可控活性自由基聚合反应

合集下载

原子转移自由基聚合概述

原子转移自由基聚合概述

原子转移自由基聚合概述1.引言“活性”/可控自由基聚合不同于传统意义上的自由基聚合反应。

它克服了分子量及其分布不可控,难以合成嵌段聚合物等缺陷,做到了分子量可控,分子量分布较窄,聚合物结构可控等一系列要求。

这类聚合反应主要是有效降低了增长活性中心的浓度,抑制了双基终止的发生,延长了自由基的寿命和分子量的统一性;使用快引发的方式,保证不同分子链同时增长。

目前大致有以下几种不同的机理得到了较为深入地研究:基于引发-转移-终止剂(Initiator-chain transfer-terminator)的活性自由基聚合(Iniferter法)、基于氮氧稳定自由基的活性自由基聚合(Living nitroxide-mediated stable free radical polymerization-SFRP)、原子转移自由基聚合(Atom transfer radical polymerization-ATRP)、基于可逆加成碎裂链转移剂的活性自由基聚合(Living radical polymerization in the presence of reversible addition-fragmentation chain transfer-RAFT)和退化转移自由基聚合(degenerative transfer process-DT)等等。

在这些不同的实现“活性”/可控自由基聚合的方法当中,原子转移自由基聚合是目前最有希望实现工业化的一种方法。

2.原子转移自由基聚合概述原子转移自由基聚合是1995年由卡内基梅隆大学Matyjaszewski课题组提出的一种“活性”/可控自由基聚合新机理Wang, J-S; Matyjaszewski, K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117: 5614–5615.。

可逆加成断裂链转移可控活性自由基聚合

可逆加成断裂链转移可控活性自由基聚合
添加标题
洪春雁等用于苯乙烯的RAFT聚合制得了以树星型聚合物的形 成机理示意图
可逆加成-断裂链转 移试剂的选择
可逆加成-断裂链转 移试剂(RAFT试剂) 主要有:二硫代酯 、三硫代碳酸酯、 芳基二硫代氨基甲 酸酯、黄原酸酯和 ω-全氟二硫代酯。
RAFT聚 合的应用
目前,利用 RAFT 聚合可实现对聚合物分子 量大小和分布的控制,并实现聚合物的分子设 计,合成具有特定结构和性能的聚合物,已成 为高分子合成研究最活跃的领域之一。 RAFT技术可以在温和的条件下方便地合成 结构可控的聚合物,如嵌段、接枝、星形、 树枝状、支化及超支化聚合物等。
对上面的4种RAFT试剂,可以将左 边与碳原子相连的基团都看成Z基 团,右边的与硫原子相连的基团看 成是R基团。RAFT试剂的性质主要 决定于Z基团、R基团以及所形成的 自由基(R)的性质。根据不同的单体 ,选择RAFT试剂时,要充分了解R 基团、Z基团的性质以及单体自由 基的活性等。其活性可以用自由基 对它的链转移常数Ctr表示。
硫酯化合物链转移常数很大,若试剂选择合适且 反应条件得当,则可以得到分子量分散系数很小 (<1.2)的产物;
由于RAFT试剂存在于聚合物链的末端,从而保持 02 了聚合物的活性,即若再加入单体,可生成嵌段、
星型和其他具有特殊结构的聚合物,还可以很好 地控制聚合物链端结构,制备带有端基官能团的 遥爪聚合物,该特性可以用于进行分子设计。
可以在温和的条件下方便地合成结构可控的聚合物,如 嵌段、接枝、星形、树枝状、支化及超支化聚合物等
与NMP、Ini erter 和ATRP 等方法相 比, RA FT 聚合适用的单体范围更广, 几 乎所有能进行自由基聚合的烯类单体都 能进行RAFT 聚合, 且反应条件比较 温和,没有聚合实施方法的限制, 适宜于 本体、溶液、乳液、悬浮等聚合方法。

可控活性自由基聚合

可控活性自由基聚合

Iniferter研究进展
一、光Iniferter与热Iniferter结合 光Iniferter和热Iniferter能分别引发不同的单体进行活性自由基聚合, 并且具有各自的优点。钦曙辉等人将六取代乙烷型C—C 键和DC 基团 设计到一个分子中,合成出一种新的化合物DDDCS。
可以选择先光分解后热分解(或倒过来)的顺序进行MMA,St,异戊二 烯和乙酸乙烯酯(VAc)的聚合,制备一系列组分和链长度可控的ABA 型的三嵌段共聚物,尤其是制备PVAc-b-PSt-b-PVAc 三嵌段共聚物。
2)适用丙烯酸甲酯(MA)、乙酸乙烯酯(VAc)、丙烯腈(MAN)、甲基丙烯腈 (MAN)等单体的聚合;
3)用于聚合物的分子设计,如用单官能团、双官能团、多官能团Iniferter可 用于合成AB型、ABA型嵌段共聚物及星状聚合物
Iniferter法的优缺点
• 引发转移终止剂法对聚合过程控制的不是很好,所得聚合物的分子量与理论值 偏差较大,分子量分布较宽。 与RAFT、反向ATRP、SFRP法相比,Iniferter显著的优点是可聚合单体比较多, 能方便地制备接枝和嵌段共聚物。 对于反向ATRP,体系需要催化剂,使用传统引发剂(AIBN或BPO)会导致双 基终止严重。 RAFT法聚合产物的链端为活性基团、在反应最后阶段需进行基团转化。 SFRP法反应温度高时间长,需要加入加速剂。 Iniferter体系比较简单,实验条件温和。
引发转移终止剂
• 引发转移终止剂是指在自由基聚合过程中同时起到引发、转移和终止作用的 合物.

一般可分为热分解和光分解两种类型.
Iniferter的分类
一、热分解型(Thermoiniferter ) 热分解型Iniferter通常是对称的六取代乙烷类化合物,其中又以1, 2-二取代的四苯基乙烷衍生物居多。另外还有偶氮键的三苯甲基偶氮 苯(PAT)和S—S键的四乙基秋兰姆(TD)。

可控自由基聚合

可控自由基聚合

• 1引发一转移一终止剂(INIFERTER)法
• 20 世 纪 80年代初,Otsu等在总结自己早期工作和其它研究者报道的结 果时发现:在自由基聚合体系中加入某些化合物,例如二硫代氨基甲酸盐、二 硫化合物等,聚合表现出某些活性聚合的特征。Otsu发现在这样的聚合体系 中,加入的二硫代氨基甲酸盐同时起到了引发剂、转移剂和终止剂的作用, 1982年,Otsu提出了Iniferter的概念, "Iniferter"是由“initiator"、“transfer"、 "terminater“ 这三个词各取三个字母合并而成的,这种化合物集引发、转移、 终止的功能于一身。其反应机理如图所示
4 原子转移自由基聚合(ATRP)
• 199 5年 , Matyjaszewski, Percec, Sawamoto等 三个研究小组几乎同时报道了三个不同的“活 性”/可控自由基聚合体系。它们的引发体系的组 分类似,都由卤化物和过渡金属络合物组成,且 聚合反应的机理也相似。王锦山,Matyjsszewski 把这类聚合反应命名为原子转移自由基聚合 (Atom Transfer Radical Polymerization,ATRP), ATRP是以简单的有机卤化物为引发剂,卤化亚 铜与联二吡啶的络合物为卤原子的载体,通过氧 化一还原反应,实现了活性种与休眠种中间的可 逆动态平衡,从而达到控制聚合反应的目的。
The structure of RAFT reagents
1.2.2 RAFT活性自由基聚合的特点 RA F T 活性自由基聚合和其它活性自由基聚合的区别在于: (1)RAFT适用 的单体范围较宽。用于RAFT聚合的单体可以带有羧基、羟基、二烷胺基等特 殊官能团,所以RAFT不仅适用于苯乙烯、(甲基)丙烯酸酯类、丙烯腈等常用单 体,还适用于丙烯酸、苯乙烯磺酸钠、甲基丙烯酸羟乙酯、甲基丙烯酸胺基乙 酯等质子性或酸碱性功能单体;(2)聚合所要求的聚合条件温和(60-70℃即可反应) 且反应过程无需保护和解保护;(3)可采用多种聚合方法实施,可用本体、溶液、 乳液、悬浮等方法来实现,可用间歇加料、半连续加料及连续加料法来进行。 (4)可以合成嵌段共聚物及特殊结构的高分子。 存在的问题 R A FT 聚 合所需的链转移剂双硫酷类化合物的制备过程需要多步有机合成, 聚合体系中也存在双基终止现象:双基终止生成的无活性死聚物,使产物的分子 量分散系数增大,而要减少双基终止,体系中的自由基浓度应远远低于RAFT试 剂的浓度,这在本体和溶液聚合中聚合速率会较低;RAFT聚合存在控制程度与分 子量的矛盾,单体浓度一定,要得到高分子量的产物,就必须减少链转移剂的用 量,链转移剂用量的减少会使聚合的可控性减弱。另外,RAFT活性自由基聚合 在新的反应介质中的聚合规律等还需要深入的研究。

自由基活性聚合

自由基活性聚合

制备方法: 1.用竞聚率差别较大的两种单体一次加料直接共聚; 2.将一种单体连续加料
例:以2-溴异丁酸乙酯为引发剂,溴化亚铜/联二吡啶/铜为催 化剂,通过原子转移自由基聚合以及连续补加第二单体的方法 制备苯乙烯(St)-甲基丙烯酸甲酯 (MMA)的梯度共聚物。
制备聚合物刷:
聚合物刷是指通过物理吸附或者化学键的方式附着在特定 表面并呈现一定形貌的一层聚合物。聚合物刷的物理化学性质 及构象决定了其润湿特性、腐蚀特性、胶体稳定性、表面智能 及生物传感特性。
不足: 1.过渡金属催化剂的去除有一定困难; 2.需要使用较大量的催化剂来加速反应,却不能提高分子量; 3.对反应体系的pH值较敏感。
ATRP的应用:
大分子设计的有效工具
制备分布较窄的均聚物 制备无规、渐变、交替共聚物 制备具有特殊链端的聚合物 制备梯形、嵌段共聚物、星形聚合物 制备聚合物刷
制备梯形共聚物:
实现可控活性自由基聚合的方法:
1)引发转移终止剂法(Initiator-transfer Agent Terminator, Iniferter); 2)稳定自由基调控聚合法(Stable Free Radical Polymerization,SFRP),稳定自由基主 要是氮氧自由基; 3)可逆加成-裂解链转移聚合(Reversible Addition Fragment Chain Transfer, RAFT); 4)原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)。
Rp kp M M
链终止速率方程:
Rt 2kt M 2
链终止反应 对自由基浓度的依赖程度更大
假若能使自由基浓度降低到某一程度,既可以维持可观的链增长速率, 又可以使链终止速率减少到相对于链增长可以忽略不计,这样便消除了自 由基可控聚合的主要症结。

可控活性聚合

可控活性聚合

那么问题来了。
究竟要采取什么策略才能使自由基再聚合过程中保持如 此低的浓度,从而使自由基聚合由不可控变为可控?
策略
通过可逆的链转移或链终止,使活性种(具有链 增长活性)和休眠种(暂时无链增长活性)进行快 速可逆转换:
• 以上活性种与休眠种的快速动态平衡的建立,使体系
中自由基的浓度控制得很低,便可控制双基终止,实
概述
在聚合体系中引入一种特殊的化合物,它与活性种链自由基
进行可逆的链终止或链转移反应,使其失活变成无增长活性的休 眠种,而此休眠种在实验条件下又可分裂成链自由基活性,这样 便建立了活性种与休眠种的快速动态平衡。这种快速动态的平衡 反应不但使体系中的自由基浓度控制得很低而且抑制双基终止, 而且还可以控制聚合产物的分子量和分子量分布,实现活性/可 控自由基聚合。
现活性可控。
主要的可控/活性聚合方法
(NMRP)
(ATRP) (RAFT)
引发转移终止剂法(iniferter)
• 引发转移终止剂:在聚合过程中同时起到引发、转移、
终止作用的一类化合物。根据目前已发现的可分为光
活化型和链活化型两种。
光引发转移终止剂
一般含有S-S键或者C-S弱键,主要指含有二硫
双基终止的解决办法
假若能使自由基浓度降低到某一程度,即可维持可观 的链增长速率,又可使链终止速率减少到相对于链增长 速率而言可以忽略不计,这样便消除了自由基可控聚合 的主要症结双基终止。 根据动力学参数估算: 当[P· ]≈10-8mol/L时,此时 Rt/Rp≈10-3~-4,即Rt相对 于Rp实际上可以忽略不计。
. NHCCH2 , CH3CH2OCCH2 . O O CH2OCCH2 .
. CH3CH2CH2CH2OCCH2 ,

活性可控自由基聚合反应

活性可控自由基聚合反应

3.大分子单体的合成 大分子单体是末端含可聚合基团的线形聚合物。 在活性聚合中,加入不同的终止剂,可以获得端基带预 期官能团的聚合物。
CO2 H2C O CH2 H2C S CH2 CoCl2 ClCH2CH CH2
COOH
OH
SH
COCl
CH2CH
CH
CH2Li CH2Li
+ Cl + Cl
CH2CH CH2 OCH CH2
(4)ABC杂臂星形聚合物
氯硅烷法
苯乙烯-异戊二烯-丁二烯杂臂星形聚合物(PS-PI-PB) 的 合成
锂硅烷法
苯乙烯_二甲基硅氧烷_特丁基丙烯酸甲酯杂臂星形聚合物 (PS-PDMS-PtBuMA)的合成
(5)超支化聚合物 超支化聚合物概念: ABx(X≥2) 型的单体的缩聚反应 生成可溶性的高度支化的聚合
Kim,Y. Hபைடு நூலகம்; Webster, O. W. J. Am. Chem. Soc. 1990, 112, 4592
超支化聚合物的应用
酶的载体
利用酶的-NH2与超支化聚酰胺 的端基反应来实现酶的固定化。 用于合成超支化聚酰胺的单体 优点:效率高,结合强, 得到的固定酶很稳定
Cosulich, M. E.; Russo, S.; Pasquale, S.; Mariani, A. Polymer 2000, 41, 4951.
典型的活性聚合具备以下特点: (1)分子量大小可通过反应物的化学计量控制 ; (2)活性聚合体系中产物的平均聚合度可表示为 :
M 0 x Pn I 0
其中[M]0,[I]0分别为单体和引发剂的初始浓度, χ为单体转化率。上式表明产物数均分子量Mn与单 体转化率呈线性增长关系。 (3)数均分子量决定于单体和引发剂的浓度比 ; 因此 聚合产物的相对分子质量可控、相对分子质量分布很窄,并且可 利用活性端基制备含有特殊官能团的高分子材料。还可用来合成 复杂结构的聚合物。

乳液体系中的RAFT可控_活性自由基聚合研究进展

乳液体系中的RAFT可控_活性自由基聚合研究进展

基金项目:国家自然科学基金资助项目(20276044),江苏省高校自然科学研究指导性计划项目(03KJD150188);作者简介:周晓东,男,硕士研究生,研究方向为乳液体系的活性聚合。

*联系人.Email:phni@.乳液体系中的RAFT 可控 活性自由基聚合研究进展周晓东,倪沛红*(苏州大学化学化工学院,江苏省有机合成重点实验室,苏州 215123)摘要:可逆加成 断裂链转移聚合(RAFT )是新近发展起来的可控 活性自由基聚合方法。

由于该方法具有适用单体范围广、反应条件温和、可采用多种聚合实施方法等优点,已成为一种有效的分子设计手段。

本文总结了近几年文献报道的在乳液和细乳液体系中实施RAFT 聚合反应的研究进展,对非均相体系的稳定性、聚合反应过程中的动力学特点、以及聚合产物的分子量及其分布等方面的研究进行了综述。

关键词:乳液聚合;细乳液聚合;可逆加成-断裂链转移(RAFT);活性聚合引言传统的自由基聚合由于慢引发、快增长、速终止的特点,难以获得分子量可控及分子量分布可控的聚合物,也不能合成嵌段共聚物和精致结构的聚合物。

而各种活性自由基聚合方法却能克服上述不足。

近年来,先后出现了多种活性自由基聚合体系,例如:TE MPO 稳定自由基存在下的可控自由基聚合[1]、原子转移自由基聚合(ATRP)[2]和可逆加成-断裂链转移聚合(RAFT)[3~5]。

RAFT 可控 活性自由基聚合方法是在传统的自由基聚合体系中加入二硫代酯类化合物作为链转移剂,通过可逆加成-断裂链转移聚合机理得到 活性 聚合物链,RAFT 聚合的一般机理如图1所示。

[4]图1 RAFT 聚合反应机理[4]Figure 1 Mechanism of the RAFT polymerization process [4]RAFT 聚合适用的单体范围广,带有羧基、羟基、叔胺基等官能团的单体都可以通过这种方法实现聚合。

聚合过程中,二硫代酯基S=C(Z)S 在活性链和休眠种之间转移,使得聚合物链保持活性,由此可以合成各种结构精致、且具有可控分子量和窄分子量分布的嵌段[6~9]、星型[10~13]、接枝[14]等特殊结构的聚合物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近半个世纪以来,活性聚合已成为高分子化学领域最具 学术意义和应用价值的研究方向之一。采用活性聚合反 应可以达到一般聚合反应无法达到的3个不同的目的 ① 严格控制单体与引发剂的浓度比,即可合成具有确定 相对分子质量的聚合物,即所谓计量聚合
② 按照特定的顺序加入不同的单体,即可合成具有指定 大分子链段结构的嵌段共聚物 ③ 活性聚合物与特定的低分子化合物反应制得遥爪聚合 物,进而合成加聚-缩聚嵌段共聚物以及具有各种复杂结 构的星型、环状聚合物
CH3 CH3 C CN
CH3 CH3 C + N CN
CH3 N=N C CH3 CN 2 CH3
CH3 C + N2 CN
.
.
O
.
CH3 CH3 C CN O N
+ n St
பைடு நூலகம்
+ n St
CH3 CH3 C CN
[ CH2
CH
]n-1 CH2
.
.
CH
+
N O
CH3 CH3 C CN
[ CH2
CH
而休眠种又可在可控条件下尽可能稳定而低速地离解成为
活性自由基,体系中的活性自由基浓度就可控制在尽可能 低的水平。 这有些类似于水库在暴雨洪水季节蓄水同时缓慢而匀速地 向下游泄水。
按照控制活性自由基浓度所采用方法的不同,或者说体 系中存在休眠种的不同,大体可分为可逆终止、可逆加 成-断链-转移以及原子转移等3种历程 3.14.2 可逆终止自由基聚合 目前主要包括硫代氨基甲酸苄酯、三苯甲基偶氮苯和烷 氧基胺等3大类引发剂体系
① 硫代氨基甲酸苄酯类
日本著名高分子学者大江隆行于1982年首次报道,在光照 下,以硫代氨基甲酸苄酯作为引发剂引发某些取代乙烯类 单体进行自由基聚合反应,可实现聚合反应在一定程度的 可控,所得聚合物的相对分子质量分布也较窄
S CH2 S C N
Et BDC Et
S Et Et N C S CH2 CH2 S
3.14.1 可控/活性自由基聚合反应原理
可控/活性自由基聚合的基本思路,就是设法通过降低聚 合反应体系内活性自由基的浓度或活性,有效抑制双基终 止反应和链转移反应,使之降到可忽略的程度,从而使链 增长反应处于绝对主导地位。 vt / vp = kt / kp × [R.] / [M] = 1/υ 由此可见kt / kp比值大小很大程度上决定于体系中自由基 的瞬时浓度,即 kt / kp ≈ 10 000 [R.]。
3. 14 可控/活性自由基聚合反应
本节内容仅供学习时参考,不一定作课堂教学内容
自由基聚合反应是目前最普遍、实施最方便、工业化程 度最高的连锁聚合反应,其产量超过合成聚合物总产量 的70%。 客观而论自由基聚合物却存在不足或缺陷,如相对分子 质量分布较宽、分子结构难控制、支化和交联难避免
这些缺陷的根本原因,则是自由基聚合反应所具有的慢 引发、快增长、速终止和易转移的反应历程。
Et Et
+ S
S CH2
Et N Et
[ CH2
CH X
] n-1CH2
C
② 三苯甲基偶氮苯类
N=N
C
. + .C
n CH2 = CH - X
+ N2
[
CH2
CH]n-2 CH2 X
.CH + .C
X
[
CH2
CH]n-2 CH2 X
.CH + .C
X
[CH2
CH]n-2 CH2 X
CH X
C
③ 烷氧基胺体系
可逆终止,从而达到降低自由基浓度和控制聚合反
应的目的
S CH2 S C N
Et Et

.
[ CH2
CH2
+
.
S C N
Et Et
S
n CH2
CH - X
CH2
CH X
] n-1CH2
. .
CH X
S C N
Et Et
+ S
CH2
[ CH2
CH X
] n-1CH2
. .
CH X
CH X S
S C N
]n-1 CH2
CH
O
N
自由基聚合反应的过程中如何始终保持低自由基浓度,以 及采用何种手段控制产物的聚合度呢? 人们确定实现可控自由基聚合的基本途径必须是:在自由 基聚合反应体系中引入一种能够与链自由基之间存在偶合 - 离解可逆反应的所谓“活性休眠种”的化合物,借以抑 制链自由基浓度终。
对活性休眠种的基本要求 高浓度活性自由基能与该化合物迅速反应转变为休眠种,
S C N
Et Et XDC
S Et Et Et Et N N C S C S CH2 CH2 S S CH2 CH2 S
S C S C N N
Et Et Et Et DDC
在光照下硫代氨基甲酸苄酯分子内较弱的C-S键能 发生共价键的均裂,生成活泼碳自由基和稳定的硫 自由基,前者能与乙烯类单体加成反应而开始链增 长,后者不能引发单体而只能与活性链自由基进行
相关文档
最新文档