(北师大版)初中数学《认识无理数》第二课时参考教案

合集下载

北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例

北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
将学生分成小组,让学生根据讲授的新知,讨论无理数的性质和表示方法。
2.案例分析:让学生分析一些实际问题,如测量物体长度、计算圆的面积等,运用无理数解决实际问题。
3.小组分享:各小组向全班分享自己的讨论成果和案例分析,促进学生之间的交流和合作。
(四)总结归纳
1.无理数的定义和性质:引导学生总结无理数的定义和性质,加深学生对无理数概念的理解。
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
一、案例背景
本节内容是北师大版八年级数学上册第二章实数的第一节——认识无理数。在学习了有理数的基础上,本节课引导学生认识无理数,理解无理数的概念和性质,体会数学的广泛应用。无理数是数学中的一个重要概念,它在生活中和学科领域中有着广泛的应用。如圆周率π就是一个无理数,它在几何学、物理学等领域有着重要应用。另外,无理数在数学分析、高等数学等领域也是基本概念。因此,本节课对于学生理解和掌握数学知识体系,培养学生的数学思维能力具有重要意义。
5.注重学生的反思与评价:在教学过程中,我注重学生的反思与评价,及时反馈,指导学生的改进方向。通过引导学生进行自我反思和相互评价,我帮助学生检查自己对无理数概念的理解和掌握程度,发现自己的不足,明确改进的方向。这种教学方式能够培养学生的评价能力和批判性思维,提高学生的自我认知和自我改进能力。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我努力将教学内容与学生的生活实际和学科领域相结合,采用多种教学方法和手段,关注学生的个体差异,创设生动有趣的情境,引导学生在问题导向的过程中自主探究和合作交流,培养学生的数学思维能力和问题解决能力。同时,我注重学生的反思与评价,及时反馈,调整教学策略,以达到最佳教学效果。
(二)讲授新知
1.无理数的定义:详细讲解无理数的定义,并通过实例进行说明,让学生理解和掌握无理数的概念。

北师大版初中数学八年级上册第二章《2.1认识无理数》 教案

北师大版初中数学八年级上册第二章《2.1认识无理数》 教案

北师大版数学八年级上册《认识无理数(2)》教案一、学生起点分析学生在小学阶段已经学习了非负数,七年级又学习了有理数.本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,能积极主动地参与到学习中,充分认识到学习无理数引入的必要性,发展学生的合情推理能力.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感受数的发展,感知生活中确实存在着不同于有理数的数. 本课时为第二课时,内容是建立无理数的基本概念,借助计算器,感受无理数是无限不循环小数,会判断一个数是无理数,并能结合实际判别有理数和无理数.在活动中进一步发展学生独立思考的意识和合作交流的能力,在学习中领悟数学知识来源于生活,体会数学知识与现实世界的联系,而且对今后学习数学也有着重要意义.为此,本节课的教学目标是: 1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.三、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数(如1-,0,2,3,…) 有理数 分数(如31,52-,119,0.5,… ) 2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”. 第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a 面积s 1<a <21<s<4 1.4<a <1.5[来源:学+科+1.96<s<2.25 1.41<a <1.42 1.9881<s<2.0164 1.414<a <1.415 1.999396<s<2.002225 1.4142<a <1.41431.99996164<s<2.00024449归纳总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b 的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础. 2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况? 探究结论:分数只能化成有限小数或无限循环小数. 即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).[来源:学.科.网Z.X.X.K]目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念. 第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力. 第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数.有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数例1填空: 0.351, 4.96••-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形; (D ) 面积为1.44的正方形. [来源:Z 。

井冈山市第一中学八年级数学上册第二章实数1认识无理数教案新版北师大版2

井冈山市第一中学八年级数学上册第二章实数1认识无理数教案新版北师大版2

第二章实数1 认识无理数【知识与技能】1.通过拼图活动,让学生感受无理数产生的必要性.2.借助计算器探索无理数是无限不循环小数.3.会判断一个数是有理数还是无理数.【过程与方法】让学生亲自动手做拼图活动,培养学生的动手能力和合作精神,通过辨别一个数是有理数还是无理数,训练大家的思维判断能力.【情感态度】1.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.2.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.【教学重点】1.无理数的探索过程.2.了解无理数与有理数的区别,并能正确判断.【教学难点】把两个边长为1的正方形拼成一个大正方形的动手操作过程.一、创设情境,导入新课同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?在小学我们学过自然数、小数、分数.在初一我们还学过负数.对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.【教学说明】随着学习的深入,知识层次的提高,有理数的范围不能适应现代生活的需要,这就要对数进行扩充,为学生学习新知识作准备.二、思考探究,获取新知无理数的概念拼一拼:请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?【教学说明】通过小组合作交流,动手操作得到一个大的正方形,学生非常高兴地投入到活动中,调动了学生的积极性.同学们展示,拼图的结果.下面大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?【教学说明】探索拼图的过程,对于学生理解大正方形的边长是a是不是有理数很有帮助.【归纳结论】因为12=1,22=4,32=9,……整数的平方越来越大,所以a应在1和2之间,故a不可能是整数,又(1/2)2=1/4,(1/3)2=1/9,(2/3)2=4/9,…两个相同因数的乘积都为分数,所以a不可能是分数.做一做:大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.【教学说明】结合图形,让学生进一步理解面积为2的正方形边长不是有理数,而是一种新数.同学们能不能确定一下面积为2的正方形的边长为a的大致范围呢?请大家用计算器探索,用表格的形式整理如下.还可以进行下去吗?a是有限小数吗?【教学说明】教师引导学生探索,让学生对这种不是有理数的新数有了初步的认识,为下面引出无理数的概念打下了基础.【归纳结论】像这种无限不循环小数就叫做无理数.如:圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.而3,45,0.38,.,它们都能化成有限小数或循环小数,这些数都是有理数.017三、运用新知,深化理解1.判断题(1)有理数与无理数的差都是有理数.(2)无限小数都是无理数.(3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.2.下列各数中,哪些是有理数?哪些是无理数?0.351,-23,4.9·6·,3.14159,-5.2323332……(由相继的正整数组成).在下列每一个圈里,至少填入三个适当的数.【教学说明】学生自主完成,加深了对无理数的理解以及有理数与无理数的区别所在,让学生的疑难及时得到矫正与强化.【答案】1.(1);(2);(3)√;(4)√;.,3.14159;-5.2323332……(由相继的正整数组成).2. 0.351,-2/3,496四、师生互动,课堂小结通过本节课的学习,你是如何判断一个数是有理数还是无理数?还有哪些困难?【教学说明】引导学生寻找知识点间的区别和联系,加深对易错点的理解,有助于学生正确解题.2.完成练习册中本课时相应练习.检测内容:期中检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(毕节中考)在下列长度的三条线段中,不能组成三角形的是(C)A.2 cm,3 cm,4 cm B.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cm D.5 cm,6 cm,7 cm2.如图,在△ABC中,AB=AC,∠B=50°,P是边AB上的一个动点(不与顶点A重合),则∠BPC的值可能是(B)A.135° B.85° C.50° D.40°第2题图第3题图第5题图第6题图3.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的是(D)A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD4.(贵港中考)若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是(D) A.-5 B.-3 C.3 D.15.将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E,D分别落在E′,D′点.已知∠AFC=76°,则∠CFD′等于(C)A.15° B.25° C.28° D.31°6.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD和CE交于点O,AO的延长线交BC于点F,则图中全等的直角三角形有(D)A.4对 B.5对 C.6对 D.7对7.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,已知EH=EB=3,AE=4,则CH的长是(A)A.1 B.2 C.3 D.4第7题图 第8题图 第10题图8.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ACF =48°,则∠ABC 的度数为(A )A .48°B .36°C .30°D .24°9.在△ABC 中,高AD 和BE 所在的直线交于点H ,且BH =AC ,则∠ABC 等于(C )A .45°B .120°C .45°或135°D .45°或120°10.如图,在等腰直角△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC ,AD 于E ,F 两点, M 为EF 的中点,延长AM 交BC 于点N ,连接DM ,NE .下列结论:①AE =AF ;②AM ⊥EF ;③△AEF 是等边三角形,④DF =DN ,⑤AD ∥NE .其中正确的结论有(D )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.(资阳中考)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =__36°__.第11题图 第12题图 第14题图12.如图,BC ⊥ED ,垂足为M ,∠A =35°,∠D =25°,则∠ABC =__30°__.13.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作K .若K =12,则该等腰三角形的顶角度数为__36°__. 14.(镇江中考)如图,直线a ∥b ,△ABC 的顶点C 在直线b 上,边AB 与直线b 相交于点D .若△BCD 是等边三角形,∠A =20°,则∠1=40°.15.(永州中考)已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过点D 作直线DE ⊥OA ,垂足为E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =4.第15题图 第16题图 第17题图 第18题图16.如图,在△ABC 中,点D 为BC 边的中点,点E 为AC 上一点,将∠C 沿DE 翻折,使点C 落在AB 上的点F 处,若∠AEF =50°,则∠A 的度数为__65°__.17.如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,若AB =18,AC =12,△ABC 的面积等于36,则DE =__125__.18.如图,在△ABC 中,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,下面四个结论:①∠AFE =∠AEF ;②AD 垂直平分EF ;③S △BFD S △CED =BF CE ;④EF 一定平行于BC .其中正确的有①②③(填序号).三、解答题(共66分)19.(6分)(宜昌中考)如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.解:(1)∵∠ACB =90°,∠A =40°,∴∠ABC =90°-∠A =50°,∴∠CBD =130°.∵BE 是∠CBD 的平分线,∴∠CBE =12∠CBD =65° (2)∵∠ACB =90°,∠CBE =65°,∴∠CEB =90°-65°=25°.∵DF ∥BE ,∴∠F =∠CEB =25°20.(6分)在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(-3,-1).(1)将△ABC 沿y 轴正方向平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1的坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.解:(1)点B 1的坐标为(-2,-1),图略(2)点C 2的坐标为(1,1),图略21.(8分)(温州中考)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.解:(1)证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F ,∵AD 是BC 边上的中线,∴BD =CD ,∴△BDE ≌△CDF (AAS)(2)∵△BDE ≌△CDF ,∴BE =CF =2,∴AB =AE +BE =1+2=3,∵AD ⊥BC ,BD =CD ,∴AC =AB =322.(10分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD =AC ,AF 平分∠CAB 交CE 于点F ,DF 的延长线交AC 于点G .求证:(1)DF ∥BC ;(2)FG =FE .证明:(1)∵AF 平分∠CAB,∴∠CAF =∠DAF.在△ACF 和△ADF 中,∵⎩⎪⎨⎪⎧AC =AD ,∠CAF =∠DAF,AF =AF ,∴△ACF ≌△ADF(SAS ).∴∠ACF=∠ADF.∵∠ACB =90°,CE ⊥AB ,∴∠ACE +∠CAE=90°,∠CAE +∠B=90°.∴∠ACF =∠B,∴∠ADF =∠B.∴DF∥BC(2)∵DF∥BC,BC ⊥AC ,∴FG ⊥AC.∵FE ⊥AB ,又AF 平分∠CAB,∴FG =FE23.(10分)如图,在四边形ABCD 中,AD ∥BC ,点E 是AB 的中点,连接DE 并延长,交CB 的延长线于点F ,点G 在边BC 上,且∠GDF =∠ADF .(1)求证:△ADE ≌△BFE ;(2)连接EG ,判断EG 与DF 的位置关系并说明理由.解:(1)证明:∵AD∥BC,∴∠ADE =∠BFE.∵点E 为AB 的中点,∴AE =BE.在△ADE和△BFE 中,⎩⎪⎨⎪⎧∠ADE=∠BFE,∠AED =∠BEF,AE =BE ,∴△ADE ≌△BFE(AAS)(2)EG 与DF 的位置关系是EG 垂直平分DF.理由:∵∠GDF =∠ADE ,∠ADE =∠BFE,∴∠GDF =∠BFE.∴FG=DG.∴△FGD 为等腰三角形.由(1)中△ADE≌△BFE 得DE =FE ,即GE 为DF 上的中线,∴GE 垂直平分DF24.(12分)如图,点O 是等边△ABC 内一点,∠AOB =100°,∠BOC =α.以OC 为一边作等边三角形OCD ,连接AD .(1)当α=150°时,试判断△AOD 的形状,并说明理由;(2)探究:当α为多少度时,△AOD 是等腰三角形?解:(1)∵△OCD 是等边三角形,∴OC =CD .∵△ABC 是等边三角形,∴BC =AC .∵∠ACB =∠OCD =60°,∴∠BCO =∠ACD ,在△BOC 与△ADC 中,∵⎩⎪⎨⎪⎧OC =CD ,∠BCO =∠ACD ,BC =AC ,∴△BOC ≌△ADC ,∴∠BOC =∠ADC ,而∠BOC =α=150°,∠ODC =60°,∴∠ADO =150°-60°=90°,∴△ADO 是直角三角形(2)∠AOD =360°-∠AOB -∠α-∠COD =360°-100°-∠α-60°=200°-∠α,∠ADO =∠ADC -∠CDO =∠α-60°,∠OAD =180°-∠ADO -∠AOD =180°-(∠α-60°)-(200°-∠α)=40°. 若∠ADO =∠AOD ,即∠α-60°=200°-∠α,解得∠α=130°;若∠ADO =∠OAD ,则∠α-60°=40°,解得∠α=100°;若∠OAD =∠AOD ,即40°=200°-∠α,解得∠α=160°.即当α为130°或100°或160°时,△AOD 是等腰三角形25.(14分)已知在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED =EC .(1)【特殊情况,探索结论】如图①,当点E 为AB 的中点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __=__DB (填“>”“<”或“=”);(2)【特例启发,解答题目】如图②,当点E 为AB 边上任意一点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __=__DB (填“>”“<”或“=”),并给出证明;(3)【拓展结论,设计新题】在等边三角形ABC 中,点E 在直线AB 上,点D 在线段CB 的延长线上,且ED =EC ,若△ABC 的边长为1,AE =2,求CD 的长.解:(2)AE =DB .证明:过点E 作EF ∥BC ,交AC 于点F ,∵△ABC 为等边三角形,∴△AEF 为等边三角形,∴AE =EF ,BE =CF .∵ED =EC ,∴∠D =∠ECD .∵∠DEB =60°-∠D ,∠ECF =60°-∠ECD ,∴∠DEB =∠ECF ,在△DBE 和△EFC 中,⎩⎪⎨⎪⎧DE =CE ,∠DEB =∠ECF ,BE =FC ,∴△DBE ≌△EFC (SAS),∴DB =EF ,∴AE=DB(3)如图所示,点E 在AB 延长线上时,过点E 作EF ∥BC ,交AC 的延长线于点F ,同(2)仍可证得△DBE ≌△EFC ,∴DB =EF =2,BC =1,则CD =BC +DB =3第十四章:勾股定理知识点内容备注平方根概念:如果一个数的平方等于a,那么这个数叫做a的平方根算术平方根:正数a的正的平方根记作:性质:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根考点:(a的取值范围a)②()③(a的取值范围为任意实数)④=例:=()=5⑤=a(a为任意实数)例:=2, =—2立方根概念:如果一个数的立方等于a,那么这个数叫做a的立方根性质:任何实数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是011。

2.1 ++认识无理数 第二课时 教学设计 2023—2024学年北师大版数学八年级上册

2.1 ++认识无理数 第二课时 教学设计 2023—2024学年北师大版数学八年级上册

2.1.2 认识无理数一、 板书课题 :认识无理数二、 出示目标:1、借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2、无理数概念的建立及估算,会判断一个数是有理数还是无理数.三、自学指导认真看课本2322P P -内容,要求:1.完成引例,理解估算数值的大小2.了解无限逼近思想,会表示无限不循环小数3.完成“做一做”、“议一议”,思考什么是有理数4.细看例题的解题过程四分钟后检测,比谁能正确的完成与例1同类型的题四、学自学 (教师巡视,督促每位学生认真自学)五、测与导问题一: 面积为2的正方形的边长a 究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a 的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.引导学生在引例(1)答案的基础上提出问题,21<<a ,那么a 是1点几呢? 边长a面积S 1<a <21<S <4 1.4<a <1.51.96<S <2.25 1.41<a <1.42 1.9881<S <2.01641.414<a <1.4151.999396<S <2.002225 1.4142<a <1.4143 1.99996164<S <2.00024449【归纳总结】a 是介于1和2之间的一个数,既不是整数,也不是分数,则 a 一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356…,它是一个无限不循环小数.2、做一做:用上面的方法估计面积为5的正方形的边长b 的值.边长b 会不会算到某一位时,它的平方恰好等于5?小组讨论:如果b 算到某一位时,它的平方恰好等于5,即b 是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b 不可能是有限小数.事实上,b=2.236 067 978…它是一个无限不循环小数.同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.259 921 05…,它也是一个无限不循环小数.3、议一议: 把下列各数表示成小数,你发现了什么?3,1124589554,,,- 师:分数化成小数,最终此小数的形式有哪几种情况?生:分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.师:什么是无理数?生:无限不循环小数称为无理数4、举例判断哪些是有理数,哪些是无理数?)之间依次加和(每个,1333131131113.2,7302.0,722π-⋅⋅结果对不对,若对,为什么对?若错, 问什么错?(引导学生回答无理数和有理数的概念)5、例一:下列各数中,哪些是有理数?哪些是无理数?3.14 ,34, 0.57, 0.101 000 100 000 1……(相邻两个1之间0的个数逐次加2)6、小结:我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).六、 练必做题25P 1、2选做题 练习册教学反思。

北师大版数学八年级上册《认识无理数》教学课件

北师大版数学八年级上册《认识无理数》教学课件
. < < .
. < < .
. < < .
. < < .
. < < .
想一想:可以继续算下去吗?是有限小数吗?

教学过程——新知探究
第二章
北师大版 ∙ 八年级上册
教学课件
第二章

1. 认识无理数

教学内容
第二章
1.1
认识无理数


教学目标——重点难点
第二章
1.知道非有理数的存在,认识无理数.
2.理解无理数的概念,掌握无理数与有理数的区别,并
能判断一个数是有理数还是无理数.(重点)
3.能用“夹逼法”确定无理数的近似值(难点)


教学目标——温故知新

活动探究3
认识无理数
有理数与无理数区别:
因为整数都可以看着小数部分为0的小数,而分数都可以化为有限小数或无限循
环小数,所以有理数总可以用有限小数或无限循环小数表示;反过来,任何有限
小数或无限循环小数也都是有理数. 但无理数是无限不循环小数,所以有理数和
无理数的根本区别就在于无理数不能化为有限小数或无限循环小数.
第二章
知识储备
1.什么是有理数?
整数和分数统称为有理数.
2.有理数有哪些分类方法?
正整数
整数

负整数
分数
正分数
负分数
正整数
正数
正分数

负整数
负数
负分数


教学过程——新课引入
第二章
议一议
有两个正方形,一个正方形的面积为4,一个正方形的面积为

北师大版初中数学八年级上册第二章《 2.1认识无理数》教案

北师大版初中数学八年级上册第二章《 2.1认识无理数》教案

北师大版数学八年级上册第二章《认识无理数》教案2.1 认识无理数(一)教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一、创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二、讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a ,则a 应满足什么条件呢? [生甲]a 是正方形的边长,所以a 肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.[生丙]由a 2=2可判断a 应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数. [生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了. 2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件?b 是有理数吗? [师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a ,b ,斜边为c ,则有a 2+b 2=c 2.[师]在这题中,两条直角边分别为1和2,斜边为b ,根据勾股定理得b 2=12+22,即b 2=5,则b 是有理数吗?请举手回答.[生甲]因为22=4,32=9,4<5<9,所以b 不可能是整数. [生乙]没有两个相同的分数相乘得5,故b 不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a ,b 都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三、课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四、课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五、课后作业:见作业本。

北师大版七年级数学上册教案:2.1认识无理数

北师大版七年级数学上册教案:2.1认识无理数
-无理数的近似值求解:指导学生如何利用计算器等工具求无理数的近似值,并理解近似值与精确值之间的关系。
-无理数在实际问题中的应用:培养学生将无理数应用于解决实际问题的能力,如计算圆形面积、周长等。
举例:在讲解无理数与有理数的区别时,可以通过比较√2和1.414(√2的近似值)的关系,让学生明白无理数是无限不循环的,而有理数是有限或循环的。此外,通过实际例子,如计算圆的面积,让学生体会无理数在实际问题中的应用,并学会如何处理无理数的近似值。
直接输出以下内容:
四、教学流程
1.导入新课:以提问方式引导学生思考日常生活中遇到的与无理数相关的问题,激发学生的兴趣和好的定义、特点及其与有理数的区别。
-案例分析:通过具体实例,展示无理数在实际问题中的应用。
3.重点难点解析:
-强调无理数与有理数的本质区别,通过对比分析,帮助学生理解难点。
-掌握无理数的表示方法:介绍根号表示、无限不循环小数等,让学生熟练掌握无理数的表达方式。
-常见无理数的性质:分析π、e、√2等无理数的性质,强调它们的特点和应用。
举例:讲解√2是无理数时,可以通过实际计算说明它不能表示为两个整数之比,从而加深学生对无理数定义的理解。
2.教学难点
-无理数与有理数的区别:解释无理数与有理数的本质区别,如无限不循环小数与有限小数、循环小数的区别,这是学生容易混淆的地方。
2.学会无理数的表示方法,提高学生数学表达和符号意识。
3.通过探索无理数的性质和应用,发展学生的逻辑推理和数学建模能力。
4.培养学生勇于探索、积极思考的学习态度,提高数学素养和解决问题的能力。
5.激发学生对数学学科的兴趣,增强学生的数学情感,为后续学习奠定基础。
三、教学难点与重点
1.教学重点

北师版八年级数学 2.1 认识无理数(学习、上课课件)

北师版八年级数学  2.1 认识无理数(学习、上课课件)
第二章 实数
2.1 认识无理数
学习目标
1 课时讲解 生活中存在不是有理数的数
无理数的概念
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 生活中存在不是有理数的数
知1-讲
整数和分数统称为有理数 . 随着研究的深入,人们发现
了不是有理数的数,现实生活中存在大量不是有理数的数 .
如图 2-1-1,用剪拼的方法将两个边长为 1 的小正方形 拼成
感悟新知
知识点 2 无理数的概念
知2-讲
1. 无理数的概念 无限不循环小数称为无理数,如圆周率 π =3.141 592 65…,1.010 010 001…(相邻两个 1 之间 0 的 个数逐次加 1)等 .
感悟新知
特别提醒 从小数观点理解无理数 :
(1)小数; (2)位数无限 ; (3)不循环 . 三者一不可 .
无理数
认识的 过程
产生 大小的估计 概念
感悟新知
知1-练
1-1. 已知直角三角形的两直角边长分别是9 cm和5 cm,斜 边长是x cm.
(1)估计x在哪两个连续整数之间; 解:根据题意,可得x2=92+52=106. 因为100<x2<121, 所以10<x<11,即x在整数10与11之间.
感悟新知
(2)如果把x的结果精确到0.1,估计x的值;如果精确到 知1-练
数或无限循环小数; 2.有理数可化为分数,无理数不能化为分数 .
知2-讲
感悟新知
知2-练
例2 [母题 教材P23例题]下列各数中,哪些是有理数?哪些 是无理数? 3.14,π,0,-272,2.3.,7.141 441 444 1…(相邻两个1 之间4的个数逐次加1).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 认识无理数(二)
教学目标:
(一)教学知识点
1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.
2.会判断一个数是有理数还是无理数.
(二)能力训练要求
1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,
并在活动中进一步发展学生独立思考、合作交流的意识和能力.
2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是
无理数还是有理数,训练大家的思维判断能力.
(三)情感与价值观要求
1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.
2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力. 教学重点:
1.无理数概念的探索过程.
2.用计算器进行无理数的估算.
3.了解无理数与有理数的区别,并能正确地进行判断.
教学难点:
1.无理数概念的建立及估算.
2.用所学定义正确判断所给数的属性.
教学过程:
Ⅰ.创设问题情境,引入新课
[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.
Ⅱ.讲授新课
1.导入
[师]请看图
大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.
[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.
[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?
[生]因为a2大于1且a2小于4,所以a大致为1点几.
[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.请一位同学把自己的探索过程整理一下,用表格的形式反映出来.
[生]我的探索过程如下.
边长a 面积S
1<a<2 1<S<4
1.4<a<1.5 1.96<S<
2.25
1.41<a<1.42 1.9881<S<
2.0164
1.414<a<1.415 1.999396<S<
2.002225
1.4142<a<1.4143 1.99996164<S<
2.00024449
[师]还可以继续下去吗?
[生]可以.
[师]请大家继续探索,并判断a是有限小数吗?
[生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.
[师]请大家用上面的方法估计面积为5的正方形的边长b 的值.边长b 会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)
[生]b =2.236067978…,还可以再继续进行,b 也是一个无限不循环小数.
2.无理数的定义
请大家把下列各数表示成小数.
3,11
2,458,95,54,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.
[生]3=3.0,54=0.8,9
5=•5.0, •=71.045
8,••=818.1112 [生]3,54是有限小数,11
2,458,95是无限循环小数. [师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.
像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数.
无限不循环小数叫无理数(irrational number).
除上面的a ,b 外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.
3.有理数与无理数的主要区别
(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.
(2)任何一个有理数都可以化为分数的形式,而无理数则不能.
4.例题讲解
下列各数中,哪些是有理数?哪些是无理数?
3.14,-3
4,••75.0,0.1010010001…(相邻两个1之间0的个数逐次加1). Ⅲ.课堂练习
(一)随堂练习下列各数中,哪些是有理数?哪些是无理数?0.4583,•
7.3,-π,-71,18. (二)补充练习:①判断题
(1)有理数与无理数的差都是有理数.
(2)无限小数都是无理数.
(3)无理数都是无限小数.
(4)两个无理数的和不一定是无理数.
②下列各数中,哪些是有理数?哪些是无理数?
0.351,-••69.4,3
2,3.14159,-5.2323332…, 123456789101112…(由相继的正整数组成).
在下列每一个圈里,至少填入三个适当的数.
Ⅳ.课时小结
本节课我们学习了以下内容.
1.用计算器进行无理数的估算.
2.无理数的定义.
3.判断一个数是无理数或有理数.
Ⅴ.课后作业
1.P25习题
2.2.
Ⅵ.探究与活动
设面积为5π的圆的半径为a .
(1)a 是有理数吗?说说你的理由.
(2)估计a 的值(精确到十分位,并利用计算器验证你的估计).
(3)如果精确到百分位呢?
解:∵πa 2=5π
∴a 2=5
(1)a 不是有理数,因为a 既不是整数,也不是分数,而是无限不循环小数.
(2)估计a ≈2.2.
(3)a ≈2.24.
板书设计:。

相关文档
最新文档