【近5年高考数学全国卷试题】理科(20200725100358).pdf

合集下载

2020年高考全国I卷理科数学试题(含答案)

2020年高考全国I卷理科数学试题(含答案)

绝密★启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1. 答卷前,考生务必将白己的姓名、考生号等填写在答题卡和试卷指定位H±o2. 回答选择题时,选出每小题答案后,用铅笔把答题R对应题日的答案标号涂黑。

如需改动,用橡皮擦T净后,再选涂梵他答案标号。

冋答非选择题时,将答案写在答题卡上。

写在木试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

L 若z=l+i,则k2-2z∣=A. 0B. 1C. √2D・ 22. 设^A={x∖x2 4<0}, B- {x∣2r÷α<0}, WA^B-{x∖-2≤κ<∖},则旷A. -4 B∙ -2 C. 2 D. 43. 埃及胡夫金字塔是古代世界建筑奇迹之•,它的形状可视为•个正四棱锭•以该卩q核锥的高为边长的正方形而枳等于该四棱维一个侧而三角形的面枳,则几侧面三角形底边上的髙与底而正方形的边长的比值4. 已知/为抛物线Cy=2砂(p>0)上•点,点/到C的焦点的距离为12,到)轴的距离为9,则严5∙某校一个课外学习小组为研究某作物种子的发芽率y和温度X (单位:O C)的关系,在20个不同的温度亦+ 1A. 2B. 3C. 6D. 9为442条件卜•进行种子发芽实验•由实验数据(兀丿)(心12….20)得到卜•而的散点图:100%8. (.r + ^-)(x + >05的展开式中QJ 的系数为 XA ・5 B. IO C. 15D. 209∙己知 αe (0,π)t M. 3cos2α 一 Scosa==5» 则 Sina =A.逅B. ZC.1 D.迈 333910.已知4氏C 为球O 的球面上的三个点.OQ 为Z ∖∕BC 的外接圆.KOO I 的面积为4兀・由此散点图,在10。

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)-解析版

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)-解析版

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(本大题共12小题,共60.0分)1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则C U(A⋃B)=()A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2.若α为第四象限角,则()A. cos2α>0B. cos2α<0C. sin2α>0D. sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A. 10名B. 18名C. 24名D. 32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A. 3699块B. 3474块C. 3402块D. 3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A. √55B. 2√55C. 3√55D. 4√556.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+⋯+a k+10=215−25,则k=()A. 2B. 3C. 4D. 57.右图是一个多面体的三视图,这个多面体某条棱的一个断点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H8.设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D、E两点,若ODE的面积为8,则C的焦距的最小值为()A. 4B. 8C. 16D. 329.设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)()A. 是偶函数,且在(12,+∞)单调递增B. 是奇函数,且在(−12,12)单调递减C. 是偶函数,且在(−∞,−12)单调递增D. 是奇函数,且在(−∞,−12)单调递减10.已知▵ABC是面积为9√34的等边三角形,且其顶点都在球O的表面上,若球O的表面积为16π,则球O到平面ABC的距离为()A. √3B. 32C. 1 D. √3211.若2x−2y<3−x−3−y,则()A. ln(y−x+1)>0B. ln(y−x+1)<0C. ln|x−y|>0D. ln|x−y|<012.0−1周期序列在通信技术中有着重要应用,若序列a1a2…a n…满足a i∈(0,1)(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成立,则称其为0−1周期序列,并称满足a i+m=a i(i=1,2,…)的最小正整数m为这个序列的周期.对于周期为m的0−1序列a1a2…a n…,C(k)=1m ∑a i a i+k(k=1,2,…,m−1)mi=1是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A. 11010…B. 11011…C. 10001…D. 11001…二、填空题(本大题共4小题,共20.0分)13.已知单位向量a,b的夹角为45°,ka−b与a垂直,则k=_______.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有______种.15.设复数z1,z2满足|z1|=|z2|=2,z1+z2=√3+i,则|z1−z2|=______.16.设有下列四个命题:P1:两两相交且不过同一点的三条直线必在同一平面内.P2:过空间中任意三点有且仅有一个平面.P3:若空间两条直线不相交,则这两条直线平行.P4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p4三、解答题(本大题共7小题,共80.0分)17. ▵ABC 中,sin 2A −sin 2B −sin 2C =sinBsinC .(1)求A ;(2)若BC =3,求▵ABC 周长的最大值.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i =6020i=1,∑y i =120020i=1,∑(x i −x )2=8020i=1,∑(y i −y )2=900020i=1,∑(x i −x )(y i −y )=8020i=10.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,√2≈1.414.19. 已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与的C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.20.如图,已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC 于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO//平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.21.已知函数f(x)=sin2xsin2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:|f(x)|≤3√38;(3)设n∈N∗,证明:sin2xsin22xsin24x⋯sin22n x≤3n4n.22.已知曲线C1,C2的参数方程分别为C1:{x=4cos 2θy=4sin2θ(θ为参数),C2:{x=t+1ty=t−1t(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.23.已知函数f(x)=|x−a2|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.答案和解析1.【答案】A【解析】【分析】本题考查集合的运算,属基础题.先求出A∪B,再求补集.【解答】解:∵A∪B={−1,0,1,2},∴∁U(A∪B)={−2,3}.故选A.2.【答案】D【解析】【分析】本题考查三角函数在各象限的正负,属于基础题.根据所给角是第四象限角,写出角α的范围,求出2α的范围,进而可判断出三角函数值的正负.【解答】+2kπ<α<2kπ,∴−π+4kπ<2α<4kπ,解:∵−π2∴2α是第三象限或第四象限角或终边在y轴的非正半轴上,∴sin2α<0.故选D.3.【答案】B【解析】【分析】本题考查对概率的理解,通过条件容易得出第二天需配送的总订单数,进而可求出所需至少人数.【解答】解:因为公司可以完成配货1200份订单,=18名.则至少需要志愿者为1600+500−120050故选B.4.【答案】C【解析】【分析】本题考查等差数列前n项和的性质,属于中档题.由S n,S2n−S n,S3n−S2n成等差数列,可得每一层的环数,通过等差数列前n项和公式可求得三层扇形石板的总数.【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1=9,由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,得n=9,×9=3402块.则三层共有扇形面石板为S3n=S27=27a1+27×262故选C.5.【答案】B【解析】【分析】本题考查直线与圆的位置关系及点到直线的距离计算,属基础题.由圆与坐标轴相切,可得圆心坐标及半径,再用点到直线的距离公式求解即可.【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(2−a)2+(1−a)2=a2,解得a=1或a=5,.所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是d=2√55故选B.6.【答案】C【解析】【分析】本题考查等比数列的判定及等比数列前n项求和,属基础题.取m=1,知数列是等比数列,再由等比数列前n项和公式可求出k的值.【解答】解:取m=1,则a n+1=a1a n,=2,又a1=2,所以a n+1a n所以{a n}是等比数列,则a n=2n,所以,得k=4.故选C.7.【答案】A【解析】【分析】本题三视图,考查空间想象能力,属基础题.由三视图,通过还原几何体,观察可知对应点.【解答】解:该几何体是两个长方体拼接而成,如图所示,显然选A.8.【答案】B【解析】【分析】本题主要考查双曲线的几何性质及双曲线的渐近线,属于中档题.【解答】x,解:双曲线C的两条渐近线分别为y=±ba由于直线x=a与双曲线的两条渐近线分别交于D、E两点,则易得到|DE|=2b,则S△ODE=ab=8,c2=a2+b2⩾2ab=16,即c⩾4,所以焦距2c⩾8.故选B.9.【答案】D【解析】 【分析】本题主要考查函数的奇偶性、单调性,属于中档题. 【解答】解:函数f(−x)=ln |−2x +1|−ln |−2x −1|=ln |1−2x |−ln |2x +1|=−f(x), 则f(x)为奇函数,x ∈(−12,12)时,f(x)=ln(2x +1)−ln(1−2x),单调递增; x ∈(−∞,−12)时,f(x)=ln(−2x −1)−ln(1−2x)=ln 2x+12x−1=ln(1+22x−1),单调递减. 故选D .10.【答案】C【解析】 【分析】本题主要考查点到平面的距离求法,属于中档题. 【解答】解:设△ABC 的外接圆圆心为O 1,设OO 1=d ,圆O 1的半径为r ,球O 的半径为R , △ABC 的边长为a ,则S △ABC =√34a 2=9√34,可得a =3,于是r =3=√3, 由题意知,球O 的表面积为16π,则R =2,由R 2=r 2+d 2,求得d =1,即O 到平面ABC 的距离为1. 故选C .11.【答案】A【解析】 【分析】本题主要考查对数函数与指数函数,考查函数的单调性,属于较难题. 【解答】解:2x−3−x<2y−3−y,设f(x)=2x−3−x,则f′(x)=2x ln2+3−x ln3>0,所以函数f(x)在R上单调递增,因为f(x)<f(y),所以x<y,则y−x+1>1,ln(y−x+1)>0.故选A.12.【答案】C【解析】【分析】本题主要考查新定义类型的问题,属于较难题.【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>15,不满足,排除;故选C.13.【答案】√22【解析】【分析】本题主要考查平面向量的运算以及向量间的垂直关系,属于基础题.【解答】解:由单位向量a⃗,b⃗ 的夹角为45∘,k a⃗−b⃗ 与a⃗垂直,=0,所以(k a⃗−b⃗ )⋅a⃗=k−√22则k=√2.2.故答案为√2214.【答案】36【解析】【分析】本题考查计数原理,属于基础题.【解答】解:由题意,先将4名同学分成三组,一组两人,其余两组各一人,再将3组分到3个小区,可得不同的安排方法有:C42A33=36.答案:36.15.【答案】2√3【解析】【分析】本题考查复数的运算及复数的模,属于基础题.【解答】解:在复平面内,用向量方法求解,原问题即等价于平面向量a⃗,b⃗ 满足|a⃗|=|b⃗ |=2,a⃗+b⃗ =(√3,1),求|a⃗−b⃗ |,由(a⃗+b⃗ )2+(a⃗−b⃗ )2=2|a⃗|2+2|b⃗ |2,可得4+(a⃗−b⃗ )2=16,故|a⃗−b⃗ |=2√3.故答案为2√3.16.【答案】①③④【解析】【分析】本题考查含逻辑联结词的命题真假的判断以及立体几何相关知识,属于中档题.【解答】解:对于p1:可设l1与l2,所得平面为α.若l3与l1相交,则交点A必在平面α内.同理l2与l3的交点B在平面α内,故直线AB在平面α内,即l3在平面α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数个平面,故p2为假命题.对于p3:空间中两条直线的位置关系有平行,相交,异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知,p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为①③④.17.【答案】解:(1)在▵ABC中,设内角A,B,C的对边分别为a,b,c,因为sin2A−sin2B−sin2C=sinBsinC,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cosA=b2+c2−a22bc =−12,因为0<A<π,所以A=2π3.(2)由(1)知,A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bccosA,所以9=b2+c2+bc=(b+c)2−bc,由基本不等式可得bc≤(b+c)24,所以9=(b+c)2−bc≥34(b+c)2,所以b+c≤2√3(当且仅当b=c=√3时取得等号),所以▵ABC周长的最大值为3+2√3.【解析】本题主要考查利用正余弦定理解三角形的问题,属于中档题.(1)直接利用正余弦定理即可求解;(2)利用余弦定理与基本不等式即可求解.18.【答案】解:(1)由题可知,每个样区这种野生动物数量的平均数为120020=60,所以该地区这种野生动物数量的估计值为60×200=12000(2)根据公式得r=i −x)(y i−y)ni=1√∑(x i−x)∑(y i−y)i=1i=1=√80×9000=3√2≈0.94(3)为了提高样本的代表性,选用分层抽样法更加合理,因为分层抽样可以按照规定的比例从不同的地块间随机抽样,其代表性较好,抽样误差更小。

2020年全国统一考试高考数学试卷及其详细解析(理科)(新课标ⅲ)

2020年全国统一考试高考数学试卷及其详细解析(理科)(新课标ⅲ)

2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{(,)|A x y x=,*y N∈,}y x,{(,)|8}B x y x y=+=,则A B中元素的个数为()A.2 B.3 C.4 D.62.复数113i-的虚部是()A.310-B.110-C.110D.3103.在一组样本数据中,1,2,3,4出现的频率分别为1p,2p,3p,4p,且411iip==∑,则下面四种情形中,对应样本的标准差最大的一组是()A.140.1p p==,230.4p p==B.140.4p p==,230.1p p==C.140.2p p==,230.3p p==D.140.3p p==,230.2p p==4.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()(I t t的单位:天)的Logistic模型:0.23(53)()1tKI te--=+,其中K为最大确诊病例数.当*()0.95I t K=时,标志着已初步遏制疫情,则*t约为( )(193)ln≈A.60 B.63 C.66 D.695.设O为坐标原点,直线2x=与抛物线2:2(0)C y px p=>交于D,E两点,若OD OE⊥,则C的焦点坐标为()A.1(4,0)B.1(2,0)C.(1,0)D.(2,0)6.已知向量a,b满足||5a=,||6b=,6a b=-,则cos a<,(a b+>=) A.3135-B.1935-C.1735D.19357.在ABC∆中,2cos3C=,4AC=,3BC=,则cos(B=)A.19B.13C.12D.238.如图为某几何体的三视图,则该几何体的表面积是()A.642+B.442+C.63+D.43+初高中数学学习资料的店初高中数学学习资料的店11.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,.P 是C上一点,且12F P F P ⊥.若△12PF F 的面积为4,则(a = )A .1B .2C .4D .8 12.已知5458<,45138<.设5log 3a =,8log 5b =,13log 8c =,则( ) A .a b c <<B .b a c <<C .b c a <<D .c a b <<9.已知2tan tan()74πθθ-+=,则tan (θ= )A .2-B .1-C .1D .210.若直线l与曲线y =和圆2215x y +=都相切,则l 的方程为( )A .21y x =+B .122y x =+C .112y x =+D .1122y x =+二、填空题:本题共4小题,每小题5分,共20分。

2020年全国统一高考数学试卷理科新课标Ⅲ原卷版_PDF密码解除

2020年全国统一高考数学试卷理科新课标Ⅲ原卷版_PDF密码解除

n(ad bc)
2
附:

K
(a b)(c d)(a c)(b d)
P(K2≥k)
0.050
k
3.841
0.010 6.635
0.001 10.828
19.如图,在长方体 ABCD A1B1C1D1 中,点 E, F 分别在棱 DD BB 上,且


1, 1
2DE ED BF 2FB
1
2020年普通高等学校招生全国统一考试
理科数学
注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改 动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本 试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是 符合题目要求的. 1.已知集合 A {(x, y) | x, y N* , y x}, B {(x, y) | x y 8},则 A B 中元素的个数为( )
D. (2,0)
6.已知向量a,b满足| a | 5 , | b | 6 , a b 6 ,则 cos a,a b = ( )
”“
17
31
19
A.
B.
C.
35
35
35
2
7.在△ABC中,cosC= ,AC=4,BC=3,则cosB=( )
3
1
1
1
A.
B.
C.
9
2
3
8.下图为某几何体的三视图,则该几何体的表面积是( )

2020年高考数学(理科)真题试卷(全国Ⅲ卷)

2020年高考数学(理科)真题试卷(全国Ⅲ卷)

2020年高考数学(理科)真题试卷(全国Ⅲ卷)2020 年普通高等学校招生全国统一考试理科数学注意事项:1 .答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2 .回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑 . 如需改动,用橡皮擦干净后,再选涂其他答案标号 . 回答非选择题时,将答案写在答题卡上 . 写在本试卷上无效 .3 .考试结束后,将本试卷和答题卡一并交回 .一、选择题:本题共 12 小题,每小题 5 分,共 60 分 . 在每小题给出的四个选项中,只有一项是符合题目要求的 .1.已知集合,,则中元素的个数为(______)A.2B.3C.4D.62.复数的虚部是(______)A.B.C.D.3.在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是(______)A.B.C.D.4.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数 I( t)( t的单位:天)的 Logistic模型:,其中 K为最大确诊病例数.当 I()=0.95 K时,标志着已初步遏制疫情,则约为(______)(ln19≈3)A.60B.63C.66D.695.设 O为坐标原点,直线 x=2与抛物线 C: y 2=2 px( p>0)交于 D, E两点,若 OD⊥ OE,则 C的焦点坐标为(______)A.(,0)B.(,0)C.(1,0)D.(2,0)6.已知向量 a, b满足,,,则(______) A.B.C.D.7.在△ ABC中,cos C=, AC=4, BC=3,则cos B=( )A.B.C.D.8.下图为某几何体的三视图,则该几何体的表面积是(______)A.6+4B.4+4C.6+2D.4+29.已知2tan θ–tan( θ+)=7,则tan θ=(______)A.–2B.–1C.1D.210.若直线 l与曲线 y=和 x 2+ y2=都相切,则 l的方程为(______)A.y=2 x+1B.y=2 x+C.y= x+1D.y= x+11.设双曲线 C:( a>0, b>0)的左、右焦点分别为 F1, F2,离心率为. P是 C上一点,且 F1 P⊥ F2P.若△ PF1F2的面积为4,则 a=(______)A.1B.2C.4D.812. 已知5 5<84,134<85.设 a=log53, b=log85, c=log138,则(______)A.a< b< cB.b< a< cC.b< c< aD.c< a< b二、填空题:本题共 4 小题,每小题 5 分,共 20 分 .13.若 x, y满足约束条件,则 z=3 x+2 y的最大值为_______________.14.的展开式中常数项是_______________(用数字作答).15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_______________. 16.关于函数 f( x)=有如下四个命题:① f( x)的图像关于 y轴对称.② f( x)的图像关于原点对称.③ f( x)的图像关于直线 x=对称.④ f( x)的最小值为2.其中所有真命题的序号是_______________.三、解答题:共 70 分 . 解答应写出文字说明、证明过程或演算步骤 . 第 17~21 题为必考题,每个试题考生都必须作答 . 第 22 、 23 题为选考题,考生根据要求作答 .(一)必考题:共 60 分 .17.设数列{ an }满足 a1=3,.(1)计算 a2, a3,猜想{ an}的通项公式并加以证明;(2)求数列{2 nan}的前 n项和 Sn.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:,19.如图,在长方体中,点分别在棱上,且,.(1)证明:点在平面内;(2)若,,,求二面角的正弦值.20.已知椭圆的离心率为,,分别为的左、右顶点.(1)求的方程;(2)若点在上,点在直线上,且,,求的面积.21.设函数,曲线在点(, f())处的切线与 y轴垂直.(1)求 b.(2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于1.(二)选考题:共 10 分 . 请考生在第 22 、 23 题中任选一题作答 . 如果多做,则按所做的第一题计分 .[ 选修 4—4 :坐标系与参数方程 ] ( 10 分)22.在直角坐标系 xOy中,曲线 C的参数方程为( t为参数且 t≠1), C与坐标轴交于 A、 B两点.(1)求;(2)以坐标原点为极点, x轴正半轴为极轴建立极坐标系,求直线 AB的极坐标方程.[ 选修 4—5 :不等式选讲 ] ( 10 分)23.设 a, b, c R, a+ b+ c=0, abc=1.(1)证明: ab+ bc+ ca<0;(2)用max{ a, b, c}表示 a, b, c中的最大值,证明:max{ a, b, c}≥.参考答案1.C 解析:由题意,中的元素满足,且,由,得,所以满足的有,故中元素的个数为4.故选:C.2.D 解析:因为,所以复数的虚部为.故选:D.3.B 解析:对于A选项,该组数据的平均数为,方差为;对于B选项,该组数据的平均数为,方差为;对于C选项,该组数据的平均数为,方差为;对于D选项,该组数据的平均数为,方差为.因此,B选项这一组的标准差最大.故选:B.4.C 解析:,所以,则,所以,,解得.故选:C.5.B 解析:因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.6.D 解析:,,,.,因此,.故选:D.7.A 解析:在中,,,根据余弦定理:可得,即由故.故选:A.8.C 解析:根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:根据勾股定理可得:是边长为的等边三角形根据三角形面积公式可得:该几何体的表面积是:.故选:C.9.D 解析:,,令,则,整理得,解得,即. 故选:D.10.D 解析:设直线在曲线上的切点为,则,函数的导数为,则直线的斜率,设直线的方程为,即,由于直线与圆相切,则,两边平方并整理得,解得,(舍),则直线的方程为,即.故选:D.11.A 解析:,,根据双曲线的定义可得,,即,,,,即,解得,故选:A.12.A 解析:由题意可知、、,,; 由,得,由,得,,可得;由,得,由,得,,可得.综上所述,.故选:A.13.7 解析:不等式组所表示的可行域如图因为,所以,易知截距越大,则越大,平移直线,当经过 A点时截距最大,此时z最大,由,得,,所以.故答案为:7.14. 解析:其二项式展开通项:当,解得的展开式中常数项是:.故答案为:.15. 解析:易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中,且点 M为 BC边上的中点,设内切圆的圆心为,由于,故,设内切圆半径为,则:,解得:,其体积:.故答案为:.16.②③ 解析:对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.17.(1),,,证明见解析;(2). 解析:(1)由题意可得,,由数列的前三项可猜想数列是以为首项,2为公差的等差数列,即,证明如下:当时,成立;假设时,成立.那么时,也成立.则对任意的,都有成立;(2)由(1)可知,,①,②由①②得:,即.18.(1)该市一天的空气质量等级分别为、、、的概率分别为、、、;(2);(3)有,理由见解析. 解析:(1)由频数分布表可知,该市一天的空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为(3)列联表如下:,因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.(1)证明见解析;(2). 解析:(1)在棱上取点,使得,连接、、、,在长方体中,且,且,,,且,所以,四边形为平行四边形,则且,同理可证四边形为平行四边形,且,且,则四边形为平行四边形,因此,点在平面内;(2)以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,,,设平面的法向量为,由,得取,得,则,设平面的法向量为,由,得,取,得,,则,,设二面角的平面角为,则,. 因此,二面角的正弦值为.20.(1);(2). 解析:(1),,根据离心率,解得或(舍),的方程为:,即;(2)点在上,点在直线上,且,,过点作轴垂线,交点为,设与轴交点为根据题意画出图形,如图,,,又,,,根据三角形全等条件“”,可得:,,,,设点为,可得点纵坐标为,将其代入,可得:,解得:或,点为或,①当点为时,故,,,可得:点为,画出图象,如图,,可求得直线的直线方程为:,根据点到直线距离公式可得到直线的距离为:, 根据两点间距离公式可得:,面积为:;②当点为时,故,,,可得:点为,画出图象,如图,,可求得直线的直线方程为:,根据点到直线距离公式可得到直线的距离为:,根据两点间距离公式可得:,面积为:,综上所述,面积为:.21.(1);(2)证明见解析 解析:(1)因为, 由题意,,即则;(2)由(1)可得,,令,得或;令,得,所以在上单调递减,在,上单调递增, 且,若所有零点中存在一个绝对值大于1的零点,则或,即或.当时,,又,由零点存在性定理知在上存在唯一一个零点,即在上存在唯一一个零点,在上不存在零点,此时不存在绝对值不大于1的零点,与题设矛盾;当时,,又,由零点存在性定理知在上存在唯一一个零点,即在上存在唯一一个零点,在上不存在零点,此时不存在绝对值不大于1的零点,与题设矛盾;综上,所有零点的绝对值都不大于1.22.(1)(2) 解析:(1)由参数方程得出的坐标,最后由两点间距离公式,即可得出的值;(2)由的坐标得出直线的直角坐标方程,再化为极坐标方程即可.【详解】:(1)令,则,解得或(舍),则,即.令,则,解得或(舍),则,即.;(2)由(1)可知,则直线的方程为,即.由可得,直线的极坐标方程为.【点睛】:本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.23.(1)证明见解析(2)证明见解析. 解析:(1),.均不为,则,;(2)不妨设,由可知,,,.当且仅当时,取等号,,即.21/21。

2020年高考理科数学全国卷2含答案(A4打印版)

2020年高考理科数学全国卷2含答案(A4打印版)

绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10{2101}1{1223U A B --==-}=},,,,,,,,,,,则)(UA B = ( )A .{23-},B .{223-},,C .{2103--},,,D .{21023--},,,, 2.若α为第四象限角,则( )A .cos20α>B .cos20α<C .sin20α>D .sin20α<3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 ( ) A.3 699块B.3 474块C.3 402块D.3 339块4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3 699块B .3 474块C .3 402块D .3 339块5.若过点(2)1,圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 ( )ABCD6.数列{n a }中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A .2B .3C .4D .57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x yC a b a b -=>>的两条渐近线分别交于D E ,两点,若ODE △的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .32 9.设函数()ln 21ln 21f x x x =+--,则()f x( )A .是偶函数,且在1()2+∞,单调递增 B .是奇函数,且在11()22-,单调递减C .偶函数,且在1()-∞-,单调递增D .是奇函数,且在1()2-∞-,单调递减10.已知ABC △的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32C .1D 11.若2233x y x y ----<,则( )A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln 0x y ->D .ln 0x y -<12.01-周期序列在通信技术中有着重要应用.若序列12na a a 满足,且存在正整数m ,使得(12)i m i a a i +==,,成立,则称其为0-1周期序列,并称满足(12)i m i a a i +==,,的最小正整数m 为这个序列的周期.对于周期为的01-序列12na a a ,11()(121)mi i k i C k a a k m m +===-∑,,,是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1234)5C k k =≤,,,的序列是 ( )A .11010B .11011C .10001D .11001二、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量a b ,的夹角为45︒,ka b -与a 垂直,则=k ________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种.15.设复数1z ,1z 满足12|=||=2z z ,12i z z +=,则12||=z z -________. 16.设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内. 2p :过空间中任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)在ABC △中,222sin sin sin sin sin A B C B C =--. (1)求A ;(2)若3BC =,求ABC △周长的最大值.18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()1220i i x y i =⋯,,,,,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i ix x =-=∑(,2021)9000i i y y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()1220i i x y i =⋯,,,,的相关系数(精确到0.01); (3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数))ii nx y x y r --∑((.19.(12分)已知椭圆2221201()x y a bC a b +=>>:的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合.过F 且与x 轴垂直的直线交1C 于A B ,两点,交2C 于C D ,两点,且43CD AB =.(1)求1C 的离心率;(2)设M 是1C 与2C 的公共点,若5MF =,求1C 与2C 的标准方程.20.(12分)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA MN ∥,且平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若AO ∥平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.21.(12分)已知函数2sin n )si (2f x x x =.(1)讨论()f x 在区间(0)π,的单调性; (2)证明:()f x (3)设*n N ∈,证明:22223sin sin 2sin 4sin 24nnn x x x x ⋯≤.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分) 已知曲线12C C ,参数方程分别为2124cos 4sin x C y θθ⎧=⎨=⎩,:(θ为参数),21π1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,:(t 为参数). (1)将12C C ,的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设12C C ,的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.23.[选修4—5:不等式选讲](10分)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求()4f x 不等式的解集; (2)若()4f x ,求a 的取值范围.2020年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学答案解析一、选择题 1.【答案】A【解析】由题意可得:{}1012AB =-,,,,则{2()3UA B =-},.故选:A .【考点】并集、补集的定义与应用 2.【答案】D 【解析】当π6α=-时,πcos2cos 03α⎛⎫=- ⎪⎝⎭>,选项B 错误;当π3α=-时,2πcos 2cos 03α⎛⎫=- ⎪⎝⎭<,选项A 错误;由α在第四象限可得:sin 0cos 0αα,><,则sin22sin cos 0ααα=<,选项C 错误,选项D 正确;故选:D .【考点】三角函数的符号,二倍角公式,特殊角的三角函数值 3.【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者9001850=名.故选:B .【考点】函数模型的简单应用 4.【答案】C【解析】设第n 环天心石块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层比中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+,即29729n =,解得9n =,所以32727(9927)34022n S S +⨯===.故选:C .【考点】等差数列前n 项和有关的计算 5.【答案】B【解析】由于圆上的点()21,在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为()a a ,,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()11,或()55,,圆心到直线230x y --=距离均为d =230x y --=的距离为5.故选:B . 【考点】圆心到直线距离的计算6.【答案】C【解析】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=. 所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n nn a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++--∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C .【考点】利用等比数列求和求参数的值 7.【答案】A【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E ,故选:A . 【考点】根据三视图判断点的位置 8.【答案】B 【解析】22221(00)x y C a b a b-=:>,> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线22221(00)x yC a b a b-=:>,>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故()D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故()E a b -,∴||2ED b =∴ODE △面积为:1282ODE S a b ab =⨯==△ 双曲线22221(00)x y C a b a b-=:>,>∴其焦距为22228c ab ==当且仅当a b ==∴C 的焦距的最小值:8.故选:B .【考点】双曲线焦距的最值问题 9.【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当1122x ⎛⎫∈- ⎪⎝⎭,时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+在1122⎛⎫- ⎪⎝⎭,上单调递增,()ln 12y x =-在1122⎛⎫- ⎪⎝⎭,上单调递减,()f x ∴在1122⎛⎫- ⎪⎝⎭,上单调递增,排除B ;当12x ⎛⎫∈-∞- ⎪⎝⎭,时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在12⎛⎫-∞- ⎪⎝⎭,上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在12⎛⎫-∞- ⎪⎝⎭,上单调递减,D 正确.故选:D . 【考点】函数奇偶性和单调性的判断 10.【答案】C【解析】设球O 的半径为R ,则24π16πR =,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC 是面积为4的等边三角形,21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C .【考点】球的相关问题的求解 11.【答案】A【解析】由2233x y x y ----<得:2323x x y y ----<,令()23t tf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD无法确定.故选:A . 【考点】数式的大小的判断问题 12.【答案】C 【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511()12345i i k i C k a a k +===∑,,,, 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=∑≤52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C【考点】数列的新定义问题 二、填空题 13.【解析】由题意可得:211cos452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-= ⎪⎝⎭, 即:2202k a a bk →→→⨯-=-=,解得:2k =.故答案为:2. 【考点】平面向量的数量积定义与运算法则 14.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,∴先取2名同学看作一组,选法有:246C =.现在可看成是3组同学分配到3个小区,分法有:336A =.根据分步乘法原理,可得不同的安排方法6636⨯=种.故答案为:36. 【考点】计数原理的实际应用 15.【答案】 【解析】122z z ==,可设12cos 2sin i z θθ=+,22cos 2sin i z αα=+,()()122cos cos 2sin sin i 3i z z θαθα∴+=+++=+,()()2cos cos 2sin sin 1θαθα⎧+=⎪∴⎨+=⎪⎩()422cos cos 2sin sin 4θαθα++=,化简得:1cos cos sin sin 2θαθα+=-()()122cos cos 2sin sin iz z θαθα∴-=-+-===.故答案为:. 【考点】复数模长的求解 16.【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④. 【考点】复合命题的真假,空间中线面关系有关命题真假的判断 三、解答题 17.【答案】(1)23π;(2)3+【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-,()0πA ∈,,2π3A ∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-=++=,即()29AC AB AC AB +-=.22AC AB AC AB +⎛⎫⎪⎝⎭≤(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC ABAC AB AC AB +⎛⎫∴=+-+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴△周长3L AC AB BC =+++≤ABC ∴△周长的最大值为3+【考点】解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题 18.【答案】(1)12000; (2)0.94; (3)详见解析【解析】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(),i i x y的相关系数为20()()0.94ii xx y y r --===≈∑ (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样,先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【考点】平均数的估计值、相关系数的计算,抽样方法的选取 19.【答案】(1)12;(2)22113627x y C +=:,2212C y x =:.【解析】(1)()0F c ,,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =, 联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22b AB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x c y c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2ac =,b =,椭圆1C 的方程为2222143x yc c +=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去),由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【考点】椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程 20.【答案】(1)证明见解析;(2. 【解析】(1)M N ,分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴.在ABC△中,M 为BC 中点,则BC AM ⊥.又侧面11BB C C 为矩形,1BC BB ∴⊥,1//MN BB ,MN BC ⊥,由MN AM M =,,MN AM ⊂平面1A AMN ,∴BC ⊥平面1A AMN .又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC .又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF∴//EF BC ∴又BC ⊥平面1A AMN ,∴EF ⊥平面1A AMN ,EF ⊂平面11EB C F ,∴平面11EB C F ⊥平面1A AMN.(2)连接NP//AO 平面11EB C F ,平面AONP 平面11EB C F NP =,∴//AO NP .根据三棱柱上下底面平行,其面1A NMA平面ABC AM =,面1A NMA平面1111A B C A N =,∴//ON AP .故:四边形ONPA 是平行四边形.设ABC △边长是6m (0m >),可得:ON AP =,6NP AO AB m ===.O 为111A B C △的中心,且111A B C △边长为6m ,∴16sin 603ON =⨯⨯︒,故:ON AP =.//EF BC ,∴AP EPAM BM=,∴3EP=.解得:EP m =.在11B C 截取1B Q EP m ==,故2QN m =,1B Q EP =且1//B Q EP ,∴四边形1B QPE 是平行四边形,∴1//B E PQ .由(1)11B C ⊥平面1A AMN ,故QPN ∠为1B E 与平面1A AMN 所成角.在Rt QPN △,根据勾股定理可得:PQ =,sinQN QPN PQ ∴∠===∴直线1B E 与平面1A AMN . 【考点】证明线线平行和面面垂直,线面角21.【答案】(1)当π03x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增,当π2π33x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减,当2ππ3x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增.(2)证明见解析; (3)证明见解析.【解析】(1)由函数的解析式可得:()32sin cos f x x x =,则:()()22423sin cos sin f x x x x'=-()2222sin 3cos sin x x x =-()222sin 4cos 1x x =-()()22sin 2cos 12cos 1x x x =+-,()0f x '=在()0πx ∈,上的根为:12π2π33x x ==,,当π03x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增,当π2π33x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减,当2ππ3x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增.(2)注意到()()()()22πsin πsin 2πsin sin2f x x x x x f x +=+⎡+⎤==⎣⎦,故函数()f x 是周期为π的函数,结合(1)的结论,计算可得:()()0π0f f ==,2π3f ⎛⎫= ⎪⎝⎭⎝⎭,223f π⎛⎛⎫=⨯= ⎪ ⎝⎭⎝⎭⎝⎭()max f x ⎡⎤=⎣⎦,()min f x ⎡⎤=⎣⎦,即()f x ≤. (3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x xx233333sin sin 2sin 4sin 2nx x xx ⎡⎤=⎣⎦()()()2222123sin sin sin 2sin 2sin 4sin2sin 2sin 2n nnx x x x x x x x -⎡⎤=⎣⎦23233sin sin 28n x x ⎡⎤⨯⨯⎢⎥⎣⎦≤ 238n⎡⎤⎛⎢⎥ ⎢⎥⎝⎭⎣⎦≤34n⎛⎫= ⎪⎝⎭.【考点】导数的应用22.【答案】(1)14C x y +=:;2224C x y -=:;(2)17cos 5ρθ=. 【解析】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=. (2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即5322P ⎛⎫ ⎪⎝⎭,; 设所求圆圆心的直角坐标为()0a ,,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=. 【考点】极坐标与参数方程的综合应用23.【答案】(1)32x x ⎧⎨⎩≤或112x ⎫⎬⎭;(2)(][)13-∞-+∞,,. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-,解得:32x ≤;当34x <<时,()4314f x x x =-+-=,无解;当4x 时,()43274f x x x x =-+-=-,解得:112x;综上所述:()4f x 的解集为32x x ⎧⎨⎩≤或112x⎫⎬⎭. (2)()()()()22222121211f x x a x a x a x a aa a =-+-+---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-,解得:1a -≤或3a ,a ∴的取值范围为(][)13-∞-+∞,,. 【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值。

2020年全国统一高考数学试卷(理科)与答案(新课标Ⅰ)

2020年全国统一高考数学试卷(理科)与答案(新课标Ⅰ)

当 b = 2 时,f(a) - f(b2) =-1 < 0,此时 f(a) < f(b2),有 a < b2,所以 C、D 错误 .
故选:B.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2x + y - 2 ≤ 0, 13. 若 x,y 满足约束条件 x - y - 1 ≥ 0, 则 z = x + 7y 的最大值为 ______________.
型的是 ( )
A. y = a + bx
B. y = a + bx2
C. y = a + bex
D. y = a + blnx
【答案】D
【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率 y 和温度 x 的回归方程类型的是 y = a + blnx.
故选:D.
6. 函数 f(x) = x4 - 2x3 的图像在点 (1,f(1)) 处的切线方程为 ( )
求解一次不等式 2x + a ≤ 0 可得:B = x|x ≤-a2 .
由于 A ∩ B = x| -2 ≤ x ≤ 1 ,故:-a2 = 1,解得:a =-2.
故选:B.
3. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正 方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值 为( )
A. a > 2b
B. a < 2b
C. a > b2
D. a < b2
【答案】B
【详解】设 f(x) = 2x + log2x,则 f(x) 为增函数,因为 2a + log2a = 4b + 2log4b = 22b + log2b

2020年全国统一高考数学试卷(理科)(全国卷新课标1)

2020年全国统一高考数学试卷(理科)(全国卷新课标1)

2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1 D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1 B.+=1C.+=1 D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档