角 θ的所有三角函数

合集下载

三角函数诱导公式

三角函数诱导公式

三角函数诱导公式三角函数的诱导公式是指由基本三角函数sin(x)和cos(x)表示其他所有三角函数的关系式。

这些关系式可以通过一系列代数推导和几何推理得到,对于展开三角函数的各种复杂运算,诱导公式提供了一种简洁而有效的方法。

为了方便讨论,我们首先定义一个数θ,表示角度的大小。

对于角θ的正弦函数sin(θ)和余弦函数cos(θ),可以在单位圆上定义。

首先,我们考虑正弦函数sin(θ)。

假设在单位圆上,以原点O为中心,并向右延长y轴上的线段OA,使得该线段的长度等于弧度θ。

那么点A的坐标可以表示为(Acos(θ), Asin(θ))。

沿着单位圆逆时针旋转弧长θ,我们可以得到下一个点B的坐标(Bcos(θ+π/2), Bsin(θ+π/2))。

同时,相邻两个点的连线AB的斜率为sin(θ)和cos(θ)。

现在我们来求解点B的坐标。

根据三角函数的诱导公式,我们有:sin(θ+π/2) = cos(θ)cos(θ+π/2) = -sin(θ)将sin(θ+π/2)代入点B的x坐标,我们可以得到:Bcos(θ+π/2) = B*(-sin(θ)) = -Bsin(θ)同样地,将cos(θ+π/2)代入点B的y坐标,我们可以得到:Bsin(θ+π/2) = B*cos(θ)所以,点B的坐标可以表示为(-Bsin(θ), Bcos(θ))。

我们可以进一步扩展这个推导过程,得到更多的诱导公式。

例如,如果我们在单位圆上逆时针旋转弧长θ的2倍,得到点C。

那么点C的坐标可以表示为(Ccos(2θ), Csin(2θ))。

根据三角函数的诱导公式,我们有:cos(2θ) = cos^2(θ) - sin^2(θ)sin(2θ) = 2sin(θ)cos(θ)1.余弦函数的诱导公式cos(θ+π) = -cos(θ)2.正弦函数的诱导公式sin(θ+π) = -sin(θ)3.正切函数的诱导公式tan(θ+π) = tan(θ)4.余切函数的诱导公式cot(θ+π) = cot(θ)5.积分函数的诱导公式sec(θ+π) = -sec(θ)csc(θ+π) = -csc(θ)这些诱导公式通过将θ增加π个单位来得到,以此达到改变角度的目的。

正余弦公式大全

正余弦公式大全

正余弦公式大全正余弦公式大全:1.正弦函数:正弦函数的公式是:y=sinθ,其中θ表示弧度。

2.余弦函数:余弦函数的公式为:y=cosθ,其中θ表示弧度。

3.正切函数:正切函数的公式为:y=tgtθ,其中θ表示弧度。

4.反正弦函数:反正弦函数的公式为:y= sin-1x,其中x表示反正弦函数的自变量。

5.反余弦函数:反余弦函数的公式为:y=cos-1x,其中x表示反余弦函数的自变量。

6.反正切函数:反正切函数的公式为:y=tg-1x,其中x表示反正切函数的自变量。

7.正割函数:正割函数的公式为:y=secθ,其中θ表示弧度。

8.余割函数:余割函数的公式为:y= cscθ,其中θ表示弧度。

9.余切函数:余切函数的公式为:y=cotθ,其中θ表示弧度。

10.反正割函数:反正割函数的公式为:y=sec-1x,其中x表示反正割函数的自变量。

11.反余割函数:反余割函数的公式为:y=csc-1x,其中x表示反余割函数的自变量。

12.反余切函数:反余切函数的公式为:y=cot-1x,其中x表示反余切函数的自变量。

正余弦公式的应用:1.三角恒等式:三角恒等式的公式可以为:sinθ=cosθ,tgtθ=secθ,cotθ=cscθ。

2.三角函数关系式:三角函数关系式的公式可以为:sin2θ+cos2θ=1,tan2θ+1=sec2θ,cot2θ+1=cscy2θ。

3.振动函数:振动函数表达式可以为:Y=Asinωt+b,其中A表示振幅,ω表示角频率,t表示正余弦函数的自变量,b表示相位移动量。

4.几何图形:几何图形的表示式可以为:X=Acos(ωt+θ),Y= Asin(ωt+θ),其中A表示振幅,ω表示角频率,t表示正余弦函数的自变量,θ表示相位移动量。

5.振动和回荡解一元二次方程:一般形式:at2+bt+c=0,其中a,b,c是常量,而t表示根号式振动解,可以化为:t=(-b±√b2-4ac)/2a,其中“±”代表正负号。

高中三角函数的所有公式

高中三角函数的所有公式

高中三角函数的所有公式三角函数是数学中的一种基本函数,它们在几何、物理、工程等领域中都有广泛的应用。

在高中数学中,我们学习了三角函数的基本概念和性质,以及一系列的公式。

下面,我们来逐一介绍这些公式。

1. 正弦函数的定义式:sinθ = 对边/斜边正弦函数是三角函数中最基本的函数之一,它表示一个角的对边与斜边的比值。

在三角形中,对于一个角θ,它的正弦值等于这个角的对边长度与斜边长度的比值。

2. 余弦函数的定义式:cosθ = 邻边/斜边余弦函数也是三角函数中的基本函数之一,它表示一个角的邻边与斜边的比值。

在三角形中,对于一个角θ,它的余弦值等于这个角的邻边长度与斜边长度的比值。

3. 正切函数的定义式:tanθ = 对边/邻边正切函数是三角函数中的另一个基本函数,它表示一个角的对边与邻边的比值。

在三角形中,对于一个角θ,它的正切值等于这个角的对边长度与邻边长度的比值。

4. 余切函数的定义式:cotθ = 邻边/对边余切函数是正切函数的倒数,它表示一个角的邻边与对边的比值。

在三角形中,对于一个角θ,它的余切值等于这个角的邻边长度与对边长度的比值。

5. 正割函数的定义式:secθ = 斜边/邻边正割函数是余弦函数的倒数,它表示一个角的斜边与邻边的比值。

在三角形中,对于一个角θ,它的正割值等于这个角的斜边长度与邻边长度的比值。

6. 余割函数的定义式:cscθ = 斜边/对边余割函数是正弦函数的倒数,它表示一个角的斜边与对边的比值。

在三角形中,对于一个角θ,它的余割值等于这个角的斜边长度与对边长度的比值。

7. 三角函数的基本关系式:sin²θ + cos²θ = 1这是三角函数中最基本的关系式之一,它表示正弦函数的平方加上余弦函数的平方等于1。

这个关系式在三角函数的计算中非常重要,可以用来推导其他的三角函数公式。

8. 三角函数的和差公式:sin(α±β) = sinαcosβ ± cosαsinβcos(α±β) = cosαcosβ ∓ sinαsinβtan(α±β) = (tanα ± tanβ)/(1 ∓ tanαtanβ)这些公式可以用来计算两个角的正弦、余弦、正切值的和或差。

三角函数的基本概念

三角函数的基本概念

三角函数的基本概念三角函数是数学中重要的概念之一,它们是描述角度与三角形之间关系的函数。

在数学和物理学中,三角函数广泛应用于各种领域,包括几何、导数、微积分、辐射传输等。

一、正弦函数正弦函数是最基本的三角函数之一,通常用sin表示。

对于任意角度θ,正弦函数的值定义为对边与斜边的比值:sin(θ) = 对边/斜边。

正弦函数的定义域为整个实数集,值域为[-1,1]。

二、余弦函数余弦函数是另一种常见的三角函数,通常用cos表示。

对于任意角度θ,余弦函数的值定义为邻边与斜边的比值:cos(θ) = 邻边/斜边。

余弦函数的定义域为整个实数集,值域也为[-1,1]。

三、正切函数正切函数是正弦函数与余弦函数的比值,通常用tan表示。

对于任意角度θ,正切函数的值定义为对边与邻边的比值:tan(θ) = 对边/邻边。

正切函数的定义域为除了90度和270度的整数倍角之外的所有实数,值域为整个实数集。

四、余切函数余切函数是余弦函数与正弦函数的比值,通常用cot表示。

对于任意角度θ,余切函数的值定义为邻边与对边的比值:cot(θ) = 邻边/对边。

余切函数的定义域为除了0度和180度的整数倍角之外的所有实数,值域为整个实数集。

五、正割函数正割函数是正弦函数的倒数,通常用sec表示。

对于任意角度θ,正割函数的值定义为斜边与邻边的比值:sec(θ) = 斜边/邻边。

正割函数的定义域为除了90度和270度的整数倍角之外的所有实数,值域为(-∞,-1]和[1,+∞)。

六、余割函数余割函数是余弦函数的倒数,通常用csc表示。

对于任意角度θ,余割函数的值定义为斜边与对边的比值:csc(θ) = 斜边/对边。

余割函数的定义域为除了0度和180度的整数倍角之外的所有实数,值域为(-∞,-1]和[1,+∞)。

三角函数除了以上六种基本函数外,还有诸如反正弦函数、反余弦函数、反正切函数等反三角函数,它们的定义域和值域不同于基本三角函数。

三角函数在数学上有丰富的性质和运算规律,如正弦函数和余弦函数的和差公式、倍角公式等,这些规律在解决实际问题时起着重要的作用。

高中数学 三角函数

高中数学 三角函数

高中数学:三角函数一、概述三角函数是高中数学的一个重要组成部分,是解决许多数学问题的关键工具。

它涉及的角度、边长、面积等,都是几何和代数的核心元素。

通过学习三角函数,我们可以更好地理解图形的关系,掌握数学的基本概念。

二、三角函数的定义三角函数是以角度为自变量,角度对应的边长为因变量的函数。

常用的三角函数包括正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。

这些函数的定义如下:1、正弦函数:sine(θ) = y边长 / r (其中,θ是角度,r是从原点到点的距离)2、余弦函数:cosine(θ) = x边长 / r3、正切函数:tangent(θ) = y边长 / x边长三、三角函数的基本性质1、周期性:正弦函数和余弦函数都具有周期性,周期为 2π。

正切函数的周期性稍有不同,为π。

2、振幅:三角函数的振幅随着角度的变化而变化。

例如,当角度增加时,正弦函数的值也会增加。

3、相位:不同的三角函数具有不同的相位。

例如,正弦函数的相位落后余弦函数相位π/2。

4、奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。

5、导数:三角函数的导数与其自身函数有关。

例如,正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数。

四、三角函数的实际应用三角函数在现实生活中有着广泛的应用,包括但不限于以下几个方面:1、物理:在物理学中,三角函数被广泛应用于描述波动、振动、电磁场等物理现象。

例如,简谐振动可以用正弦或余弦函数来描述。

2、工程:在土木工程和机械工程中,三角函数被用于计算角度、长度等物理量。

例如,在桥梁设计、建筑设计等过程中,需要使用三角函数来计算最佳的角度和长度。

3、计算机科学:在计算机图形学中,三角函数被用于生成二维和三维图形。

例如,使用正弦和余弦函数可以生成平滑的渐变效果。

4、金融:在金融学中,三角函数被用于衍生品定价和风险管理。

例如,Black-Scholes定价模型就使用了正态分布(一种特殊的三角函数)。

锐角三角函数知识点

锐角三角函数知识点

锐角三角函数知识点锐角三角函数:一、基本概念:1、什么是锐角三角函数:锐角三角函数是一类特殊的函数,涉及到角度和角度对应的三角函数值,用于计算平面向量在多边形中和求解三角形的面积。

2、锐角三角函数的定义:锐角三角函数是基于角度θ,从而定义的三角函数值。

一般情况下,它用半圆线直叙指函数如下所示:sinθ,cosθ,tanθ,cotθ,secθ,cscθ。

3、锐角三角函数的基本关系:cosθ= sin (π/2-θ);sinθ= cos (π/2-θ);tanθ=cot (π/2-θ);cotθ=tan (π/2-θ);secθ=csc(π/2-θ);cscθ=sec (π/2-θ)。

二、圆周角:1、什么是圆周角:圆周角是指以圆等分线在a轴上的量度,即由圆心和两个点确定的弧的长度。

圆周角定义在一个圆的周围,与半径的长度有关,可以用角度μ来表示。

2、单位:圆周角的单位是弧度rad,又称为radian,表示当一个圆的半径为1时,圆周角的长度。

三、锐角的余弦定理:1、锐角余弦定理是用弦和角定义的三角形问题,可以求解共有三角形A、B、C三个锐角所对应边长a、b、c满足关系:a²=b²+c²-2bc cosA;b²=a²+c²-2ac cosB;c²=a²+b²-2ab cosC。

2、此外,锐角余弦定理也可以利用三角形所有边长求解A、B、C三个锐角所对应的角度值,记为A=cos-1[(b²+c²-a²)/2bc];B=cos-1[(a²+c²-b²)/2ac];C=cos-1[(a²+b²-c²)/2ab]。

四、锐角的正弦定理:1、锐角正弦定理是求解三角形的已知一边和两个对边角的问题,满足条件如下:a=b sinA/sinB;b=a sinB/sinA;c=a sinC/sinA,c=bsinC/sinB。

三角函数所有公式大全

三角函数所有公式大全

三角函数所有公式大全三角函数是数学中的一个重要概念,它在几何学、物理学、工程学等领域都有着广泛的应用。

在学习和应用三角函数时,掌握各种公式是非常重要的。

本文将为大家详细介绍三角函数的所有公式,希望能够帮助大家更好地理解和运用三角函数。

首先,我们来看一下最基础的三角函数:正弦函数、余弦函数和正切函数。

这三个函数在直角三角形中有着重要的几何意义,它们的定义如下:正弦函数 sinθ = 对边/斜边。

余弦函数 cosθ = 邻边/斜边。

正切函数 tanθ = 对边/邻边。

在了解了三角函数的基本定义之后,我们可以进一步学习它们的各种公式。

首先是三角函数的基本关系式:sin²θ + cos²θ = 1。

1 + tan²θ = sec²θ。

1 + cot²θ = csc²θ。

这些基本关系式是我们学习三角函数的基础,通过它们我们可以推导出许多其他的三角函数公式。

比如,我们可以利用基本关系式推导出三角函数的和差化积公式:sin(α±β) = sinαcosβ± cosαsinβ。

cos(α±β) = cosαcosβ∓ sinαsinβ。

tan(α±β) = (tanα± tanβ) / (1 ∓ tanαtanβ)。

这些和差化积公式在解决三角函数的复杂运算中起着非常重要的作用,它们可以帮助我们简化计算,提高效率。

除了和差化积公式之外,三角函数还有许多其他重要的公式,比如倍角公式、半角公式、辅助角公式等等。

倍角公式是指将角度加倍后的三角函数关系,它们的形式如下:sin2θ = 2sinθcosθ。

cos2θ = cos²θ sin²θ。

tan2θ = 2tanθ / (1 tan²θ)。

而半角公式则是指将角度减半后的三角函数关系,它们的形式如下:sin(θ/2) = ±√((1 cosθ) / 2)。

三角函数所有公式大全

三角函数所有公式大全

三角函数所有公式大全三角函数是数学中的重要概念,它在几何学、物理学、工程学等领域都有着广泛的应用。

本文将为大家详细介绍三角函数的所有公式,包括正弦函数、余弦函数、正切函数等,希望能够帮助大家更好地理解和掌握三角函数的知识。

一、正弦函数。

正弦函数是三角函数中的一种,通常用sin表示。

在直角三角形中,正弦函数的定义是:对于一个角为θ的直角三角形,正弦函数的值等于对边与斜边的比值,即sinθ=对边/斜边。

在数学中,正弦函数的周期是2π,其图像是一条周期性波动的曲线。

正弦函数的常用公式包括:1. 正弦函数的和差化积公式:sin(a±b) = sinacosb ± cosasinb。

2. 正弦函数的倍角公式:sin2a = 2sinacosb。

3. 正弦函数的半角公式:sin(a/2) = ±√((1-cos a)/2)。

二、余弦函数。

余弦函数是三角函数中的另一种,通常用cos表示。

在直角三角形中,余弦函数的定义是:对于一个角为θ的直角三角形,余弦函数的值等于邻边与斜边的比值,即cosθ=邻边/斜边。

余弦函数的周期也是2π,其图像是一条周期性波动的曲线。

余弦函数的常用公式包括:1. 余弦函数的和差化积公式:cos(a±b) = cosacosb ∓ sinasinb。

2. 余弦函数的倍角公式:cos2a = cos^2a sin^2a。

3. 余弦函数的半角公式:cos(a/2) = ±√((1+cos a)/2)。

三、正切函数。

正切函数是三角函数中的另一种,通常用tan表示。

在直角三角形中,正切函数的定义是:对于一个角为θ的直角三角形,正切函数的值等于对边与邻边的比值,即tanθ=对边/邻边。

正切函数的周期是π,其图像是一条周期性波动的曲线。

正切函数的常用公式包括:1. 正切函数的和差化积公式:tan(a±b) = (tana±tanb)/(1∓tanatanb)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角θ的所有三角函数三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。

它们的本质是任意角的集合与一个比值的集合的变量之间的映射。

通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。

另一种定义是在直角三角形中,但并不完全。

现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。

由于三角函数的周期性,它并不具有单值函数意义上的反函数。

三角函数在复数中有较为重要的应用。

在物理学中,三角函数也是常用的工具。

锐角三角函数定义如右图,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。

对于AB与AC的夹角∠BAC而言:Rt△ABC对边(opposite)a=BC斜边(hypotenuse)h=AB邻边(adjacent)b=AC基本函数英文缩写表达式语言描述正弦函数Sine sin a/h ∠A的对边比斜边余弦函数cosine cos b/h ∠A的邻边比斜边正切函数Tangent tan a/b ∠A的对边比邻边余切函数Cotangent cot b/a ∠A的邻边比对边正割函数Secant sec h/b ∠A的斜边比邻边余割函数Cosecant csc h/a ∠A的斜边比对边(注:tan、cot曾被写作tg、ctg,现已不用这种写法。

)罕见三角函数除了上述六个常见的函数,还有一些不常见的三角函数:函数名与常见函数转化关系正矢函数versinθ=1-cosθvercosinθ=1+cosθ余矢函数coversinθ=1-sinθcovercosinθ=1+sinθ半正矢函数haversinθ=(1-cosθ)/2havercosinθ=(1+cosθ)/2半余矢函数hacoversinθ=(1-sinθ)/2hacovercosinθ=(1+sinθ)/2外正割函数exsecθ=secθ-1外余割函数excscθ=cscθ-1任意角三角函数定义如图:在平面直角坐标系中设O-x为任意角α的始边,在角α终边上任取一点P(x,y),令OP=r.三角函数sinα=y/r cscα=r/ycosα=x/r secα=r/x [1]tanα=y/x cotα=x/y单位圆定义六个三角函数也可以依据半径为1中心为原点的单位圆来定义。

单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。

但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在0 和π/2 弧度之间的角。

它也提供了一个图像,把所有重要的三角函数都包含了。

根据勾股定理,那么向量MP对应的就是α的正弦值,向量OM对应的就是余弦值。

OP的延长线(或反向延长线)与l的交点为T,则向量ST对应的就是正切值。

向量的起止点不能颠倒,因为其方向是有意义的。

借助线三角函数线,我们可以观察到第二象限角α的正弦值为正,余弦值为负,正切值为负。

三角函数三角学理论的基础,是对三角形各元素之间相依关系的认识。

一般认为,这一认识最早是由希腊天文学家获得的。

当时,希腊天文学家为了正确地测量天体的位置。

研究天体的运行轨道,力求把天文学发展成为一门以精确的观测和正确的计算为基础之具有定量分析的科学。

他们给自己提出的第一个任务是解直角三角形,因为进行天文观测时,人与星球以及大地的位置关系,通常是以直角三角形边角之间的关系反映出来的。

在很早以前,希腊天文学家从天文观测的经验中获得了这样一个认识:星球距地面的高度是可以通过人观测星球时所采用的角度来反映的(如图一);角度(∠ABC)越大,星球距地面(AC)就越高。

然而,星球的高度与人观测的角度之间在数量上究竟怎么样呢?能不能把各种不同的角度所反映的星球的高度都一一算出来呢?这就是天文学向数学提出的第一个课题-制造弦表。

所谓弦表,就是在保持AB不变的情况下可以供查阅的表(如图二),AC的长度与∠ABC的大小之间的对应关系。

三角函数的特殊值角度0°30°45°60°90°120°135°150°180°270°弧度0 π/6π/4π/3π/22π/33π/45π/6π3π/2sin值0 1/2 √2/2√3/2 1 √3/2√2/21/2 0 -1cos值 1 √3/2√2/21/2 0 -1/2 -√2/2-√3/2-1 0tan值0 √3/3 1 √3∞-√3-1 -√3/30 ∞cot值∞√3 1 √3/30 -√3/3-1 -√3∞0编辑本段公式同角三角函数关系式积的关系sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα·对称性180度-α的终边和α的终边关于y轴对称。

-α的终边和α的终边关于x轴对称。

180度+α的终边和α的终边关于原点对称。

90度-α的终边和α的终边关于y=x对称。

三角形与三角函数1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc·cosA4、正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)5、三角形中的恒等式:对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC证明:已知(A+B)=(π-C)所以tan(A+B)=tan(π-C)则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ 定义域和值域sin(x),cos(x)的定义域为R,值域为[-1,1]。

tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。

cot(x)的定义域为x不等于kπ(k∈Z),值域为R。

y=a·sin(x)+b·cos(x)+c 的值域为[ c-√(a&sup2;+b&sup2;), c+√(a&sup2;+b&sup2;)]三角函数的画法以y=sinx的图像为例,得到y=Asin(ωx+φ)的图像:方法一:y=sinx→【左移(φ>0)/右移(φ<0) ∣∣∣φ∣个单位】→y=sin(x+φ)→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sin(ωx+φ) →【纵坐标变为原来的A倍(伸长[A>1] / 缩短[0<A<1])】→ y=Asin(ωx+φ)方法二:y=sinx→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sinωx→【左移(φ>0)/右移(φ<0)∣φ∣/ω 个单位】→y=sin(ωx+φ) →【纵坐标变为原来的A倍(伸长[A>1] / 缩短[0<A<1])】→ y=Asin(ωx+φ)初等三角函数导数三角函数图象y=sinx---y'=cosxy=cosx---y'=-sinxy=tanx---y'=1/cos^2x =sec^2xy=cotx---y'= -1/sin^2x= - csc^2xy=secx---y'=secxtanxy=cscx---y'=-cscxcotxy=arcsinx---y'=1/√(1-x&sup2;)y=arccosx---y'= -1/√(1-x&sup2;)y=arctanx---y'=1/(1+x&sup2;)y=arccotx---y'= -1/(1+x&sup2;)备注:此处&sup2 是对前式进行平方:x&sup2 也即x^2倍半角规律如果角a的余弦值为1/2,那么a/2的余弦值为√3/2反三角函数三角函数的反函数,是多值函数。

它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。

为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。

反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。

其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).反三角函数主要是三个:y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;sinarcsin(x)=x,定义域[-1,1],值域[-π/2,π/2]证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代入上式即可得其他几个用类似方法可得。

编辑本段高等应用总体情况高等代数中三角函数的指数表示(由泰勒级数易得):sinz=[e^(iz)-e^(-iz)]/(2i)cosz=[e^(iz)+e^(-iz)]/2tanx=[e^(iz)-e^(-iz)]/[ie^(iz)+ie^(-iz)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… ≦此时三角函数定义域已推广至整个复数集。

相关文档
最新文档