如何抑制开关电源模块中的电磁干扰
开关电源电磁干扰及其抑制技术研究

开关电源电磁干扰及其抑制技术研究开关电源电磁干扰是指在开关电源的工作过程中,由于电流的开关过程产生的电磁波辐射以及电源回路内部的高频噪声等因素,对周围电子设备和通信系统等产生的干扰。
这种干扰不仅会影响到开关电源自身的正常工作,而且还会对其它电子设备和系统产生不可忽视的影响,甚至引发严重的故障。
因此,研究开关电源电磁干扰及其抑制技术具有重要的理论和应用价值。
开关电源本身的工作原理决定了其在工作过程中会产生很高频率的开关波形,并伴随较大的电流急变。
这些急变的电流和电压波形会通过电源开关器件和电源回路上的导线辐射出去,形成电磁波辐射。
此外,开关电源内部的高速开关元件的开关过程会带来较高的开关频率噪声,也会导致系统内部的高频噪声。
这些干扰源的存在导致了开关电源电磁干扰的发生。
为了抑制开关电源电磁干扰,可以从以下几个方面着手进行研究和技术应用。
首先,可以从电源开关器件的选用和设计上入手。
对于开关电源来说,开关器件在工作过程中的开关速度需要尽量快,以减少器件转换过程中的损耗。
但是快速开关也会带来更高频率的电磁辐射。
因此,选择低辐射的开关器件以及合理的开关频率是减少电磁干扰的重要手段。
其次,可以通过合理设计电源回路和电源线路布局来减少电磁辐射。
合理布局电源线路可以减少电源回路的高频噪声对周围系统的干扰。
电源回路设计需要采用抗干扰的滤波电容和电感,减少电磁辐射。
此外,还可以利用开关电源自身的工作原理进行抗干扰设计。
比如,采用恰当的抗干扰技术对开关电源进行滤波和补偿,抑制高频噪声和电磁波辐射。
例如,采用电源输入端的滤波电容和电感,将电磁波辐射降低到最低水平。
最后可以采用外部的抑制技术对开关电源进行干扰抑制。
例如,采用EMI滤波器、磁珠、屏蔽罩等器件,将电磁干扰源隔离开来,减少对周围系统的干扰。
总之,开关电源电磁干扰及其抑制技术的研究对提高开关电源的质量和系统的稳定性具有重要意义。
通过在开关电源的设计和布局中合理应用这些干扰抑制技术,可以有效减少电磁波辐射和高频噪声对系统的干扰,提高系统的工作可靠性和稳定性。
抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。
根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。
1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。
电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。
电源进线端通常采用如图1 所示的EMI 滤波器电路。
该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。
在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。
而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。
抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。
当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。
因此,即使在大负载电流的情况下,磁芯也不会饱和。
而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。
2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。
采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。
可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。
开关电源中常用的几种抑制电磁干扰的措施

开关电源中常用的几种抑制电磁干扰的措施形成电磁干扰的三要素是干扰源、传播途径和受扰设备。
因而,抑制电磁干扰也应该从这三方面着手。
首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径(见图2);第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。
目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。
常用的方法是屏蔽、接地和滤波。
图1 共模干扰采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。
例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底板上。
器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网传播的途径。
为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。
电源某些部分与大地相连可以起到抑制干扰的作用。
例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。
电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。
因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连.在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。
因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近接到该参考地上。
开关电源emi电路原理

开关电源emi电路原理
开关电源EMI电路是指用来抑制电磁干扰(EMI)的电路。
开关电源是一种使用开关元件(如晶体管或MOSFET)工作
的电源,通过周期性地开关电流来提供电能。
开关电源会产生一定的电磁干扰,主要原因有以下几点:
1. 开关元件的快速开关会引起电压和电流的急剧变化,导致高频谐波成分的产生;
2. 开关电源中的变压器和电感器会产生磁场,进一步引起电磁辐射;
3. 开关电源中的电容器会产生串扰电容耦合,导致干扰信号的传导。
为了抑制开关电源的电磁干扰,可以采取以下措施:
1. 在开关电源输入端添加滤波器,用来抑制高频噪声,常见的滤波器包括电容滤波器和电感滤波器;
2. 设计合适的开关元件驱动电路,减小开关元件的开关速度,从而减小高频谐波的产生;
3. 采用引入屏蔽外壳或屏蔽包围电路等的屏蔽手段,减小电磁辐射;
4. 采用良好的地线布局和接地措施,降低地线电阻和噪声干扰;
5. 使用高频绕线技术和特殊布板设计,减少电感和电容器之间的串扰。
通过以上措施,可以有效地抑制开关电源产生的电磁干扰,提高电源的抗干扰能力,确保设备的正常运行。
开关电源电磁干扰的抑制措施及应用

开关电源电磁干扰的抑制措施及应用摘要本文先分析了开关电源的工作原理、EMI的特点,并结合PDM智能电力综合监控仪表就如何进行有效的开关电源电磁干扰抑制措施,即电磁兼容性设计进行了分析,并提出一些参考建议。
关键词开关电源;电磁干扰;电磁兼容性设计1 概述由于开关电源的电磁干扰EMI信号输出既能有很宽的频率范围,又具有一定的幅度,经传导和辐射后会污染电磁环境,对通信设备和电子产品造成干扰。
因此,如何进行电磁兼容性设计,有效地抑制开关电源的电磁干扰,对保证电子系统的正常稳定运行具有重要意义。
2 开关电源的电磁干扰2.1 开关电源的工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,主要由开关三极管和高频变压器组成。
它首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压(其原理图及等效原理框图如图1所示)。
2.2 电磁干扰EMI的特点作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大,干扰源主要集中在开关管、输出二极管和高频变压器等。
同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。
相对于数字电路干扰源的位置较为清楚,开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;PCB走线因需采用手工调整,具有随意性,这更增加了PCB分布参数的提取和近场干扰估计的难度。
3 电磁兼容性EMC设计图1电磁兼容性EMC设计包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力。
形成电磁干扰的三要素是干扰源、耦合通道、敏感体。
因而,抑制电磁干扰即进行电磁兼容性EMC设计首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。
开关电源电磁干扰的抑制措施

开关电源电磁干扰的抑制措施1 开关电源压力表电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
现在按噪声干扰源来分别说明:(1)二极管的反向恢复时间引起的干扰高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN 结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
(2)开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
(3)交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。
这种通过电磁辐射产生的干扰称为辐射干扰。
(4)其他原因元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB 的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI 干扰。
2 开关电源EMI 的特点作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹)。
详解几种可有效开关电源的电磁干扰抑制方法

详解几种可有效开关电源的电磁干扰抑制方法
目前,许多大学及科研单位都进行了开关电源EMI(Electromagnetic Interference)的研究,他们中有些从EMI 产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。
这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。
开关电源电磁干扰的产生机理
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种,若按耦合通路来分,可分为传导干扰和辐射干扰两种。
现在按噪声干扰源来分别说明:
1、二极管的反向恢复时间引起的干扰
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN 结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰
功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、交流输入回路产生的干扰
无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播。
解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。
2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。
3. 地线布局:合理布置地线,减少电磁干扰。
不同元器件的地线要分开布局,避免共
用一个接地点。
4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。
5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。
6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。
7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。
8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。
以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何抑制开关电源模块中的电磁干扰
如何抑制电磁干扰,一直都是开关电源模块设计中不可忽视的问题,其不仅关系到电源模块本身的可靠性,也关系到整个应用系统的安全和稳定性。
全面抑制开关电源模块的各种噪声干扰才会使开关电源模块得到更广泛的应用。
一、电磁干扰的定义
电磁干扰(ElectroMagneticInterference,简称EMI)是指任何在传导或电磁场伴随着电压、电流的作用而产生会降低某个装置、设备或系统的性能,或可能对生物或物质产生不良影响之电磁现象。
二、电磁干扰的产生
骚扰源、敏感设备与耦合途径并称电磁干扰三要素。
对于开关电源模块来说,噪声的产生在于电流或电压的急剧变化,即di/dt或dv/dt很大,因此高功率和高频率运作的器件都是EMI噪声的来源。
具体来说,其来源主要有:
(1)外界耦合的干扰(主要在输入端和输出端产生);
(2)开关管;
(3)变压器;
(4)二极管;
(5)储能电感;
(6)PCB板布局和走线不合理从而产生的回路干扰。
三、抑制电磁干扰的对策
人们总是想方设法地将电磁干扰三要素之中的一个去掉:屏蔽掉骚扰源、隔离开敏感设备或者切断耦合途径。
从能量的角度来讲,电磁干扰是一种能量,无法不让它产生,只有用一定的办法去减小其对系统的干扰。
可用到的方法可分为两大类:一种是让能量泄放掉;另一种是把能量给挡在外部。
可以说一种方法是减小其产生的幅度,另一种则切断其传播途径。
下面针对具体的方面一一分析:。