)2+(18-11)2+(20-11)2+(12-110=61【小问2详解】由(1)知:z=11,2s 210=2 6.1=24.4,故有z ≥2s 210,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在△ABC 中,已知∠BAC =120°,AB =2,AC =1.(1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.【答案】(1)21 14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC的值为BC=7,然后由余弦定理可得cos B=5714,最后由同角三角函数基本关系可得sin B=21 14;(2)由题意可得S△ABDS△ACD=4,则S△ACD=15S△ABC,据此即可求得△ADC的面积.【小问1详解】由余弦定理可得:BC2=a2=b2+c2-2bc cos A=4+1-2×2×1×cos120°=7,则BC=7,cos B=a2+c2-b22ac=7+4-12×2×7=5714,sin B=1-cos2B=1-2528=2114.【小问2详解】由三角形面积公式可得S△ABDS△ACD=12×AB×AD×sin90°12×AC×AD×sin30°=4,则S△ACD=15S△ABC=15×12×2×1×sin120°=310.19.如图,在三棱锥P-ABC中,AB⊥BC,AB=2,BC=22,PB=PC=6,BP,AP,BC的中点分别为D,E,O,AD=5DO,点F在AC上,BF⊥AO.(1)证明:EF⎳平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D-AO-C的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接DE ,OF ,设AF =tAC ,则BF =BA +AF =(1-t )BA +tBC ,AO =-BA +12BC ,BF ⊥AO ,则BF ⋅AO =[(1-t )BA +tBC ]⋅-BA +12BC =(t -1)BA 2+12tBC 2=4(t -1)+4t =0,解得t =12,则F 为AC 的中点,由D ,E ,O ,F 分别为PB ,PA ,BC ,AC 的中点,于是DE ⎳AB ,DE =12AB ,OF ⎳AB ,OF =12AB ,即DE ⎳OF ,DE =OF ,则四边形ODEF 为平行四边形,EF ⎳DO ,EF =DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ⎳平面ADO .ABCDEO P【小问2详解】由(1)可知EF ⎳OD ,则AO =6,DO =62,得AD =5DO =302,因此OD 2+AO 2=AD 2=152,则OD ⊥AO ,有EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .【小问3详解】过点O 作OH ⎳BF 交AC 于点H ,设AD ∩BE =G ,由AO ⊥BF ,得HO ⊥AO ,且FH =13AH ,又由(2)知,OD ⊥AO ,则∠DOH 为二面角D -AO -C 的平面角,因为D ,E 分别为PB ,PA 的中点,因此G 为△PAB 的重心,即有DG =13AD ,GE =13BE ,又FH =13 AH ,即有DH =32GF ,cos ∠ABD =4+32-1522×2×62=4+6-PA 22×2×6,解得PA =14,同理得BE =62,于是BE 2+EF 2=BF 2=3,即有BE ⊥EF ,则GF 2=13×622+622=53,从而GF =153,DH =32×153=152,在△DOH 中,OH =12BF =32,OD =62,DH =152,于是cos ∠DOH =64+34-1542×62×32=-22,sin ∠DOH =1--222=22,所以二面角D -AO -C 的正弦值为22.ABCD EFGH OP20.已知椭圆C :y 2a 2+x 2b 2=1a >b >0 的离心率为53,点A -2,0 在C 上.(1)求C 的方程;(2)过点-2,3 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解【解析】【分析】(1)根据题意列式求解a ,b ,c ,进而可得结果;(2)设直线PQ 的方程,进而可求点M ,N 的坐标,结合韦达定理验证y M +y N2为定值即可.【小问1详解】由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.【小问2详解】由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3 x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y 2x 2+22=k x 1+2 +3x 1+2+k x 2+2 +3x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2 x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +316k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段PQ 的中点是定点0,3 .【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数f(x)=1x +aln(1+x).(1)当a=-1时,求曲线y=f x 在点1,f1处的切线方程;(2)是否存在a,b,使得曲线y=f1x关于直线x=b对称,若存在,求a,b的值,若不存在,说明理由.(3)若f x 在0,+∞存在极值,求a的取值范围.【答案】(1)ln2x+y-ln2=0;(2)存在a=12,b=-12满足题意,理由见解析.(3)0,12.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b的值,进一步结合函数的对称性利用特殊值法可得关于实数a的方程,解方程可得实数a的值,最后检验所得的a,b是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数g x =ax2+x-x+1ln x+1,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论a≤0,a≥12和0<a<12三中情况即可求得实数a的取值范围.【小问1详解】当a=-1时,f x =1x-1ln x+1,则f x =-1x2×ln x+1+1x-1×1x+1,据此可得f1 =0,f 1 =-ln2,函数在1,f1处的切线方程为y-0=-ln2x-1,即ln2x+y-ln2=0.【小问2详解】由函数的解析式可得f1x=x+aln1x+1,函数的定义域满足1x+1=x+1x>0,即函数的定义域为-∞,-1∪0,+∞,定义域关于直线x=-12对称,由题意可得b=-12,由对称性可知f-12+m=f-12-mm>12,取m=32可得f1 =f-2,即a+1ln2=a-2ln 12,则a+1=2-a,解得a=12,经检验a=12,b=-12满足题意,故a=12,b=-12.即存在a=12,b=-12满足题意.【小问3详解】由函数的解析式可得f x =-1 x2ln x+1+1x+a1x+1,由f x 在区间0,+∞存在极值点,则f x 在区间0,+∞上存在变号零点;令-1 x2ln x+1+1x+a1x+1=0,则-x+1ln x+1+x+ax2=0,令g x =ax2+x-x+1ln x+1,f x 在区间0,+∞存在极值点,等价于g x 在区间0,+∞上存在变号零点,g x =2ax-ln x+1,g x =2a-1 x+1当a≤0时,g x <0,g x 在区间0,+∞上单调递减,此时g x <g0 =0,g x 在区间0,+∞上无零点,不合题意;当a≥12,2a≥1时,由于1x+1<1,所以g x >0,g x 在区间0,+∞上单调递增,所以g x >g 0 =0,g x 在区间0,+∞上单调递增,g x >g0 =0,所以g x 在区间0,+∞上无零点,不符合题意;当0<a<12时,由gx =2a-1x+1=0可得x=12a-1,当x∈0,12a-1时,g x <0,g x 单调递减,当x∈12a-1,+∞时,g x >0,g x 单调递增,故g x 的最小值为g12a-1=1-2a+ln2a,令m x =1-x+ln x0<x<1,则m x =-x+1x>0,函数m x 在定义域内单调递增,m x <m1 =0,据此可得1-x+ln x<0恒成立,则g 12a-1=1-2a +ln2a <0,令h x =ln x -x 2+x x >0 ,则hx =-2x 2+x +1x ,当x ∈0,1 时,h x >0,h x 单调递增,当x ∈1,+∞ 时,h x <0,h x 单调递减,故h x ≤h 1 =0,即ln x ≤x 2-x (取等条件为x =1),所以g x =2ax -ln x +1 >2ax -x +1 2-x +1 =2ax -x 2+x ,g 2a -1 >2a 2a -1 -2a -1 2+2a -1 =0,且注意到g 0 =0,根据零点存在性定理可知:g x 在区间0,+∞ 上存在唯一零点x 0.当x ∈0,x 0 时,g x <0,g x 单调减,当x ∈x 0,+∞ 时,g x >0,g x 单调递增,所以g x 0 <g 0 =0.令n x =ln x -12x -1x ,则n x =1x -121+1x 2=-x -1 22x2≤0,则n x 单调递减,注意到n 1 =0,故当x ∈1,+∞ 时,ln x -12x -1x <0,从而有ln x <12x -1x,所以g x =ax 2+x -x +1 ln x +1 >ax 2+x -x +1 ×12x +1 -1x +1=a -12 x 2+12,令a -12 x 2+12=0得x 2=11-2a,所以g 11-2a>0,所以函数g x区间0,+∞ 上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是0,12.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=2sin θπ4≤θ≤π2,曲线C 2:x =2cos αy =2sin α (α为参数,π2<α<π).(1)写出C 1的直角坐标方程;(2)若直线y =x +m 既与C 1没有公共点,也与C 2没有公共点,求m 的取值范围.【答案】(1)x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 (2)-∞,0 ∪22,+∞ 【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意x ,y 的取值范围;(2)根据曲线C 1,C 2的方程,结合图形通过平移直线y =x +m 分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为ρ=2sin θ,即ρ2=2ρsin θ,可得x 2+y 2=2y ,整理得x 2+y -1 2=1,表示以0,1 为圆心,半径为1的圆,又因为x =ρcos θ=2sin θcos θ=sin2θ,y =ρsin θ=2sin 2θ=1-cos2θ,且π4≤θ≤π2,则π2≤2θ≤π,则x =sin2θ∈0,1 ,y =1-cos2θ∈1,2 ,故C 1:x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 .【小问2详解】因为C 2:x =2cos αy =2sin α(α为参数,π2<α<π),整理得x 2+y 2=4,表示圆心为O 0,0 ,半径为2,且位于第二象限的圆弧,如图所示,若直线y =x +m 过1,1 ,则1=1+m ,解得m =0;若直线y =x +m ,即x -y +m =0与C 2相切,则m2=2m >0 ,解得m =22,若直线y=x +m 与C 1,C 2均没有公共点,则m >22或m <0,即实数m 的取值范围-∞,0 ∪22,+∞ .【选修4-5】(10分)23.已知f x =2x +x -2 .(1)求不等式f x ≤6-x 的解集;(2)在直角坐标系xOy 中,求不等式组f (x )≤yx +y -6≤0所确定的平面区域的面积.【答案】(1)[-2,2];(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,f (x )=3x -2,x >2x +2,0≤x ≤2-3x +2,x <0,不等式f (x )≤6-x 化为:x >23x -2≤6-x或0≤x ≤2x +2≤6-x 或x <0-3x +2≤6-x ,解x >23x -2≤6-x,得无解;解0≤x ≤2x +2≤6-x ,得0≤x ≤2,解x <0-3x +2≤6-x ,得-2≤x <0,因此-2≤x ≤2,所以原不等式的解集为:[-2,2]小问2详解】作出不等式组f (x )≤yx +y -6≤0表示的平面区域,如图中阴影△ABC,由y =-3x +2x +y =6,解得A (-2,8),由y =x +2x +y =6 , 解得C (2,4),又B (0,2),D (0,6),所以△ABC 的面积S △ABC =12|BD |×x C -x A =12|6-2|×|2-(-2)|=8.。

全国统一高考数学试卷及参考答案(理科)(全国新课标III)

全国统一高考数学试卷及参考答案(理科)(全国新课标III)

全国统一高考数学试卷(理科)(全国新课标III)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7, 8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A. B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。

2023年全国统一高考数学试卷(理科)(乙卷)(解析版)

2023年全国统一高考数学试卷(理科)(乙卷)(解析版)

2023年全国统一高考数学试卷(理科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=,则=( )A.1﹣2i B.1+2i C.2﹣i D.2+i【答案】B【解答】解:∵i2=﹣1,i5=i,∴z===1﹣2i,∴=1+2i.故选:B.2.(5分)设集合U=R,集合M={x|x<1},N={x|﹣1<x<2},则{x|x≥2}=( )A.∁U(M∪N)B.N∪∁U M C.∁U(M∩N)D.M∪∁U N【答案】A【解答】解:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.5.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.6.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.7.(5分)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种【答案】C【解答】解:根据题意可得满足题意的选法种数为:=120.故选:C.8.(5分)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,∠AOB =120°,若△PAB的面积等于,则该圆锥的体积为( )A.πB.πC.3πD.3π【答案】B【解答】解:根据题意,设该圆锥的高为h,即PO=h,取AB的中点E,连接PE、OE,由于圆锥PO的底面半径为,即OA=OB=,而∠AOB=120°,故AB===3,同时OE=OA×sin30°=,△PAB中,PA=PB,E为AB的中点,则有PE⊥AB,又由△PAB的面积等于,即PE•AB=,变形可得PE=,而PE=,则有h2+=,解可得h=,故该圆锥的体积V=π×()2h=π.故选:B.9.(5分)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C﹣AB﹣D为150°,则直线CD与平面ABC所成角的正切值为( )A.B.C.D.【答案】C【解答】解:如图,取AB的中点E,连接CE,DE,则根据题意易得AB⊥CE,AB⊥DE,∴二面角C﹣AB﹣D的平面角为∠CED=150°,∵AB⊥CE,AB⊥DE,且CE∩DE=E,∴AB⊥平面CED,又AB⊂平面ABC,∴平面CED⊥平面ABC,∴CD在平面ABC内的射影为CE,∴直线CD与平面ABC所成角为∠DCE,过D作DH垂直CE所在直线,垂足点为H,设等腰直角三角形ABC的斜边长为2,则可易得CE=1,DE=,又∠DEH=30°,∴DH=,EH=,∴CH=1+=,∴tan∠DCE===.故选:C.10.(5分)已知等差数列{a n}的公差为,集合S={cos a n|n∈N*},若S={a,b},则ab=( )A.﹣1B.﹣C.0D.【答案】B【解答】解:设等差数列{a n}的首项为a1,又公差为,∴,∴,其周期为=3,又根据题意可知S集合中仅有两个元素,∴可利用对称性,对a n取特值,如a1=0,,,•,或,,a3=π,•,代入集合S中计算易得:ab=.故选:B.11.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.12.(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=,则•的最大值为( )A.B.C.1+D.2+【答案】A【解答】解:如图,设∠OPC=α,则,根据题意可得:∠APO=45°,∴==cos2α﹣sinαcosα==,又,∴当,α=,cos()=1时,取得最大值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。

2024年新高考I卷数学高考试卷(原卷+答案)

2024年新高考I卷数学高考试卷(原卷+答案)

2024年普通高等学校招生全国统一考试(新高考I 绝密★启用前卷)1. 项是正确的.请把正确的选项填涂在答题卡相应的位置上3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8 小题,每小题5 分,共40 分. 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦数(适用地区:山东、广东、湖南、湖北、河北、江苏、福建、浙江、江西、安徽、河南)学注意事项:干净后,再选涂其他答案标号。

回答非选择题时,将答案书写在答题卡上,写在本试卷上无效。

在每小题给出的四个选项中,只有一个选.已知集合=−<<=−−A xx B 3}{∣55,{3,1,0,2,3},则A B =()A−{1,0} B.{2,3} C. −−{3,1,0} D. 2. −{1,0,2}若z −z1=+1i ,则z =()A.−−1i B.−+1i C. −1i D. 3. +1i 已知向量a b x ==(0,1),(2,),若b b a ⊥−(4),则x =()A. −2 B. 4. D. C. −112已知 αβαβ+==mcos(),tan tan 2,则cos()αβ−=()A. −3m B. −m 3C.m 3D. 5. 3m,则圆锥的体积为()AB.C.D.6. 已知函数⎩++≥−−−<⎧x x x ax a x x e ln(1),0f x ()=⎨2,0在R 上单调递增,则a 的2取值范围是()A.−∞(,0] B.−[1,0] C. −[1,1] D. 7. +∞[0,)当[0,2]πx 时,曲线y x =sin 与⎝⎭⎪⎛⎫y x π=−6 D. C. B. 2sin 3的交点个数为()468f x ()的定义域为R A. 38. 已知函数,,>−+−f x f x f x ()(1)(2)且当x <3时f x x ()=,则下列结论中一定正确的是().A. f >(10)100B. f >(20)1000C.f <(10)1000 D. 要求. 全部选对得6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.二、选择题:本题共3 小题,每小题6 分,共18 分. f <(20)10000在每小题给出的选项中,有多项符合题目为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x =2.1,样本方差s =0.012,已知该种植区以往的亩收入X 服从正态分布N )(1.8,0.12,假设推动出口后的亩收入Y 服从正态分布N x s ,2)(,则()(若随机变量Z 服从正态分布N)(μσ,2, P Z <+≈μσ()0.8413)A. P X >>(2)0.2 B. P X ><(2)0.5 C.P Y >>(2)0.5 D. 10. P Y ><(2)0.8设函数 f x x x ()(1)(4)=−−2,则()A.x =3是f x ()的极小值点 B. 当<<x 01时,f x f x()<2)C. (当<<x 12时,−<−<f x D. 4(21)0当x−<<10时,11. 设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:−>f x f x (2)()横坐标大于−2,到点F (2,0)的距离与到定直线 x a a =<(0)的距离之积为4,则()A. B. a =−2点D. C. C 在第一象限的点的纵坐标的最大值为在C 上1当点,)在C (x y 00上时,x 0+4212. 三、填空题:本题共3 小题,每小题5 分,共15 分y 0≤.设双曲线−=>>a bC a b x y :1(0,0)2222左右焦点分别为、F F 12,过F 2作平行于y 轴的直线交C 于A ,B 两点,若||13,||1013. ,则C F A AB 1==的离心率为___________.若曲线=+y x e x 在点(0,1)处的切线也是曲线=++y x a ln(1)的切线,则张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________分别标有数字2,4,6,81,3,5,714. a =__________.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字,乙的卡片上,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一.的15. 四、解答题:本题共5 小题,共77 分. 解答应写出文字说明、证明过程或演算步骤.记ABC 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin =C B,a b c (1)求B ;(2)222+−=若ABC的面积为16. c 3.已知A (0,3)和⎝⎭⎪⎛⎫P 23,3椭圆+=>>a bC a b x y :1(0)22(1)求C 的离心率;(2)若过P 上两点22.的直线l 交C 于另一点B ,且ABP17. 的面积为9,求l 的方程.如图,四棱锥−P ABCD 中,底面ABCD PA ⊥,PA AC ==2,BC AB == (1)1,.若⊥AD PB ,证明:(2)PBC AD //平面;若⊥AD DC ,且二面角−−A CP D正弦值为7,求AD .为18. 已知函数 2−=++−f x ax b x x()ln(1)(1)x3若b =0,且 x ≥f '()0,求(2)a 的最小值;证明:曲线(3)y f x =()是中心对称图形;若f x >−()2当且仅当<<x 12,求19. 设m b 的取值范围.为正整数,数列a a a a 1242,,...,m +是公差不为0的等差数列,若从中删去两项i 和a i j j (<)后剩余的4m 项可被平均分为 组,且每组的m 个数都能构成等差数列,则称数列a a a 1242,,...,m +是(1)(i j ,)−可分数列.写出所有的(i j ,),≤<≤i j 16,使数列 ,,...,a a a 126是(2)(i j ,)−可分数列;当m ≥3时,证明:数列,,...,m +a a a 1242是(3)(2,13)−可分数列;从1,2,...,42m +中一次任取两个数i 和<j i j )(,记数列,,...,m +a a a 1242是(i j ,)−可分数列的概率为P m ,证明:P >m 81.1.【答案】A 【详解】参考答案因为=<<=−−A x x B |,3,1,0,2,3{}{,且注意到<<12从而AB ,=故选:A.2.【答案】C 【详解】{−1,0}.因为−−−==+=+z z z 11111i z z −+111,所以z =+=−i 11i (4故选:C.3【答案】D 1.【详解】因为)b b a ⊥−,所以)b b a (40⋅−= ,所以b a b −⋅=240即+−=440x x 2,故 故选:D.4.【答案】A x =2,【详解】因为cos (αβ+=)m ,所以 cos cos sin sin αβαβ−=m ,而tan tan 2αβ=,所以= ααβsin sin 2cos cos ,故cos cos 2cos cos αβαβ−=m 即cos cos αβ=−m ,从而sin sin 2αβ=−m ,故cos 3αβ−=−m )故选:A.5. 【答案】B (,【详解】设圆柱的底面半径为r,而它们的侧面积相等,所以=π2πr r=,故r =3,故圆锥的体积为3故选:B.6. 【答案】B 【详解】π⨯=91.因为f x ()在R 上单调递增,且x ≥0时,f x x x)(()=++e ln 1单调递增,则需满足()⎩−≤+⎪⨯−⎪ ⎨⎧−≥21a e ln1−2a0−≤≤10a 0,解得,.即a 的范围是T =2πy x =sin 故选:B.7. 【答案】C 【详解】−[1,0].因为函数的的最小正周期为,函数⎝⎭⎪y x ⎛⎫=−62sin 3π的最小正周期为 T =32π,所以在x ∈[0,2π]上函数⎝⎭⎪y x ⎛⎫=−62sin 3x <8. 【答案】B 【详解】由图可知,两函数图象有6个交点.故选:π有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:C 因为当3时 f x x()=,所以f f (1)1,(2)2==,又因为>−+−f x f x f x ()(1)(2),则f f f f f f (3)(2)(1)3,(4)(3)(2)5>+=>+>,>+>>+>>+>f f f f f f f f f (5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21,>+>>+>>+>f f f f f f f f f (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89,f f f f f f f f f >+>>+>>+>11)377(11)(10)(9)144,(12)(11)(10)233,(13)(12)(>+>>+>f f f f f f (14)(13)(12)610,(15)(14)(13)987,>+>>f f f (16)(15)(14)15971000,则依次下去可知且无证据表明ACD 一定正确.故选:B.9. 【答案】,则B f >(20)1000正确;BC【详解】依题可知,x s ==2.1,0.012,所以(2.1,0.1YN),故P Y P Y P Y )() (),C 正确,D (>=>−=<+≈>2 2.10.1 2.10.10.84130.5错误;因为(1.8,0.1XN ),所以P X P X )()(>=>+⨯2 1.820.1,因为P X )(<+≈1.80.10.8413,所以 P X )(>+≈−=<1.80.110.84130.15870.2,而P X P X P X )()()故选:BC .10. 【答案】ACD 【详解】对A ,B 正确,A (>=>+⨯<>+<2 1.820.1 1.80.10.2错误,,因为函数f x 的定义域为R (),而'f x x x x x x 2))(())()((()=−−+−=−−2141313,易知当x ∈(1,3)时,'f x ()<0,当x ∈−(∞,1)或x ∈+(3,∞)时,'f x ()>0函数f x ()在(−∞,1)上单调递增,在(1,3)上单调递减,在(3,+∞)上单调递增,故x =3是函数f x 点,正确;对B ()的极小值,当<<x 01时,x x x x −=−>2)(10,所以>>>10x x 2,而由上可知,函数f x ()在(0,1)上单调递增,所以f x f x2)对C ()>(,错误;,当<<x 12时,<−<x 1213,而由上可知,函数 f x ()在(1,3)上单调递减,所以f f x f ())()>−>(1213,即−<−<f x 4210)对D (,正确;,当x −<<10时,−−=−−−−−−=−−>f x f x x x x x x x (2)()12141220222))()()()(()(,所以故选:ACD.11. 【答案】ABD 【详解】对于A −>f x f x (2)(),正确;:设曲线上的动点P x y (,),则x >−2x a −=4,a04−=,解得对于B ,故A 正确a =−2.x +=24,而x >−2,x +=24)(.当x y ==0=−=2844)(,故)对于C 在曲线上,故B 正确(.:由曲线的方程可得()x +y x =−−216222(2),取x =23,则494y 2641=−,而⨯−−=−=>−49449449410641645256245,故此时y 2>1,故对于D 在第一象限内点的纵坐标的最大值大于1,故C 错误C .:当点,)在曲线上时,由C (x y 00的分析可得()()++x x 2216160022y x 00=−−≤22(2),故 −≤≤x x 00++4422故选:ABD.12. ,故D 正确y 0.【答案】2【详解】3由题可知,,A B F 2三点横坐标相等,设A 在第一象限,将=x c 代入a b −=x y12222得a y =±b 2,即⎝⎭⎝⎭−⎛⎫⎛⎫a a A c B c ⎪ ⎪,,,b b 22,故a AB ==102b 2,a AF ==52b 2,又AF AF a −=212,得AF AF a a 12=+=+=22513,解得a =4,代入a=5b 2得b 2=20,故c a b 222=+=36,,即c =6,所以a e ===c 4263.故答案为:213. 3【答案】【详解】ln 2由=+y x e x得y '|e 12x =0=+=0y '=+e 1x ,,故曲线=+y xe x在(0,1)处的切线方程为y x =+21;由=++y x a ln 1)(得 x +y '=11,设切线与曲线=++y x a ln 1) (相切的切点为,ln 100()(x x a )++,由两曲线有公切线得y '==x 0+112,解得2x 01=−,则切点为⎝⎭ ⎪−+ ⎛⎫a 22,ln 11,切线方程为⎝⎭ ⎪=+++=++− ⎛⎫y x a x a 222ln 21ln 211,根据两切线重合,所以 a −=ln 20,解得a =ln 2.故答案为:14. ln 2【答案】2【详解】1##0.5设甲在四轮游戏中的得分分别为,,,X X X X 1234,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率⨯===P X k 448163)(,所以 E X k k (1,2,3,4))==83(.从而==E X E X X X X E X k k k823311123444)( )∑∑(()=+++===.记p P X k k k ===)(0,1,2,3)如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8(.,所以A 24114如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6p 0==4;,所以A 24114p 3==4.而的所有可能取值是0,1,2,3X ,故p p p p 0123+++=1,223p p p E X 1233++==().所以12p p 12++=11,822p p 1213++=,两式相减即得242p 211+=,故 2所以甲的总得分不小于2p p 231+=.的概率为 2p p 231+=.故答案为: 215.【答案】(11.) B =3(2π)a b c ab C +−=【小问1详解】由余弦定理有2cos 222,对比已知a b c 222+−=,可得+−ab ab a b c 222cos C ===222,因为C ∈(0,π),所以sin 0C >,从而C ===2 sin ,又因为sin =C B ,即 2cos B =1,注意到B ∈(0,π),所以 B =3【小问2详解】由(1π.)可得B =3π,2cos C =,C ∈0,π(),从而C =4π,A =−−=3412 π5πππ,而⎝⎭⎝⎭⎪ ⎪⎛⎫⎛⎫A ==+=+⨯=124622224sin sin sin 1ππ5π,由正弦定理有==a b c1234sin sin sin ππ5π,从而==== +a c b c 4222,1,由三角形面积公式可知,ABCSab C c c c 的面积可表示为ABC==⋅⋅= +222228sin 由已知21113,ABC的面积为+3,可得 c 8=332所以16. 【答案】(1c =)2(2)1直线l 的方程为3260【解析】【小问1x y −=x y −−=或20.详解】由题意得⎪+=⎪⎪⎪⎧14⎨99⎩a b b =322⎩a ,解得=⎨212⎧b 2=9,所以e ===21【小问2.详解】法一:−k AP==−03223−AP 13,则直线的方程为 y x =−+231,即x y +−=260,==AP ,由(1)知+= x y 129C :122,设点B 到直线AP的距离为d,则d ==25,则将直线AP 沿着与AP 垂直的方向平移5单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:x y C ++=20,=5,解得C =6或C =−18,当C =6时,联立⎪⎩x y ++=⎪260⎨129+=1⎧x y 22,解得⎩y =−⎨3⎧x =0或⎩⎪⎨y ⎧=−23⎪x =−3,即B (0,3−)或⎝⎭⎪−−⎛⎫23,3,当B (0,3−)时,此时k l =23,直线l 的方程为2y x =−33,即3260x y −−=,当⎝⎭ ⎪−−⎛⎫B 23,3时,此时k l=21,直线l 的方程为 =y x 21,即x y −=20,当C =−18时,联立⎪⎩x y +−=⎪2180⎨129+=1⎧x y 22得2271170,此时该直线与椭圆无交点27421172070y y 2−+=,∆=−⨯⨯=−<2.综上直线 l 的方程为x y −−=3260或x y −=20.法二:同法一得到直线AP 的方程为B x y +−=260,点到直线AP 的距离 d =5,B x y ,00)(,则⎩⎪⎪=129+=1x y 0022,解得⎩⎪⎨⎧2y 0=− 3⎪x 0=−3或⎩y 0=−⎨3⎧x 0=0,设即B (0,3−)或⎝⎭⎪−−⎛⎫23,,以下同法一3.法三:同法一得到直线AP 的方程为B x y +−=260,点到直线AP的距离 d =5,设B ,3sin θθ)(,其中θ∈π[0,2)= 5,联立cos sin 1θθ+=22,解得⎩⎪⎨⎪⎧2⎪sin θ=−21⎪cos θ=−或⎩θ⎨=−θ=sin 1⎧cos 0,即B (0,3−)或⎝⎭⎪−−⎛⎫23,3,以下同法一;法四:当直线AB 的斜率不存在时,此时B SPAB(0,3−),=⨯⨯=26391,符合题意,此时k l =23,直线l 的方程为2y x =−33,即x y −−=3260,当线AB 的斜率存在时,设直线AB 的方程为y kx =+3,联立椭圆方程有⎪⎩⎪129+=1⎨x y ⎧y kx =+322,则43240k x kx 22++=)(,其中k k ≠AP ,即k ≠−21,解得x =0或x =43k 2−24k +,k ≠0, k ≠−21,令x =43k 2−24k +,则+k y =k 43−+12922,则⎝⎭++ ⎪−−+⎛⎫k k B k k 4343 ,24129222同法一得到直线AP 的方程为x y +−=260,点B 到直线AP的距离 d =5,=,解得32 k,此时⎝⎭ ⎪−−⎛⎫B 23,3,则得到此时k l=21,直线l 的方程为 =y x 21,即x y −=20,综上直线 l 的方程为3260x y −=20x y −−=或.法五:当l 的斜率不存在时,⎝⎭⎪=−=⎛⎫l x B PB A 2:3,3,,3, 3到PB 距离d =3,此时SABP=⨯⨯=≠ 22339不满足条件19.当l 的斜率存在时,设−=−2PB y k x :(3)3,令P x y B x y ,,,1122))((,⎪⎪⎪⎪x y ⎩⎧y k x =−+129+=12(3)⎨322,消y 可得+−−+−−=2222 ))(Δ(4324123636270k x k k x k k ,=−−+−−>2222)(()k k ≠)(24124433636270k kk k k ,且AP ,即k ≠−21,⎩+⎪⎨⎪−⎧k 43363627,432⎪x x 12=k k 2−−PB ==k 2+⎪x x 12+=2412k k 2,A 到直线PB 距离9PABd S===21 ,∴=k 21或23,均满足题意,∴=l y x 2:1或2y x =−33,即x y −−=3260或x y −=20.法六:当l斜率不存在时,⎝⎭⎪=−=⎛⎫l x B PB A 2:3,3,,3, 3到PB 距离d =3,此时SABP=⨯⨯=≠ 22339不满足条件19.当直线l 斜率存在时,设2l y k x :(3)=−+3,设l 与y 轴的交点为Q ,令x =0,则⎝⎭⎪ ⎛⎫Q k 20,3−+3,联立⎪⎨⎩⎪y kx k ⎧=−+343623x y 223+=,则有⎛⎫ ⎪⎝⎭32222)(34833636270+−−+−−=k x k k x k k ,⎛⎫ ⎪⎝⎭32222)(34833636270+−−+−−=k xk k x k k ,其中⎝⎭ ⎪⎛⎫2834343636270Δ=−−+−−>k k k k k 3222)2()(,且k ≠−21,则==++−−−−k kx x B B 3434 3,3636271212922k k k k 22,则+=−=+=S AQ x x k k +P B 2223439k 11312182,解的k =21或32 的,经代入判别式验证均满足题意k .则直线l 为=y x 21或y x =−233,即x y −−=3260或(217. 【答案】(1)x y −=20.证明见解析PA 【解析】【小问1详解】(1)因为⊥平面ABCD ,而 AD ⊂平面ABCD ,所以⊥PA AD ,又⊥AD PB ,PBPA P =,⊂PB PA ,平面PAB ,所以AD ⊥平面 PAB ,而PAB AB ⊂平面,所以 ⊥AD AB .因BC AB AC +=222,所以,⊥BC AB 根据平面知识可知AD BC //,又⊄AD 平面PBC ,⊂BC 平面PBC ,所以AD //平面【小问2详解】如图所示,过点D PBC .作⊥DEAC E ,再过点E 作⊥EF CP 于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面=ABCD AC ,所以⊥DE 平面 PAC ,又⊥EF CP ,所以 CP ⊥平面DEF ,根据二面角的定义可知,∠DFE 即为二面角−−A CP D 的平面角,即DFE 7sin ∠=,即 ∠=DFE tan 因为⊥AD DC ,设=AD x,则=CD,由等面积法可得,DE =2,又CE ==24−x2,而EFC 为等腰直角三角形,所以EF =2,故∠==DFE tan 22x =AD =.为18. 【答案】(1)(3(2)−2证明见解析)b ≥−3b =0【解析】【小问12详解】时,−xf x ax ()=+ln2x,其中x ∈(0,2),则()− '−x x x x f x a a x ,0,2()()=++=+∈11222,因为⎝⎭x x ⎛⎫⎪2−+2x x2)(21−≤=,当且仅当x =1时等号成立,故=+'f x a 2min (),而'f x ()≥成立,故a +≥20即a ≥−2,所以a 的最小值为【小问2.−2,详解】−xf x ax b x 3) (()=++−ln12x 的定义域为(0,2),设P m n(,)为=y f x ()图象上任意一点,P m n (,)关于(1,a )的对称点为Q m a n (2,2−−),因为P m n ,)(在=y f x ()图象上,故=++−n am b m 2−m mln 1 3)(,而⎣⎦⎢⎥⎡⎤−m m 2f m a m b m am b m a −2m m 33)())(()=−+(2ln221ln 12−=+−+−−=−++−+,n a 2,所以Q m a n(2,2−−)也在=y f x ()图象上,由P 的任意性可得=y f x ()图象为中心对称图形,且对称中心为【小问3(1,a ).详解】因为f x ()>−2当且仅当<<x12,故x =1为f x ()=−2的一个解,所以f)=−(12即a =−2,先考虑<<x12时,f x 恒成立()>−2.此时f x ()>−2即为+−+−>2−x x ln21103) )((x b x 在(1,2)上恒成立,设t x =−∈10,1(),则1−−+>tln 20t bt t +13(0,1)上恒成立,设−g t t bt t 3()()=−+∈ln 2,0,11t +1t,则−'−t tg t bt 112−++32322232 t bt b 22)()(=−+=,当b ≥0,−++≥−++=>32332320bt b b b 2,故'g t ()>0恒成立,故 g t ()在(0,1)上为增函数,故g t g )(00 ()>=即f x 上恒成立(1,2()>−2在).当−≤<3b 0 2时,−++≥+≥323230bt b b 2,故'g t ()≥0恒成立,故 g t ()在(0,1)上为增函数,故g t g )(00()>=即 f x ()>−2在上恒成立(1,2).当b <−32,则当<<<t 01时,'g t ()<0故在⎝ ⎛上g t ()为减函数,故g t g)(00()<=,不合题意,舍;综上,f x ()>−2在(1,2)上恒成立时 b ≥−2.3而当 b ≥−32时,而b ≥−32时,由上述过程可得g t ()在(0,1)递增,故 g t ()>0的解为(0,1),即 f x >−2()的解为(1,2).综上, b ≥−19. 【答案】(12.3) )()()(3)(1,2,1,6,5,6证明见解析(2(i j ,)−(2)证明见解析【解析】【分析】(1)直接根据可分数列的定义即可;)根据(i j ,)−可分数列的定义即可验证结论;在(3)证明使得原数列是(i j ,)−可分数列的(i j ,)至少有2),,...,m 【小问1详解】个,再使用概率的定义(m m +−1.首先,我们设数列+a a a 1242的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形'=+=+da k m ka a k 11,2,...,42−1)(,得到新数列a k k m '==+k(1,2,...,42),然后对,,...,m '''+进行相应的讨论即可a a a 1242.换言之,我们可以不妨设a k k m ==+k 回到原题,第1,此后的讨论均建立在该假设下进行(1,2,...,42).小问相当于从中取出两个数 i 和j i j ,使得剩下四个数是等差数列(<).那么剩下四个数只可能是 1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(i j ,)就是)()()m 【小问2详解】(1,2,1,6,5,6.由于从数列+1,2,...,42中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,2,3,4,5,61,4,7,10,3,6,9,12,5,8,11,14}}{}{{,共3组;②{m m m m −++}} }{{15,16,17,18,19,20,21,22,...,41,4,41,42,共m −3组.(如果,则忽略②m −=30)故数列m +1,2,...,42是【小问3可分数列(2,13)−.详解】定义集合=+==+A k k m m }}{{410,1,2,...,1,5,9,13, (41)=+==+B k k m m}}{ {420,1,2,...,2,6,10,14,...,42.下面证明,对≤<≤+i j m 142,如果下面两个命题同时成立,则数列 1,2,...,42m +一定是 命题1(i j ,)−可分数列::∈∈i A j B ,或命题2∈∈i B j A ,;:我们分两种情况证明这个结论j i −≠3..第一种情况:如果∈∈i A j B ,,且j i −≠3.此时设j k =+422i k =+411,,∈,0,1,2,...,k k m 12}{.则由i j <可知4142k k 12+<+,即 4k k 211−>−,故k k ≥21.此时,由于从数列 m +1,2,...,42中取出i k =+411和 j k =+422后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①−−−1111}}{k k k k}{{1,2,3,4,5,6,7,8,...,43,42,41,4,共k 1组;②++++++++−−+111111112222}}{}{{42,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ,共k k −21组;③++++++++−++22222222}}{ }{ {43,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ,共组m k −2.(如果某一部分的组数为 0,则忽略之)故此时数列m +1,2, (42)可分数列(i j ,)−.第二种情况:如果∈∈i B j A ,,且j i −≠3.此时设i k =+421,j k =+412,∈,0,1,2,..., k k m 12}{.则由<i j 可知4241k k 12+<+,即 4k k 211−>,故k k >21.由于j i −≠3,故+−+≠21))((41423k k ,从而k k 21−≠1,这就意味着k k 21−≥2.此时,由于从数列m +1,2,...,42中取出i k =+421和j k =+412后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①−−−1111}}{k k k k}{{1,2,3,4,5,6,7,8,...,43,42,41,4,共k 1组;②+++++++1121212}{41,31,221,31k k k k k k k ,+++++++1212122 }{32,222,32,42k k k k k k k ,共③2组;全体+++++++1121212} {4,3,22,3k p k k p k k p k k p ,其中3,4,...,21=−p k k ,共k k 21−−2组;④++++++++−++22222222}}{ }{{43,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ,共m k −2组.(如果某一部分的组数为这里对②和③进行一下解释:将③0,则忽略之)中的每一组作为一个横排,排成一个包含4k k 21−−2个行,个列的数表以后,4个列分别是下面这些数:+++1112}{43,44,...,3k k k k ,+++++121212}{33,34,...,22k k k k k k ,+++++121212}{223,223,...,3k k k k k k ,++++33,34,...,412122}{k k k k k . 可以看出每列都是连续的若干个整数,它们再取并以后,将取遍+++112}{41,42,...,42k k k 中除开五个集合++11}{41,42k k ,++++1212}{31,32k k k k ,221,222k k k k 1212++++}{,++++31,321212}{k k k k ,++22}中的十个元素以外的所有数{41,42k k .而这十个数中,除开已经去掉的42 k 1+和41以外,剩余的八个数恰好就是②中出现的八个数k 2+.这就说明我们给出的分组方式满足要求,故此时数列m +1,2,...,42是可分数列(i j ,)−.至此,我们证明了:对≤<≤+i j m ,如果前述命题1和命题2142同时成立,则数列的个数(i j ,可分数列.(i j ,)m +1,2,...,42一定是−然后我们来考虑这样的).首先,由于A B ⋂=∅,A 和B 各有个元素,故满足命题1m +1的(i j ,)总共有2(m +1)个;而如果j i −=3,假设∈∈i A j B ,,则可设i k =+411,j k =+422,代入得+−+=21 ))((42413k k .但这导致 2k k 211−=,矛盾,所以∈∈i B j A ,.设i k =+421,j k =+412,∈,0,1,2,...,k k m 12}{,则+−+=21) )((41423k k ,即k k 21−=1.所以可能的,)(k k 12恰好就是(0,1,1,2,...,1,)()(m m −),对应的m m (i j ,)分别是−+2,5,6,9,...,42,41)()()(,总共个m .所以这2个满足命题1(m +1)的)中,不满足命题2(i j ,的恰好有这就得到同时满足命题1和命题2个m .的(i j ,)的个数为2)(m m +−1.当我们从m +1,2,...,42中一次任取两个数i 和j i j (<)时,总的选取方式的个数等于=++2)((2141m m))()(4241m m ++.而根据之前的结论,使得数列,,...,m +a a a 1242是(i j ,)−可分数列的(i j ,)至少有 2)个(m m +−1.所以数列a a a 1242,,...,m +是(i j ,)−可分数列的概率))))P m 一定满足(()(()(()(()⎝⎭ ⎪P ⎛⎫≥=>==m m ++214121412142221218m m m m m m m m m +m ++++++++42m m ++11122212)这就证明了结论(m m +−1..。

(精校版)2022年新高考全国卷Ⅰ数学高考试题(含答案)

(精校版)2022年新高考全国卷Ⅰ数学高考试题(含答案)

普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年普通高等学校招生全国统一考试
理科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4. 考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要
求的.
1.设复数z 满足1+z 1-z =i ,则|z |= A .1 B . 2 C . 3 D .2
2.sin 20°cos 10°-cos 160°sin 10°=
A .-32
B .32
C .-12
D .12
3.设命题P :n ∈N ,n 2>2n ,则¬P 为
A .n ∈N , n 2>2n
B .n ∈N , n 2≤2n
C .n ∈N , n 2≤2n
D .n ∈N , n 2=2n
4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为,且各次投
篮是否投中相互独立,则该同学通过测试的概率为
A .
B .0.432
C .
D .
5.已知M (x 0,y 0)是双曲线C :x 2
2
-y 2=1 上的一点,F 1、F 2是C 上的两个焦点,若 MF 1→· MF 2→<0 ,则y 0的取值范围是
A .⎝ ⎛⎭⎪⎫-33,33
B .⎝ ⎛⎭⎪⎫-36,36
C .⎝ ⎛⎭⎪⎫-223,223
D .⎝ ⎛⎭⎪⎫-233
,233
6.《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,
高五尺.问:积及为米几何”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),
米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少”已知1斛米的体积约
为立方尺,圆周率约为3,估算出堆放斛的米约有
A .14斛
B .22斛
C .36斛
D .66斛
7.设D 为△ABC 所在平面内一点BC →=3CD →,则
A .AD →=-13A
B →+43A
C → B .A
D →=13AB →-43
AC → C .AD →=43AB →+13AC → D .AD →
=43AB →-13
AC →
8.函数f (x )=cos (ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为
A .⎝ ⎛⎭⎪⎫k π-14,k π+3
4 (k ∈Z ) B .⎝ ⎛⎭
⎪⎫2k π-14,2k π+34 (k ∈Z ) C .⎝ ⎛⎭⎪⎫k -14,k +34 (k ∈Z ) D .⎝ ⎛⎭
⎪⎫2k -14,2k +34 (k ∈Z )
9.执行右面的程序框图,如果输入的t =,则输出的n =
A .5
B .6
C .7
D .8
10.(x 2+x +y )5的展开式中,x 5y 2的系数为
A .10
B .20
C .30
D .60 (第11题图)
11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视
图如图所示.若该几何体的表面积为16+20π,则r =
A .1
B .2
C .4
D .8
12.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围

B. ⎣⎢⎡⎭⎪⎫-32e ,34
C. ⎣⎢⎡⎭⎪⎫32e ,34
D. ⎣⎢⎡⎭
⎪⎫32e ,1
2
r
r
正视图俯视图 r
2
r
第II 卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.
二、填空题:本大题共3小题,每小题5分
13.若函数f (x )=xln (x +a +x 2)为偶函数,则a =______.
14.一个圆经过椭圆 x 216+y 24=1 的三个顶点,且圆心在x 轴上,则该圆的标准方程为 . 15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0 (1)x -y ≤0 (2)x +y -4≤0 (3)
,则 y x 的最大值为 . 16.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +4.
(Ⅰ)求{a n }的通项公式;
(Ⅱ)设b n =1a n a n +1
,求数列{b n }的前n 项和.
18.如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD , DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .
(1)证明:平面AEC ⊥平面AFC ; (2)求直线AE 与直线CF 所成角的余弦值.
A B
C F E D
19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:
t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
表中w 1 =x 1, ,w - =18∑x +1
w
1 (Ⅰ)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型
(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)
的判断结果及表中数据,建立y 关于x 的回归方程;
(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =-x .根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少
(ⅱ)年宣传费x 为何值时,年利率的预报值最大
附:对于一组数据(u 1 v 1),(u 2 v 2),……,(u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:
β=∑i =1
n
(u i -u -)(v i
-v -)
∑i =1
n (u i -u -)2 α=v --βu -
36 38 34 40 42 44 46 48 50 52 54 56 年宣传费/千
20.(本小题满分12分)
在直角坐标系xoy 中,曲线C :y =x 24
与直线y =kx +a (a >0)交于M ,N 两点, (Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;
(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN 说明理由.
21.(本小题满分12分)
已知函数f (x )=x 3+ax +14
,g (x )=-lnx . (Ⅰ)当a 为何值时,x 轴为曲线y =f (x ) 的切线;
(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )} (x >0),讨论h (x )零点的个数.
请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑..
22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线;
(Ⅱ)若OA =3CE ,求∠ACB 的大小.
23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正
半轴为极轴建立极坐标系.
(Ⅰ)求C 1,C 2的极坐标方程;
(Ⅱ)若直线C 3的极坐标方程为 θ=π4
(ρ∈R ),设C 2与C 3的交点为M 、N ,求△C 2MN 的面积.
24.(本小题满分10分)选修4—5:不等式选讲
已知函数f (x )=|x +1|-2|x -a |,a >0.
(Ⅰ)当a =1时,求不等式f (x )>1的解集;
(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。

相关文档
最新文档