2014中考二次函数压轴题选编

合集下载

2014年中考数学真题汇编-二次函数

2014年中考数学真题汇编-二次函数

2014年中考数学真题汇编-二次函数一、选择题1. (2014•上海,第3题4分)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的2. (2014•四川巴中,第10题3分)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.﹣3a+c<0 C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c 考点:二次函数的图象和符号特征.分析:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0.B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y<0,即可判断;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0;D.把二次函数y=ax2+bx+c化为顶点式,再求出平移后的解析式即可判断.解答:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a ﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.3. (2014•山东威海,第11题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()该抛物线的对称轴是:∴的x、y的部分对应值如下表:x=5. (2014•山东烟台,第11题3分)二次函数y=ax+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数的图象与性质.解答:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x 的增大而减小.解答:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b =﹣4a ,∴a +4a +c =0,即c =﹣5a ,∴8a +7b +2c =8a ﹣28a ﹣10a =﹣30a , ∵抛物线开口向下,∴a <0,∴8a +7b +2c >0,所以③正确; ∵对称轴为直线x =2, ∴当﹣1<x <2时,y 的值随x 值的增大而增大,当x >2时,y 随x 的增大而减小,所以④错误.故选B .点评:本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.(2014山东济南,第15题,3分)二次函数的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (为实数)在41<<-x 的范围内有解,则的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t 【解析】由对称轴为1=x ,得2-=b ,再由一元二次方程022=--t x x 在41<<-x 的范围内有解,得)4()1(y t y <≤,即81<≤-t ,故选C .7. (2014•山东聊城,第12题,3分)如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③a ﹣b+c=﹣9a ;④若(﹣3,y 1),(,y 2)是抛物线上两点,则y 1>y 2,其中正确的是( )=8.(2014年贵州黔东南9.(3分))已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D. 2015考点:抛物线与x轴的交点.分析:把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.解答:解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.点评:本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.9. (2014年贵州黔东南9.(4分))如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③ B.①②④ C.①③④ D.②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.12. (2014•年山东东营,第9题3分)若函数y=mx+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0 B.0或2 C.2或﹣2 D.0,2或﹣2考点:抛物线与x轴的交点.分析:分为两种情况:函数是二次函数,函数是一次函数,求出即可.解答:解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数时一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选D.点评:本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.13.(2014•山东临沂,第14题3分)在平面直角坐标系中,函数y=x2﹣2x(x≥0)的图象为14.(2014•山东淄博,第8题4分)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.15.(2014•山东淄博,第12题4分)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A (0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.16.(2014•四川南充,第10题,3分)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤分析:根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b]=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2.解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b]=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x 轴没有交点.17.(2014•甘肃白银、临夏,第9题3分)二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()19.(2014•甘肃兰州,第11题4分)把抛物线y=﹣2x先向右平移1个单位长度,再向上平20.(2014•甘肃兰州,第14题4分)二次函数y=ax+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是(),得二、填空题1. (2014•浙江杭州,第15题,4分)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.=x=2. *(2014年河南9.(4分))已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.答案:8.解析:根据点A到对称轴x=2的距离是4,又点A、点B关于x=2对称,∴AB=8.3. (2014年湖北咸宁15.(3分))科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃﹣4 ﹣2 0 1 4植物高度增长量l/mm 41 49 49 46 25科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为﹣1℃.考点:二次函数的应用.分析:首先利用待定系数法求二次函数解析式解析式,在利用二次函数最值公式求法得出即可.解答:解:设y=ax2+bx+c (a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以y与x之间的二次函数解析式为:y=﹣x2﹣2x+49,当x=﹣=﹣1时,y有最大值50,即说明最适合这种植物生长的温度是﹣1℃.故答案为:﹣1.点评:此题主要考查了二次函数的应用以及待定系数法求二次函数解析式,得出二次函数解析式是解题关键.3.4.5.6.7.8.三、解答题1. (2014•上海,第24题12分)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x 轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.∴B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA 的度数.=×∴=,∴.,,的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;.=,∴解得∴5. (2014•山东潍坊,第24题13分)如图,抛物线y=ax+bx+c(a≠O)与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。

2014年中考压轴题-湖南 -

2014年中考压轴题-湖南 -

2014年中考数学压轴题精编—湖南篇1.(湖南省长沙市)已知:二次函数y=ax2+bx-2的图象经过点(1,0),一次函数的图象经过原点和点(1,-b),其中a>b>0且a、b为实数.(1)求一次函数表达式(用含b的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围.2.(湖南省长沙市)如图,平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=28cm,OC=8cm,现有两动点P、Q分别从Array O、C同时出发,P在线段OA上沿OA方向以每秒2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当△OPQ 与△P AB 和△QPB 相似时,抛物线y =41x2+bx +c 经过B 、P 两点,过线段BP 上一动点M作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比. 3.(湖南省岳阳市)如图①、②,在平面直角坐标系中,一边长为2的等边三角板CDE 恰好与坐标系中的△OAB 重合,现将三角板CDE 绕边AB 的中点G (G 点也是DE 的中点),按顺时针方向旋转180°到△C ′ED 的位置.(1)求C ′ 点的坐标;(2)求经过O 、A 、C ′ 三点的抛物线的解析式;(3)如图③,⊙G 是以AB 为直径的圆,过B 点作⊙G 的切线与x 轴相交于点F ,求切线BF 的解析式; (4)抛物线上是否存在一点M ,使得S △AMF :S △OAB =16 :3?若存在,请求出点M 的坐标;若不存在,请说明理由.2014年中考数学压轴题精编—湖南篇34.(湖南省衡阳市)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其它边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.C P QA MN5.(湖南省益阳市)如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).(1)求经过A、B、C三点的抛物线的解析式;(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;(3)若抛物线的顶点为P,连结PC、PD,判断四边形CEDP的形状,并说明理由.42014年中考数学压轴题精编—湖南篇56.(湖南省邵阳市)如图,抛物线y =-41x2+x +3与x 轴相交于点A 、B ,与y 轴相交于点C ,顶点为点D ,对称轴l 与直线BC 相交于点E ,与x 轴相交于点F . (1)求直线BC 的解析式. (2)设点P 为该抛物线上的一个动点,以点P 为圆心、r 为半径作⊙P . ①当点P 运动到点D 时,若⊙P 与直线BC 相交,求r 的取值范围;②若r =554,是否存在点P 使⊙P 与直线BC 相切,若存在,请求出点P 的坐标;若不存在,请说明理由.67.(湖南省张家界市)如图1,射线AM ∥射线BN ,∠A =∠B =90°,点D 、C 分别在AM 、BN 上运动(点D 与点A 不重合,点C 与点B 不重合),E 是AB 上的动点(点E 与A 、B 不重合),在运动过程中始终保持DE ⊥CE ,且AD +DE =AB =a .(1)当点E 为AB 边的中点时(如图2), 求证:①AD +BC =CD ;②DE 、CE 分别平分∠ADC 、∠BCD ;(2)设AE =m ,请探究:△BEC 的周长是否与m 值有关?若有关,请用含m 的代数式表示△BEC 的周长;若无关,请说明理由.A D C NB EM 图1 A D C NB E M 图22014年中考数学压轴题精编—湖南篇78.(湖南省张家界市)如图,抛物线y =x2-6x +8与x轴交于A 、B 两点(点A 在点B 的左侧),直线y =21x +2交y 轴于点C ,且过点D (8,m ).左右平移抛物线y =x2-6x +8,记平移后点A 的对应点为A ′,点B 的对应点为B ′.(1)求线段AB 、CD 的长;(2)当抛物线向右平移到某个位置时,A ′D +B ′D 最小,试确定此时抛物线的表达式; (3)是否存在某个位置,使四边形A ′B ′DC 的周长最小?若存在,求出此时抛物线的表达式和四边形A ′B ′DC 的周长最小值;若不存在,请说明理由.89.(湖南省株洲市)在平面直角坐标系中,抛物线过原点O ,且与x 轴交于另一点A ,其顶点为B .孔明同学用一把宽为3cm 带刻度的矩形直尺对抛物线进行如下测量: ①量得OA =3cm ;②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点C 的刻度读数为4.5.请完成下列问题:(1)写出抛物线的对称轴; (2)求抛物线的解析式;(3)将图中的直尺(足够长)沿水平方向向右平移到点A 的右边(如图2),直尺的两边交x 轴于点H 、G ,交抛物线于点E 、F .求证:S 梯形EFGH=61(EF 2-9).CBAOxy3cm1 2 3 4 5 6 E BA Oxy1 234 56 FG H2014年中考数学压轴题精编—湖南篇910.(湖南省郴州市)如图(1),抛物线y =x2+x -4与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y =x +b 与抛物线交于点B 、C .(1)求点A 的坐标;(2)当b =0时(如图(2)),△ABE 与△ACE 的面积大小关系如何?当b >-4时,上述关系还成立吗,为什么?(3)是否存在这样的b ,使得△BOC 是以BC 为斜边的直角三角形,若存在,求b 的值;若不存在,说明理由.图(1)图(2)11.(湖南省永州市)如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC、AC于点D、E,且点D为边BC的中点.(1)求证:△ABC为等边三角形;(2)求DE的长;(3)在线段AB的延长线上是否存在一点P,使△PBD≌△AED,若存在,请求出PB的长;若不存在,请说明理由.102014年中考数学压轴题精编—湖南篇12.(湖南省永州市)已知二次函数的图象与x轴有且只有一个交点A(-2,0),与y轴的交点为B(0,4),且其对称轴与y轴平行.(1)求该二次函数的解析式,并在所给坐标系中画出这个二次函数的大致图象;(2)在该二次函数位于A、B两点之间的图象上取一点M,过点M分别作x轴、y轴的垂线段,垂足分别为点C、D.求矩形MCOD的周长的最小值,并求使矩形MCOD的周长最小时的点M的坐标.111213.(湖南省永州市)探究问题: (1)阅读理解: ①如图(A ),在已知△ABC 所在平面上存在一点P ,使它到三角形三顶点的距离之和最小,则称点P 为△ABC 的费马点,此时P A +PB +PC 的值为△ABC 的费马距离. ②如图(B ),若四边形ABCD 的四个顶点在同一圆上,则有AB ·CD +BC ·DA =AC ·BD ,此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C ),已知点P 为等边△ABC 外接圆的BC ︵上任意一点.求证:PB +PC =P A . ②根据(2)①的结论,我们有如下探寻△ABC (其中∠A 、∠B 、∠C 均小于120°)的费马点和费马距离的方法:第一步:如图(D ),在△ABC 的外部以BC 为边长作等边△BCD 及其外接圆;第二步:在BC ︵上任取一点P ′,连结P ′A 、P ′B 、P ′C 、P′D .易知P ′A +P ′B +P ′C =P ′A +(P ′B +P ′C )=P ′A +_____________;第三步:请你根据(1)①中定义,在图(D )中找出△ABC 的费马点P ,并请指出线段________的长度即为△ABC 的费马距离.C B A P(图A )C BAD(图B )P BAC(图C )D(图D )2014年中考数学压轴题精编—湖南篇13(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A 、B 、C 构成了如图(E )所示的△ABC (其中∠A 、∠B 、∠C 均小于120°),现选取一点P 打水井,使从水井P 到三村庄A 、B 、C 所铺设的输水管总长度最小,求输水管总长度的最小值. 14.(湖南省湘潭市)如图,直线y =-x +6与x 轴交于点A ,与y 轴交于点B ,以线段AB 为直径作⊙C ,抛物线y =ax2+bx +c 过A 、C 、O 三点.(1)求点C 的坐标和抛物线的解析式;(2)过点B 作直线与x 轴交于点D ,且OB 2=OA ·OD ,求证:DB 是⊙C 的切线;(3)抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为直角梯形,如果存在,求出点P 的坐标;如果不存在,请说明理由.C1415.(湖南省常德市)如图,已知抛物线y =21x2+bx +c 与x 轴交于A (-4,0)、B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式; (2)设E 是线段AB 上的动点,作EF ∥AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.2014年中考数学压轴题精编—湖南篇1516.(湖南省常德市)如图1,若四边形ABCD 和GFED 都是正方形,显然图中有AG =CE ,AG ⊥CE . (1)当正方形GFED 绕D 旋转到如图2的位置时,AG =CE 是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当正方形GFED 绕D 旋转到如图3的位置时,延长CE 交AG 于H ,交AD 于M . ①求证:AG ⊥CH ; ②当AD =4,DG =2时,求CH 的长.ABD C FEG 图1ABDC F EG图2ABD CF EG 图3HM1617.(湖南省怀化市)图9是二次函数y =(x +m )2+k 的图象,其顶点坐标为M (1,-4). (1)求出图象与x 轴的交点A 、B 的坐标; (2)在二次函数的图象上是否存在点P ,使S △P AB=45S △MAB ,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y =x +b(b <1)与此图象有两个公共点时,b 的取值范围.18.(湖南省娄底市)已知:二次函数y =ax2+bx +c 的图象与x 轴相交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标是(-2,0),点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OC <2014年中考数学压轴题精编—湖南篇OB)是方程x2-10x+24=0的两个根.(1)求B、C两点的坐标;(2)求这个二次函数的解析式;(3)在这个二次函数的图象上是否存在点P,使△P AC是直角三角形?若存在,求出P点坐标;若不存在,请说明理由.19.(湖南省娄底市)如图,在梯形ABCD中,AB∥CD,AB=2,DC=10,AD=BC=5,点M、N分别在边AD、BC上运动,并保持MN∥AB,ME⊥DC,NF⊥DC,垂中分别为E、F.(1)求梯形ABCD的面积;17(2)探究一:四边形MNFE 的面积有无最大值?若有,请求出这个最大值;若无,请说明理由; (3)探究二:四边形MNFE 能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.20.(湖南省冷水江市)如图,已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为坐标原点,点A 在x 轴上,点C 在y 轴上,且OA =5,OC =3.在AB 边上选取一点D ,将△AOD 沿OD 翻折,使点A 落在BC 边上,记为点E .(1)求直线DE 的解析式;(2)过点E 作EF ∥AB 交OD 于点F ,以F 为顶点的抛物线与直线DE 只有一个公共点,求该公共点的坐标;(3)在x 轴、y 轴上是否分别存在点M 、N ,使四边形MNED 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.C A BD M N FE B D2014年中考数学压轴题精编—湖南篇1921.(湖南省湘西自治州)如图,已知抛物线y =ax2-4x +c 经过点A (0,-6)和B (3,-9).(1)求抛物线的解析式;(2)写出抛物线的对称轴方程及顶点坐标;(3)点P (m ,m )与点Q 均在抛物线上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标;(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M ,使得△QMA 的周长最小.20。

2014年中考二次函数压轴题

2014年中考二次函数压轴题

2014年中考数学总复习《二次函数》一.解答题(共30小题)1.(2013•自贡)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD 交抛物线于点D,并且D(2,3),tan∠DBA=.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q 点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.2.(2013•株洲)已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.3.(2013•舟山)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?4.(2013•重庆)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A 的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.5.(2013•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.6.(2013•湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.7.(2013•枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.8.(2013•岳阳)如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C 点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.(1)求A,B,C三点的坐标;(2)求抛物线的解析式及顶点F的坐标;(3)已知M为抛物线上一动点(不与C点重合),试探究:①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.9.(2013•玉林)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.10.(2013•营口)如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.11.(2013•益阳)阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(x p,y p).由x p﹣x1=x2﹣x p,得x p=,同理,所以AB的中点坐标为.由勾股定理得AB2=,所以A、B两点间的距离公式为.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及C点的坐标;(2)连结AB、AC,求证△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.12.(2013•烟台)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(﹣,0),以0C为直径作半圆,圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.13.(2013•孝感)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.14.(2013•湘西州)如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.15.(2013•湘潭)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.16.(2013•咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?17.(2013•梧州)如图,抛物线y=a(x﹣h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x 轴交于点C.(1)求此抛物线的解析式.(2)在第一象限内的抛物线上求点P,使得△ACP是以AC为底的等腰三角形,请求出此时点P的坐标.(3)上述点是否是第一象限内此抛物线上与AC距离最远的点?若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC距离最远的点的坐标.18.(2013•无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.19.(2013•乌鲁木齐)如图.在平面直角坐标系中,边长为的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E.(1)求证:△OAD≌△EAB;(2)求过点O、E、B的抛物线所表示的二次函数解析式;(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;(4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.20.(2013•潍坊)如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2,)在抛物线上,直线l是一次函数y=kx﹣2(k≠0)的图象,点O是坐标原点.(1)求抛物线的解析式;(2)若直线l平分四边形OBDC的面积,求k的值;(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.21.(2013•铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.22.(2013•铁岭)某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y(1的函数关系式:_________(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?23.(2013•天津)已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:(Ⅰ)求y1与x之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).(1)求y2与x之间的函数关系式;(2)当x24.(2013•泰安)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.25.(2013•太原)综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.26.(2013•台州)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+k经过点A,其顶点为B,另一抛物线y=(x﹣h)2+2﹣h(h>1)的顶点为D,两抛物线相交于点C.(1)求点B的坐标,并说明点D在直线l上的理由;(2)设交点C的横坐标为m.①交点C的纵坐标可以表示为:_________或_________,由此进一步探究m关于h的函数关系式;②如图2,若∠ACD=90°,求m的值.27.(2013•遂宁)如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,).直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值.28.(2013•绥化)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.29.(2013•宿迁)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣3(a,b是常数)的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.(1)求a和b的值;(2)求t的取值范围;(3)若∠PCQ=90°,求t的值.30.(2013•深圳)如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(_________,_________),抛物线的表达式为_________;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.。

2014中考数学二次函数压轴题27道精选复习用

2014中考数学二次函数压轴题27道精选复习用

2014中考数学二次函数压轴题选练1.如图,抛物线的顶点为P (1,0),一条直线与抛物线相交于A (2,1),B(-21,m )两点. (1)求抛物线和直线AB 的解析式;(2)若M 为线段AB 上的动点,过M 作MN ∥y 轴,交抛物线于点N ,连接NP 、AP ,试探究四边形MNP A 能否为梯形,若能,求出此时点M 的坐标;若不能,请说明理由.2.如图所示,在平面直角坐标系中,抛物线y =ax2+bx +c (a ≠0).经过A (-1,0)、B (3,0)、C (0,3)三点,其顶点为D ,连接BD ,点P 是线段BD 上一个动点(不与B 、D 重合),过点P 作y 轴的垂线,垂足为E ,连接BE . (1)求抛物线的解析式,并写出顶点D 的坐标;(2)如果P 点的坐标为(x ,y ),△PBE 的面积为s ,求s 与x 的函数关系式,写出自变量x 的取值范围,并求出s 的最大值;(3)在(2)的条件下,当s 取得最大值时,过点P 作x 轴的垂线,垂足为F ,连接EF ,把△PEF 沿直线EF 折叠,点P 的对应点为P ′ ,请直接写出P ′点坐标,并判断点P ′是否在该抛物线上.3.如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y 轴交于点C(0,4),其中x1,x2是方程x2-2x-8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC 成为等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.4.已知:如图所示,关于x的抛物线y=ax2+x+c(a≠0)与x轴交于点A (-2,0),点B(6,0),与y轴交于点C.(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,并求出直线AD的解析式;(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.5.如图,矩形OABC 的两边OA 、OC 分别在x 轴和y 轴上,A (-3,0),过点C 的直线y =-2x +4与x 轴交于点D ,二次函数y =-21x2+bx +c 的图象经过B 、C 两点.(1)求B 、C 两点的坐标; (2)求二次函数的解析式;(3)若点P 是CD 的中点,求证:AP ⊥CD ;(4)在二次函数的图象上是否存在这样的点M ,使以A 、P 、C 、M 为顶点的四边形为矩形?若存在,求出点M 的坐标;若不存在,请说明理由.6.已知:抛物线y =ax2+bx +c (a ≠0)的对称轴为x =-1,与x 轴交于A 、B 两点,与y 轴交于点C ,其中A (-3,0)、C (0,-2). (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得△PBC 的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE ∥PC 交x 轴于点E ,连接PD 、PE .设CD 的长为m ,△PDE 的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.7.如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标.(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.8.如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立?(请直接写出结论)9.如图,已知抛物线y =ax2+bx +c 与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A .求使点P 运动的总路径最短的点E路径的长.10.如图,已知抛物线y =ax2+bx -4与直线y =x 交于点A 、B 两点,A 、B 的横坐标分别为-1和4. (1)求此抛物线的解析式.(2)若平行于y 轴的直线x =m (0<m <5+1)与抛物线交于点M ,与直线y =x 交于点N ,交x 轴于点P ,求线段MN 的长(用含m 的代数式表示). (3)在(2)的条件下,连接OM 、BM ,是否存在m 的值,使得△BOM 的面积S 最大?若存在,请求出m 的值,若不存在,请说明理由.11.如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点.(1)求此抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得△DCA出点D 的坐标.12. 如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标;13.如图,已知抛物线212y x bx c x =++与轴交于点A (-4,0)和B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF ∥AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.14.如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.x15、(2010湖南常德)如图9, 已知抛物线212y x bx c =++与x 轴交于A (-4,0) 和B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF //AC 交BC 于F ,连接CE ,当△CEF的面积是△BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.16(2010湖南郴州)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标; (2)当b =0时(如图(2)),ABE 与ACE 的面积大小关系如何?当4b >-时,上述关系还成立吗,为什么?(3)是否存在这样的b ,使得BOC 是以BC 为斜边的直角三角形,若存在,求出b ;若不存在,说明理由.xyO BC A图917(2010湖南怀化)图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).(1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.18、(2010湖北恩施自治州) 如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式. (2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.图919(2013重庆)如图,已知抛物线y=x2+bx+c的图象与轴的一个交点为B(5,0),另一个交点为A,且与x 轴交于点C(0,5)。

2014,5二次函数解答题压轴题

2014,5二次函数解答题压轴题

二次函数解答题压轴题一.填空题(共1小题)1.(2013•庐江县校级模拟)已知抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③a>;④b<1.其中正确的结论是.二.解答题(共29小题)2.(2015•枣庄)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.3.(2015•黄冈中学自主招生)如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动.设PQ交直线AC于点G.(1)求直线AC的解析式;(2)设△PQC的面积为S,求S关于t的函数解析式;(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形.直接写出所有满足条件的M点的坐标;(4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由.4.(2015•永春县自主招生)如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作x轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m<0,n>0.(1)如果m=﹣4,n=1,试判断△AMN的形状;(2)如果mn=﹣4,(1)中有关△AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;(3)如图2,题目中的条件不变,如果mn=﹣4,并且ON=4,求经过M、A、N三点的抛物线所对应的函数关系式;(4)在(3)的条件下,如果抛物线的对称轴l与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件的点Q的坐标.5.(2015•黄冈中学自主招生)已知:直角三角形AOB中,∠AOB=90°,OA=3厘米,OB=4厘米.以O为坐标原点如图建立平面直角坐标系.设P、Q分别为AB边,OB边上的动点,它们同时分别从点A、O向B点匀速运动,移动的速度都为1厘米每秒.设P、Q运动的时间为t秒(0≤t≤4).(1)求△OPQ的面积S与(厘米2)与t的函数关系式;并指出当t为何值时S的最大值是多少?(2)当t为何值时,△BPQ和△AOB相似;(3)当t为何值时,△OPQ为直角三角形;(4)①试证明无论t为何值,△OPQ不可能为正三角形;②若点P的移动速度不变,试改变点Q的运动速度,使△OPQ为正三角形,求出点Q的运动速度和此时的t值.6.(2015•大庆校级模拟)近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?(4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?7.(2015•枣庄校级三模)2012年十一黄金周,由于7座以下小型车辆免收高速公路通行费,使汽车租赁市场需求旺盛.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当租出的车辆每减少1辆,每辆车的日租金将增加50元,另公司平均每日的各项支出共4800元.设公司每日租出x(x≤20)辆车时,日收益为y元.(日收益=日租金收入﹣平均每日各项支出)(1)公司每日租出x(x≤20)辆车时,每辆车的日租金增加为元;此时每辆车的日租金为元.(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?是多少元?8.(2015•攀枝花模拟)已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连接AD、BD、BE.(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形.,;(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2﹣2ax﹣3a(a<0)经过点A、B、D,且B为抛物线的顶点.①写出顶点B的坐标(用a的代数式表示);②求抛物线的解析式;③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.9.(2015•芦溪县模拟)如图,已知抛物线y=x2﹣ax+a2﹣4a﹣4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)10.(2015秋•济宁校级期末)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B 两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.11.(2015•江西校级模拟)在平面直角坐标系xOy中,已知抛物线y=﹣+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x 轴于点H,MA交y轴于点N,sin∠MOH=.(1)求此抛物线的函数表达式;(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若=时,求点P的坐标;(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG 与△ADM相似?若存在,求出所有符合条件的直线QG的解析式;若不存在,请说明理由.12.(2015•武侯区模拟)已知如图,矩形OABC的长OA=,宽OC=1,将△AOC沿AC 翻折得△APC.(1)求∠PCB的度数;(2)若P,A两点在抛物线y=﹣x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M 是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.13.(2015•邗江区二模)如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB 上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t (t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.信息读取(1)梯形上底的长AB=;(2)直角梯形ABCD的面积=;图象理解(3)写出图②中射线NQ表示的实际意义;(4)当2<t<4时,求S关于t的函数关系式;问题解决(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.14.(2015•黄冈模拟)已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.15.(2015•临夏州模拟)如图(1),抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).[图(2)、图(3)为解答备用图](1)k=,点A的坐标为,点B的坐标为;(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.16.(2015•大庆模拟)已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且S△ABM=3,求点M的坐标;(3)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥x轴于点D.将抛物线y=x2+bx+c 平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.17.(2015•湖州模拟)如图①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x轴.它的顶点A的坐标为(10,0),顶点B的坐标为,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(直接写出结果)(2)当点P在AB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图②),求点P的运动速度.(3)求题(2)中面积S与时间t之间的函数关系式,及面积S取最大值时,点P的坐标.(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.18.(2015•潍坊模拟)如图,在平面直角坐标系中,点O是原点,点A的坐标为(4,0),以OA为一边,在第一象限作等边△OAB(1)求点B的坐标;(2)求经过O、A、B三点的抛物线的解析式;(3)直线y=x与(2)中的抛物线在第一象限相交于点C,求点C的坐标;(4)在(3)中,直线OC上方的抛物线上,是否存在一点D,使得△OCD的面积最大?如果存在,求出点D的坐标和面积的最大值;如果不存在,请说明理由.19.(2015•濠江区一模)如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)①在x轴上方的抛物线上,是否存在一点P,使四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由;②在抛物线的对称轴上,是否存在上点Q,使得△BEQ的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.20.(2014•黔南州)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A 点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.21.(2014•兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.22.(2014•成都)如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?23.(2014•南宁)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.24.(2014•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.25.(2014•钦州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH 相似?若存在,求出此时m的值;若不存在,请说明理由.26.(2014•昆明)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A (﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.27.(2014•遵义)如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.28.(2014•吉林)如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l 表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.29.(2014•本溪)如图,直线y=x﹣4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B 向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q 为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.30.(2014•六盘水)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.二次函数解答题压轴题参考答案一.填空题(共1小题)1.②③;二.解答题(共29小题)2.;3.;4.;5.;6.;7.50(20-x);1400-50x;8.△OAD∽△CDB;△ADB∽△ECB;(1,-4a);9.;10.;11.;12.;13.2;12;14.;15.-3;(-1,0);(3,0);16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.y=-x2-x+2;y=-4x+4;29.;30.;。

2014中考数学压轴题精选(二次函数)(16题)-附详细解答和评分标准

2014中考数学压轴题精选(二次函数)(16题)-附详细解答和评分标准

1、(08广东茂名25题)(本题满分10分)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解:(08广东茂名25题解析)解:(1)解法一: ∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 ……1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ·························································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x1x 2=49b 2-24 ∴49b 2-24=25 解得b =±314···························································································· 3分当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b =-314. ··························································································· 4分 解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根.∴x =4969b 32-±b , ································································· 2分(第25题图)x∴x 2-x 1=2969b 2-=5,解得 b =±314 ·················································································· 3分 (以下与解法一相同.)(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上, ···················································································· 5分又∵y =-32x 2-314x -4=-32(x +27)2+625····························· 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ································· 7分(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ···················································· 8分∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4,∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ··············· 9分 四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ············································· 10分 2、(08广东肇庆25题)(本小题满分10分)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.(08广东肇庆25题解析)(本小题满分10分)解:(1)由5x x 122+=0, ··································································· (1分)得01=x ,5122-=x . ······································································· (2分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ································· (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), ·························· (4分) 分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ············································· (5分)=22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ······························· (6分)=5(个单位面积) ······························································ (7分)(3)如:)(3123y y y -=. ······························································· (8分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a .3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ··········· (9分) ∴)(3123y y y -=. ········································································ (10分) 3、(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.(08辽宁沈阳26题解析)解:(1)点E 在y 轴上 ············································ 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ······························································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=x第26题图∴在Rt DOM △中,12DM =,OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ············································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ··············································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧-+=⎪⎨++=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:28299y x x =--+ ················································ 9分(3)存在符合条件的点P ,点Q . ······························································ 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ···················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =--+上28229m ∴--+=解得,10m =,2m =1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(2)Q,2Q ; 当点2P的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ········································ 14分4、(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.(08辽宁12市26题解析)解:(1)直线y =-x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C , ············································································· 1分点A C ,都在抛物线上,03a c c⎧=++⎪∴⎨⎪=⎩3a c ⎧=⎪∴⎨⎪=⎩ ∴抛物线的解析式为2y x x =-················································· 3分x∴顶点1F ⎛ ⎝⎭ ·················································································· 4分 (2)存在 ································································································ 5分1(0P ······························································································ 7分2(2P ····························································································· 9分 (3)存在 ······························································································ 10分 理由: 解法一:延长BC 到点B ',使BC B C '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ········································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线233y x x =-(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴--, ········································ 12分设直线B F '的解析式为y kx b =+3k b k b ⎧-=-+⎪∴⎨=+⎪⎩解得6k b ⎧=⎪⎪⎨⎪=⎪⎩y x ∴=················································································· 13分62y y x ⎧=⎪∴⎨=-⎪⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫- ⎪ ⎪⎝⎭,. ·· 14分x5、(08青海西宁28题)如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点.(1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(08青海西宁28题解析)解:(1)圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩····································································· 2分解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ······································· 3分(2)过点M 作MF x ⊥轴,垂足为F . ······················································ 4分OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径). 在1Rt OO M △中,1111sin 2O M O OM OO ∠== 1O OM ∠为锐角,130O OM ∴∠= ························ 5分1cos3022OM OO ∴==⨯=, 在Rt MOF △中,3cos30322OF OM ===.1sin 3032MF OM ===.∴点M 坐标为32⎛ ⎝⎭············································································· 6分图14设切线OM 的函数解析式为(0)y kx k =≠32k =,k ∴= ····· 7分∴切线OM 的函数解析式为y =··························································· 8分 (3)存在. ····························································································· 9分 ①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APO MO O △∽△(两角对应相等两三角形相似)113tan tan 30P A OA AOP =∠==113P ⎛⎫∴ ⎪ ⎪⎝⎭, ····································· 10分 ②过点A 作2AP OM ⊥,垂足为2P ,过2P 点作2P H OA ⊥,垂足为H . 可得21Rt Rt AP O O MO △∽△(两角对应相等两三角开相似) 在2Rt OP A △中,1OA =,23cos30OP OA ∴==在2Rt OP H △中,223cos 4OH OP AOP =∠==,2221sin 2P H OP AOP =∠==2344P ⎛⎫∴ ⎪ ⎪⎝⎭, ································· 11分∴符合条件的P 点坐标有13⎛ ⎝⎭,,344⎛⎫⎪ ⎪⎝⎭, ·············································· 12分6、(08山东济宁26题)(12分)ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s .(1)若A M P △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似?(08山东济宁26题解析)解:(1)当点P 在AC 上时,A M t =,tg 603PM AM t ∴==.2133(01)2y tt t t ∴==≤≤. ······························································ 2分 当点P 在BC 上时,3tan 30(4)3PM BM t ==-.213(4)(13)2363y t t t t t =-=-+≤≤. ··········································· 4分(2)2AC =,4AB ∴=.413BN AB AM MN t t ∴=--=--=-.3tan 30)QN BN t ∴==-. ······························································ 6分 由条件知,若四边形MNQP 为矩形,需PM QN =)3t =-, 34t ∴=. ∴当34t =s 时,四边形MNQP 为矩形.························································ 8分(3)由(2)知,当34t =s 时,四边形MNQP 为矩形,此时PQ AB ∥,PQC ABC ∴△∽△. ··············································································· 9分除此之外,当30CPQ B ∠=∠=时,QPC ABC △∽△,此时3tan 30CQ CP ==. 1cos602AM AP ==,22AP AM t ∴==.22CP t ∴=-. ························ 10分3cos302BN BQ ==,)3BQ t ∴==-.又2BC =)33CQ t ∴=-=. ·································· 11分 322t ∴=-,12t =.∴当12t =s 或34s 时,以C P Q ,,为顶点的三角形与ABC △相似. ··············· 12分7、(08四川巴中30题)(12分)30.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?(08四川巴中30题解析)解:(1)在2334y x =-+中,令0y =23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B , ········································· 1分又点B 在34y x b =-+上 302b ∴=-+32b =BC ∴的解析式为3342y x =-+ ··································································· 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ············································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,。

2014中考数学试题分类汇编——二次函数压轴题

2014中考数学试题分类汇编——二次函数压轴题

2014中考数学试题分类汇编——二次函数压轴题1. 【试题】(2014年湖北孝感第25题)如图1,矩形ABCD 的边AD 在y 轴上,抛物线243y x x =-+经过点A 、点B ,与x 轴交于点E 、点F ,且其顶点M 在CD 上. (1)请直接写出下列各点的坐标:A ☆ ,B ☆ ,C ☆ ,D ☆ ;(2)若点P 是抛物线上一动点(点P 不与点A 、点B 重合),过点P 作y 轴的平行线l 与直线AB 交于点G ,与直线BD 交于点H ,如图2.①当线段PH =2GH 时,求点P 的坐标;②当点P 在直线BD 下方时,点K 在直线BD 上,且满足△KPH ∽△AEF ,求△KPH 面积的最大值.【解答】(1)A (0,3),B (4,3),C (4,-1),D (0,-1).(2)①设直线BD 的解析式为(0)y kx b k =+≠,由于直线BD 经过D (0,-1),B (4,3),∴134b k b -=⎧⎨=+⎩,解得11k b =⎧⎨=-⎩,∴直线BD 的解析式为1y x =-.设点P 的坐标为2(,43)x x x -+,则点H (,1)x x -,点G (,3)x .1°当1x ≥且x ≠4时,点G 在PH 的延长线上,如图①.∵PH =2GH ,∴[]2(1)(43)23(1)x x x x ---+=--, ∴27120x x -+=,解得13x =,24x =. 当24x =时,点P ,H ,G 重合于点B ,舍去. ∴3x =.∴此时点P 的坐标为(3,0).2°当01x <<时,点G 在PH 的反向延长线上,如图②,PH =2GH 不成立. 3°当0x <时,点G 在线段PH 上,如图③.∵PH =2GH ,∴[]2(43)(1)23(1)x x x x -+--=--, ∴2340x x --=,解得11x =-,24x =(舍去), ∴1x =-.此时点P 的坐标为(1,8)-.综上所述可知,点P 的坐标为(3,0)或(1,8)-.②如图④,令2430x x -+=,得11x =,23x =,∴E (1,0),F (3,0),∴E F =2. ∴132AEF EF OA s ∆==. ∵KPH ∆∽AEF ∆,∴2KPH AEF PH EF s s ∆∆⎛⎫= ⎪⎝⎭,∴22233(54)44KPH PH x x s ∆==-+- . ∵41<<x ,∴当52x =时,KPH s ∆的最大值为24364. 2. 【试题】(2014年湖南益阳市第20题)如图,直线33y x =-+与x 轴、y 轴分别交于点A 、B ,抛物线2(2)y a x k =-+经过点A 、B ,并与x 轴交于另一点C ,其顶点为P . (1)求a ,k 的值;(2)抛物线的对称轴上有一点Q ,使ABQ ∆是以AB为底边的等腰三角形,求Q 点的坐标. (3)在抛物线及其对称轴上分别取点M 、N ,使以,,,A C M N 为顶点的四边形为正方形,求此正方形的边长.【解答】(1)∵直线33y x =-+与x 轴、y 轴分别交于点A 、B , ∴(1,0)A ,(0,3)B .又抛物线2(2)y a x k =-+经过点(1,0)A ,(0,3)B , ∴0,43;a k a k +=⎧⎨+=⎩解得1,1.a k =⎧⎨=-⎩即a ,k 的值分别为1,1-.(2)设Q 点的坐标为(2,)m ,对称轴2x =交x 轴于点F ,过点B 作BE 垂直于直线2x = 于点E .在Rt AQF ∆中,22221AQ AF QF m =+=+, 在Rt BQE ∆中,22224(3)BQ BE EQ m =+=+-. ∵AQ BQ =,∴2214(3)m m +=+-,∴2m =. ∴Q 点的坐标为(2,2).(3)当点N 在对称轴上时,NC 与AC 不垂直.所以AC 应为正方形的对角线.又对称轴2x =是AC 的中垂线,所以,M 点与顶点(2,1)P -重合,N 点为点P 关于x 轴的对称点,其坐标为(2,1).此时,1MF NF AF CF ====,且AC MN ⊥,∴ 四边形AMCN 为正方形. 在Rt AFN ∆中,222AN AF NF =+=,即正方形的边长为2.3. 【试题】(2014年广东梅州市第23题)已知抛物线y= 38x 2- 34 x -3与x 轴的交点为A 、D (A 在D 的右侧),与y轴的交点为C 。

2014挑战中考数学二次函数压轴题_(精选中考题训练)[1]

2014挑战中考数学二次函数压轴题_(精选中考题训练)[1]

2014挑战中考数学压轴题 第一部分 函数图象中点的存在性问题1. 因动点产生的等腰三角形问题例1 如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.例2 如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.2. 因动点产生的直角三角形问题例如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.3. 因动点产生的平行四边形问题如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.图1图24. 因动点产生的梯形问题例 如图,把两个全等的Rt △AOB 和Rt △COD 方别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点A (1,2),过A 、C 两点的直线分别交x 轴、y 轴于点E 、F .抛物线y =ax 2+bx +c 经过O 、A 、C 三点.(1)求该抛物线的函数解析式;(2)点P 为线段OC 上的一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 为等腰梯形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)若△AOB 沿AC 方向平移(点A 始终在线段AC 上,且不与点C 重合),△AOB 在平移的过程中与△COD 重叠部分的面积记为S .试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.5. 因动点产生的面积问题例 如图,在平面直角坐标系中,直线112y x =+与抛物线y =ax 2+bx -3交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ∠ACP 的值; (2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为9∶10?若存在,直接写出m 的值;若不存在,请说明理由.6.因动点产生的线段和差问题例 如图,在平面直角坐标系中,抛物线y =-x 2+2x +3与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)求直线AC 的解析式及B 、D 两点的坐标;(2)点P 是x 轴上的一个动点,过P 作直线l //AC 交抛物线于点Q .试探究:随着点P 的运动,在抛物线上是否存在点Q ,使以A 、P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由;(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出点M 的坐标.第二部分 图形运动中的函数关系问题1. 由比例线段产生的函数关系问题例 在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13EMP ∠=.(1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图2. 由面积公式产生的函数关系问题例 1如图,抛物线213922y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,联结BC 、AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作BC 的平行线交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,联结CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).例2 如图,在平面直角坐标系中,四边形OABC是平行四边形.直线l经过O、C两点,点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O—C—B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0),△MPQ 的面积为S.(1)点C的坐标为____________,直线l的解析式为____________;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.(3)试求题(2)中当t为何值时,S的值最大?最大值是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年中考压轴题选编
1如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.
(1)求这条抛物线的表达式;
(2)连结OM ,求∠AOM 的大小;
(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.
2,已知抛物线的方程C 1:1(2)()y x x m m
=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.
(1)若抛物线C 1过点M (2, 2),求实数m 的值;
(2)在(1)的条件下,求△BCE 的面积;
(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;
(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.
3抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点.(1)求此抛物线的解析式;
(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标. ,
4如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;
(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;
(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.
5如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.
(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.
6如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .
(1)求抛物线对应的函数表达式;
(2)经过C ,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;。

相关文档
最新文档