共享内存和信号量(进程间通信)

合集下载

进程的5种基本特征

进程的5种基本特征

进程的5种基本特征进程是计算机中最基本的执行单位,是操作系统管理和调度资源的基本单位。

进程具有以下5种基本特征:1. 互相独立:每个进程都是独立的个体,拥有自己的代码和数据空间。

进程之间不会相互干扰,在执行过程中彼此独立运行。

2. 动态性:进程是动态产生和终止的。

一个进程可以在任何时刻从创建到退出,包括进程的就绪、运行和阻塞等状态转换。

3. 并发性:计算机系统中通常存在多个进程同时运行。

这些进程按照一定的调度算法并发执行,使得计算机系统可以同时处理多项任务。

4. 独立的资源:每个进程都能拥有独立的资源,包括CPU时间、内存空间、文件和设备等。

进程之间可以共享资源,也可以独自占用资源。

5. 进程间通信:不同进程之间可以通过进程间通信的机制进行信息的交换和共享。

进程间通信可以是通过共享内存、消息传递、信号量等方式进行。

进程的这5种基本特征对于操作系统的设计和管理至关重要。

操作系统需要合理地调度和管理进程,以提高计算机系统的运行效率和资源利用率。

通过进程的独立性和并发性,操作系统能够同时处理多个任务,为用户提供更好的交互体验和服务质量。

同时,进程间通信的机制可以使不同进程之间协同工作,共同完成复杂的任务。

然而,进程的并发性和独立性也会带来一些问题。

多个进程同时运行可能导致资源的竞争和冲突,需要操作系统进行合理的资源分配和调度,以防止进程之间互相干扰。

此外,进程间通信的机制也需要设计和管理,以保证数据传输的安全和可靠。

总结起来,进程的五种基本特征使得操作系统能够合理地管理和调度计算机系统中的资源,提高系统的效率和性能。

对于研究和理解操作系统,了解进程的特性非常重要,也有助于开发和设计高效的应用程序。

通过合理地利用进程的特性,我们可以更好地利用计算机资源,提高工作效率,为用户提供更好的计算体验。

进程间通信的几种方法

进程间通信的几种方法

进程间通信的几种方法进程间通信是计算机系统中一种非常常见的需求,它允许多个进程在不同的地址空间中共享资源,实现信息的共享以及通信。

在计算机系统中,进程间通信的方法会根据使用的网络类型以及网络的连接有所不同。

对于进程间通信的方法,一般可以分为以下几种:(一)共享内存共享内存是一种最简单的进程间通信的方式,也是当今使用最为普遍的进程间通信方法。

在此方法中,多个进程可以访问共享内存区域,这样它们就可以直接在内存中进行通信,而且支持多个进程同时读取和写入内存中的数据,能满足多样化的通信需求,从而提高了系统的效率。

但是,由于这种方法不能实现两个进程之间的“双向”通信,因此它只能适用于一些特定的应用场景,而不能满足一般的进程间通信需求。

(二)消息传递消息传递是进程之间通信的常见方法,它允许两个进程之间进行双向通信,同时还能可靠地传输数据。

在消息传递中,多个进程可以通过将自己的传输内容发送到指定的消息服务器来实现进程间通信。

消息服务器会将这些内容发送到另一个进程,以便双方进行通信。

简单的消息传递本质上是一种客户端/服务器架构,而处理多个进程之间的通信时,可以使用一种名为“发布/订阅”的模型。

在这种模型中,发送者会将消息(即发布)发布到消息服务器上,而接收者(即订阅)可以订阅消息服务器上的那些发布消息。

(三)管道(PIPES)管道是另一种常用的进程间通信模式,它可以实现进程间的双向通信。

在管道模式中,多个进程共享一个双向管道,它们可以在这个双向管道上进行双向通信,也就是说,管道的一端可以用来发送数据,另一端可以用来接收数据。

与消息传递不同,管道不需要使用额外的服务器,因此它可以更快地传输数据,但是它也有很大的局限性,无法跨越网络,仅限于同一台机器上的多个进程之间的通信。

(四)信号量信号量是一种重要的进程间通信机制,它可以用来实现同步和互斥操作,使多个进程都能够按照规定的方式来完成工作,从而实现协作和通信。

信号量原理是通过一个数值来控制多个进程对共享资源的访问,当这个数值为正时,它允许多个进程访问共享资源,当这个数值为0时,它就不允许多个进程访问共享资源。

详解linux进程间通信-消息队列

详解linux进程间通信-消息队列

详解linux进程间通信-消息队列前⾔:前⾯讨论了信号、管道的进程间通信⽅式,接下来将讨论消息队列。

⼀、系统V IPC 三种系统V IPC:消息队列、信号量以及共享内存(共享存储器)之间有很多相似之处。

每个内核中的 I P C结构(消息队列、信号量或共享存储段)都⽤⼀个⾮负整数的标识符( i d e n t i f i e r )加以引⽤。

⽆论何时创建I P C结构(调⽤m s g g e t、 s e m g e t或s h m g e t) ,都应指定⼀个关键字(k e y),关键字的数据类型由系统规定为 k e y _ t,通常在头⽂件< s y s / t y p e s . h >中被规定为长整型。

关键字由内核变换成标识符。

以上简单介绍了IPC,对接下来介绍的消息队列、信号量和共享内存有助于理解。

⼆、消息队列 1、简介 消息队列是消息的链接表 ,存放在内核中并由消息队列标识符标识。

我们将称消息队列为“队列”,其标识符为“队列 I D”。

m s g g e t⽤于创建⼀个新队列或打开⼀个现存的队列。

m s g s n d⽤于将新消息添加到队列尾端。

每个消息包含⼀个正长整型类型字段,⼀个⾮负长度以及实际数据字节(对应于长度),所有这些都在将消息添加到队列时,传送给 m s g s n d。

m s g r c v⽤于从队列中取消息。

我们并不⼀定要以先进先出次序取消息,也可以按消息的类型字段取消息。

2、函数介绍ftok函数#include <sys/types.h>#include <sys/ipc.h>key_t ftok(const char *pathname, int proj_id);//“/home/linux” , 'a'功能:⽣成⼀个key(键值)msgget函数#include <sys/types.h>#include <sys/ipc.h>#include <sys/msg.h>int msgget(key_t key, int msgflg);功能:创建或取得⼀个消息队列对象返回:消息队列对象的id 同⼀个key得到同⼀个对象格式:msgget(key,flag|mode);flag:可以是0或者IPC_CREAT(不存在就创建)mode:同⽂件权限⼀样msgsnd函数int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);功能:将msgp消息写⼊标识为msgid的消息队列msgp:struct msgbuf {long mtype; /* message type, must be > 0 */消息的类型必须>0char mtext[1]; /* message data */长度随意};msgsz:要发送的消息的⼤⼩不包括消息的类型占⽤的4个字节msgflg:如果是0 当消息队列为满 msgsnd会阻塞如果是IPC_NOWAIT 当消息队列为满时不阻塞⽴即返回返回值:成功返回id 失败返回-1msgrcv函数ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,int msgflg);功能:从标识符为msgid的消息队列⾥接收⼀个指定类型的消息并存储于msgp中读取后把消息从消息队列中删除msgtyp:为 0 表⽰⽆论什么类型都可以接收msgp:存放消息的结构体msgsz:要接收的消息的⼤⼩不包含消息类型占⽤的4字节msgflg:如果是0 标识如果没有指定类型的消息就⼀直等待如果是IPC_NOWAIT 则表⽰不等待msgctl函数int msgctl(int msqid, int cmd, struct msqid_ds *buf);msgctl(msgid,IPC_RMID,NULL);//删除消息队列对象 程序2-2将简单演⽰消息队列: --- snd.c ---#include "my.h"typedef struct{long type;char name[20];int age;}Msg;int main(){key_t key = ftok("/home/liudw",'6');printf("key:%x\n",key);int msgid = msgget(key,IPC_CREAT|O_WRONLY|0777);if(msgid<0){perror("msgget error!");exit(-1);}Msg m;puts("please input your type name age:");scanf("%ld%s%d",&m.type,,&m.age);msgsnd(msgid,&m,sizeof(m)-sizeof(m.type),0);return0;} --- rcv.c ---#include "my.h"typedef struct{long type;char name[20];int age;}Msg;int main(){key_t key = ftok("/home/liudw",'6');printf("key:%x\n",key);int msgid = msgget(key,O_RDONLY);if(msgid<0){perror("msgget error!");exit(-1);}Msg rcv;long type;puts("please input type you want!");scanf("%ld",&type);msgrcv(msgid,&rcv,sizeof(rcv)-sizeof(type),type,0);printf("rcv--name:%s age:%d\n",,rcv.age);msgctl(msgid,IPC_RMID,NULL);return0;} 运⾏演⽰: 三、详解ftok函数 ftok根据路径名,提取⽂件信息,再根据这些⽂件信息及project ID合成key,该路径可以随便设置。

CC++进程间通信内存共享

CC++进程间通信内存共享

CC++进程间通信内存共享介绍内存共享前,说下之前的误区,觉得,可以⽤指针来在⽗⼦进程中传递数据,其实,在fork()后,⽗⼦进程的地址空间是相互独⽴的!所以在⽗⼦进程间传递指针是没有意义的。

这⾥就涉及到物理地址和逻辑地址(或称虚拟地址)的概念。

从逻辑地址到物理地址的映射称为地址重定向。

分为:静态重定向--在程序装⼊主存时已经完成了逻辑地址到物理地址和变换,在程序执⾏期间不会再发⽣改变。

动态重定向--程序执⾏期间完成,其实现依赖于硬件地址变换机构,如基址寄存器。

逻辑地址:CPU所⽣成的地址。

CPU产⽣的逻辑地址被分为 :p (页号)它包含每个页在物理内存中的基址,⽤来作为页表的索引;d (页偏移),同基址相结合,⽤来确定送⼊内存设备的物理内存地址。

物理地址:内存单元所看到的地址。

⽤户程序看不见真正的物理地址。

⽤户只⽣成逻辑地址,且认为进程的地址空间为0到max。

物理地址范围从R+0到R+max,R为基地址,地址映射-将程序地址空间中使⽤的逻辑地址变换成内存中的物理地址的过程。

由内存管理单元(MMU)来完成。

fork()会产⽣⼀个和⽗进程完全相同的⼦进程,但⼦进程在此后多会exec系统调⽤,出于效率考虑,linux中引⼊了“写时复制“技术,也就是只有进程空间的各段的内容要发⽣变化时,才会将⽗进程的内容复制⼀份给⼦进程。

在fork之后exec之前两个进程⽤的是相同的物理空间(内存区),⼦进程的代码段、数据段、堆栈都是指向⽗进程的物理空间,也就是说,两者的虚拟空间不同,但其对应的物理空间是同⼀个。

当⽗⼦进程中有更改相应段的⾏为发⽣时,再为⼦进程相应的段分配物理空间,如果不是因为exec,内核会给⼦进程的数据段、堆栈段分配相应的物理空间(⾄此两者有各⾃的进程空间,互不影响),⽽代码段继续共享⽗进程的物理空间(两者的代码完全相同)。

⽽如果是因为exec,由于两者执⾏的代码不同,⼦进程的代码段也会分配单独的物理空间。

操作系统的消息传递和进程间通信实现进程间的信息传递和通信

操作系统的消息传递和进程间通信实现进程间的信息传递和通信

操作系统的消息传递和进程间通信实现进程间的信息传递和通信操作系统是计算机中非常重要的一个组成部分,它负责管理和控制计算机的硬件和软件资源。

在多道程序设计环境下,操作系统需要负责调度和管理多个进程的执行。

而进程间的信息传递和通信是操作系统中一个关键的功能,它使得不同进程之间能够相互交互、传递数据,从而实现协同工作和资源共享。

本文将探讨操作系统中的消息传递和进程间通信,以及它们的实现方法和技术。

一、消息传递在操作系统中,进程间的信息传递可以通过消息传递的方式来实现。

消息传递是指一个进程向另一个进程发送消息,并由接收进程接收和处理该消息。

消息传递可以用于进程间的同步和通信,从而实现进程之间的交互。

消息传递一般包括以下几个步骤:1. 消息的创建:发送进程首先需要创建一条消息,并在消息中填写相应的内容。

消息可以包含数据、指令等信息,以满足不同的需求。

2. 消息的发送:发送进程将创建好的消息发送给接收进程。

发送进程需要指定接收进程的标识符,以确保消息能够被正确地发送到目标进程。

3. 消息的接收:接收进程通过等待操作等待消息的到达。

当消息到达时,接收进程将检查消息的标识符,以确定该消息是否是自己所期望接收的。

4. 消息的处理:接收进程接收到消息后,会对消息进行处理。

处理的方式取决于消息的内容和接收进程的需求。

消息传递可以有两种方式:直接消息传递和间接消息传递。

直接消息传递是指发送进程直接发送消息给接收进程。

间接消息传递是指通过操作系统的消息队列来传递消息。

不同的方式适用于不同的场景和需求。

二、进程间通信的实现为了实现进程间的信息传递和通信,操作系统提供了多种机制和技术。

以下是几种常见的进程间通信的实现方式:1. 共享内存共享内存是一种在多个进程之间共享同一块物理内存的方式。

通过将一块内存区域映射到多个进程的地址空间中,进程可以通过读写共享内存的方式来进行通信。

共享内存的优点是速度快,但需要进程之间进行同步和互斥操作,以避免数据的冲突和错误。

八种实现进程通信的方法

八种实现进程通信的方法

⼋种实现进程通信的⽅法进程通信:每个进程各⾃有不同的⽤户地址空间,任何⼀个进程的全局变量在另⼀个进程中都看不到,所以进程之间要交换数据必须通过内核,在内核中开辟⼀块缓冲区,进程A把数据从⽤户空间拷到内核缓冲区,进程B再从内核缓冲区把数据读⾛,内核提供的这种机制称为进程间通信。

1 匿名管道通信匿名管道( pipe ):管道是⼀种半双⼯的通信⽅式,数据只能单向流动,⽽且只能在具有亲缘关系的进程间使⽤。

进程的亲缘关系通常是指⽗⼦进程关系。

通过匿名管道实现进程间通信的步骤如下:⽗进程创建管道,得到两个⽂件描述符指向管道的两端⽗进程fork出⼦进程,⼦进程也有两个⽂件描述符指向同⼀管道。

⽗进程关闭fd[0],⼦进程关闭fd[1],即⽗进程关闭管道读端,⼦进程关闭管道写端(因为管道只⽀持单向通信)。

⽗进程可以往管道⾥写,⼦进程可以从管道⾥读,管道是⽤环形队列实现的,数据从写端流⼊从读端流出,这样就实现了进程间通信。

详细可参考⽂章:2 ⾼级管道通信⾼级管道(popen):将另⼀个程序当做⼀个新的进程在当前程序进程中启动,则它算是当前程序的⼦进程,这种⽅式我们成为⾼级管道⽅式。

3 有名管道通信有名管道 (named pipe) :有名管道也是半双⼯的通信⽅式,但是它允许⽆亲缘关系进程间的通信。

4 消息队列通信消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。

消息队列克服了信号传递信息少、管道只能承载⽆格式字节流以及缓冲区⼤⼩受限等缺点。

5 信号量通信信号量( semophore ) :信号量是⼀个计数器,可以⽤来控制多个进程对共享资源的访问。

它常作为⼀种锁机制,防⽌某进程正在访问共享资源时,其他进程也访问该资源。

因此,主要作为进程间以及同⼀进程内不同线程之间的同步⼿段。

6 信号信号 ( sinal ) :信号是⼀种⽐较复杂的通信⽅式,⽤于通知接收进程某个事件已经发⽣。

Python中的进程间通信

Python中的进程间通信

Python中的进程间通信进程间通信(IPC,Inter-Process Communication)是一种进程之间传递数据和消息的方式。

在操作系统中,进程是程序在运行时分配给它的内存空间和系统资源的实例。

不同的进程可能运行在不同的计算机上或者同一台计算机上的不同CPU中。

进程间通信是实现多个进程相互合作完成任务的必要手段之一。

进程间通信的方式可以分为多种,包括管道、消息队列、共享内存、信号量等。

Python通过提供不同的模块实现了这些方式,使得进程可以在Python中相互通信,完成不同的任务,实现高效的协作。

1.管道(Pipe)管道是在两个进程之间建立的一条通信通道,可以进行双向通信。

通常情况下,一个进程的输出被重定向到管道中,另一个进程则从管道中读取输入。

在Python中可以使用os模块的pipe()方法来建立管道。

示例代码:```pythonimport ospipe = os.pipe()pid = os.fork()if pid == 0:#子进程从管道中读取数据os.close(pipe[1])data = os.read(pipe[0], 1024)print(f"子进程读取到的数据:{data}") os._exit(0)else:#父进程向管道中写入数据os.close(pipe[0])os.write(pipe[1], b"Hello, Pipe!")os.wait()```在上面的代码中,我们先调用了pipe()方法创建了一个管道,然后使用fork()方法创建了一个子进程。

子进程从管道中读取数据,父进程则向管道中写入数据,最终等待子进程结束。

2.消息队列(Message Queue)消息队列是一种进程间通信机制,可以在不同的进程之间传递消息。

消息队列通常是先进先出的,每个消息都有一个标识符来标记其类型。

在Python中可以使用sysv_ipc模块来使用消息队列。

进程间通信的几种方式

进程间通信的几种方式

进程间通信的几种方式
进程间通信是指在不同进程之间传递数据或信息的过程。

它是操作系统中非常重要的一部分,因为在现代计算机系统中,通常会有多个进程同时运行,而这些进程之间需要进行数据交换和协同工作。

以下是几种常见的进程间通信方式:
1. 管道:管道是一种基于文件描述符的通信方式,可以在父子进程之间或者兄弟进程之间传递数据。

管道有两种类型:有名管道和无名管道。

有名管道可以在不同的进程之间共享,而无名管道只能在具有亲缘关系的进程之间使用。

2. 共享内存:共享内存是指将一块内存空间映射到多个进程的地址空间中,这样多个进程就可以直接访问同一块内存数据。

共享内存的优点是速度快、数据共享直接,但同时也存在一些问题,如同步和互斥等。

3. 信号量:信号量是一种基于计数器的同步机制,用于进程之间的协调。

进程可以通过信号量来控制共享资源的访问,从而避免竞争条件和死锁等问题。

信号量通常需要与其他通信方式一起使用,如共享内存。

4. 消息队列:消息队列是一种先进先出的数据结构,可以在不同的进程之间传递消息。

进程可以将消息放入队列中,另一个进程可以从队列中读取这些消息。

消息队列的优点是可靠性高、数据传输有序,但同时也存在一些问题,如消息的格式和大小限制等。

总的来说,不同的进程间通信方式各有优缺点,我们需要根据
具体的需求和场景来选择最适合的通信方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档