可控活性自由基聚合

合集下载

活性可控自由基聚合

活性可控自由基聚合

活性可控⾃由基聚合活性/可控⾃由基聚合在20世纪50、60年代,⾃由基聚合达到了它的⿍盛时期。

但由于存在链转移和链终⽌反应,传统⾃由基聚合不能较好地控制分⼦量及⼤分⼦结构[1]。

1956年美国科学家Szwarc等提出了活性聚合的概念[2],活性聚合具有⽆终⽌、⽆转移、引发速率远远⼤于链增长速率等特点,与传统⾃由基聚合相⽐能更好地实现对分⼦结构的控制,是实现分⼦设计、合成具有特定结构和性能聚合物的重要⼿段。

但离⼦型活性聚合反应条件⽐较苛刻、适⽤单体较少,且只能在⾮⽔介质中进⾏,导致⼯业化成本居⾼不下,较难⼴泛实现⼯业化。

鉴于活性聚合和⾃由基聚合各⾃的优缺点,⾼分⼦合成化学家们联想到将⼆者结合,即可控活性⾃由基聚合(CRP)或活性可控⾃由基聚合。

CRP可以合成具有新型拓扑结构的聚合物、不同成分的聚合物以及在⾼分⼦或各种化合物的不同部分链接官能团,适⽤单体较多,产物的应⽤较⼴,⼯业化成本较低。

⽬前实现“活性”/可控⾃由基聚合可分以下⼏种途径: (1) 稳定“活性”⾃由基聚合(SFRP);(2) 原⼦转移⾃由基聚合(ATRP);(3)可逆加成-断裂链转移聚合(RAFT)。

⼀、稳定“活性”⾃由基聚合(SFRP)SFRP属于⾮催化性体系,是利⽤稳定⾃由基来控制⾃由基聚合。

其机理是按照下⾯的可逆反应进⾏:外加的稳定⾃由基X·可与活性⾃由基P·迅速进⾏失活反应,⽣成“休眠种”P-X,P-X能可逆分解,⼜形成X·及活性种⾃由基P·⽽链增长。

有研究表明,使⽤烷氧胺作引发剂效果好[3]。

反应体系中的⾃由基活性种P·可抑制在较低的浓度,这样就可以减少⾃由基活性种之间的不可逆终⽌作⽤,从⽽聚合反应得到控制。

稳定⾃由基X·,主要有TEMPO(2,2,6,6-四甲基-1-哌啶氮氧⾃由基)和CoⅡ·,TEMPO属于稳定的有机⾃由基;CoⅡ·属于稳定的有机⾦属⾃由基。

可控活性自由基聚合反应

可控活性自由基聚合反应

近半个世纪以来,活性聚合已成为高分子化学领域最具 学术意义和应用价值的研究方向之一。采用活性聚合反 应可以达到一般聚合反应无法达到的3个不同的目的 ① 严格控制单体与引发剂的浓度比,即可合成具有确定 相对分子质量的聚合物,即所谓计量聚合
② 按照特定的顺序加入不同的单体,即可合成具有指定 大分子链段结构的嵌段共聚物 ③ 活性聚合物与特定的低分子化合物反应制得遥爪聚合 物,进而合成加聚-缩聚嵌段共聚物以及具有各种复杂结 构的星型、环状聚合物
CH3 CH3 C CN
CH3 CH3 C + N CN
CH3 N=N C CH3 CN 2 CH3
CH3 C + N2 CN
.
.
O
.
CH3 CH3 C CN O N
+ n St
பைடு நூலகம்
+ n St
CH3 CH3 C CN
[ CH2
CH
]n-1 CH2
.
.
CH
+
N O
CH3 CH3 C CN
[ CH2
CH
而休眠种又可在可控条件下尽可能稳定而低速地离解成为
活性自由基,体系中的活性自由基浓度就可控制在尽可能 低的水平。 这有些类似于水库在暴雨洪水季节蓄水同时缓慢而匀速地 向下游泄水。
按照控制活性自由基浓度所采用方法的不同,或者说体 系中存在休眠种的不同,大体可分为可逆终止、可逆加 成-断链-转移以及原子转移等3种历程 3.14.2 可逆终止自由基聚合 目前主要包括硫代氨基甲酸苄酯、三苯甲基偶氮苯和烷 氧基胺等3大类引发剂体系
① 硫代氨基甲酸苄酯类
日本著名高分子学者大江隆行于1982年首次报道,在光照 下,以硫代氨基甲酸苄酯作为引发剂引发某些取代乙烯类 单体进行自由基聚合反应,可实现聚合反应在一定程度的 可控,所得聚合物的相对分子质量分布也较窄

可控自由基聚合

可控自由基聚合

3 可逆加成一断裂链转移自由基聚合(RAFT)
1998年 37届国际高分子学术讨论会上澳大利亚的Rizzardo报道了一种新的活性 自由基聚合方法,即通过可逆的加成一断裂链转移的方法(Reversible Addition Fragment Chain Transfer, RAFT),在传统的自由基聚合体系中加入高链转移常数和 特定结构的链转移剂以实现活性自由基聚合。在经典自由基聚合中,不可逆链转移 副反应是导致聚合不可控的主要因素之一,但当链转移剂的链转移常数和浓度足够 大,链转移反应由不可逆变为可逆,聚合反应也由不可控变为可控。比较稳定自由 基调控的“活性”/可控自由基聚合和RAFT两者的出发点可以发现,前者利用了可逆 链终止来实现活性过程,而后者则利用了可逆链转移反应。其聚合机理如下图所示。 其中Pn· 和PM.分别是链长为n和m的活性自由基链,这些增长自由基与RAFT试 剂中的碳硫双键发生加成反应形成不稳定的自由基中间体,此自由基中间体可 以分解产生起反应物或者分解形成暂时失活的休眠种,同时产生自由基R",它 可以继续引发聚合:末端含有二硫代拨基结构(-S(S)-C-Z)的休眠种聚合物是认为 具有相同活性的链转移剂,又可以作为大分子RAFT试剂与增长自由基反应而 得到活化;聚合物链段Pn"或Pm.既可以结合到链转移剂上形成休眠种,又可以 从链转移剂分子上断裂形成活性自由基链并继续引发聚合反应,故称该活性聚 合反应为“可逆加成一断裂链转移活性自由基聚合(RAFT聚合)”。由于这些过 程都是可逆的过程,从而可以控制聚合体系中增长自由基的浓度。
钌(II)化合物催化的原子转移自由基聚合 Sawamoto 等用RuC12(PPh3): 为催化剂, 有机铝化物MeAI(ODBP)2 [methylaluminum bis-(2,6-di-tert-butylphenoxide)]为助催化剂,四氯化碳 为引发剂引发甲基丙烯酸甲酯聚合,实现了活性/可控自由基聚合。其反应机理可 表示如下:

可控自由基聚合

可控自由基聚合

• 1引发一转移一终止剂(INIFERTER)法
• 20 世 纪 80年代初,Otsu等在总结自己早期工作和其它研究者报道的结 果时发现:在自由基聚合体系中加入某些化合物,例如二硫代氨基甲酸盐、二 硫化合物等,聚合表现出某些活性聚合的特征。Otsu发现在这样的聚合体系 中,加入的二硫代氨基甲酸盐同时起到了引发剂、转移剂和终止剂的作用, 1982年,Otsu提出了Iniferter的概念, "Iniferter"是由“initiator"、“transfer"、 "terminater“ 这三个词各取三个字母合并而成的,这种化合物集引发、转移、 终止的功能于一身。其反应机理如图所示
4 原子转移自由基聚合(ATRP)
• 199 5年 , Matyjaszewski, Percec, Sawamoto等 三个研究小组几乎同时报道了三个不同的“活 性”/可控自由基聚合体系。它们的引发体系的组 分类似,都由卤化物和过渡金属络合物组成,且 聚合反应的机理也相似。王锦山,Matyjsszewski 把这类聚合反应命名为原子转移自由基聚合 (Atom Transfer Radical Polymerization,ATRP), ATRP是以简单的有机卤化物为引发剂,卤化亚 铜与联二吡啶的络合物为卤原子的载体,通过氧 化一还原反应,实现了活性种与休眠种中间的可 逆动态平衡,从而达到控制聚合反应的目的。
The structure of RAFT reagents
1.2.2 RAFT活性自由基聚合的特点 RA F T 活性自由基聚合和其它活性自由基聚合的区别在于: (1)RAFT适用 的单体范围较宽。用于RAFT聚合的单体可以带有羧基、羟基、二烷胺基等特 殊官能团,所以RAFT不仅适用于苯乙烯、(甲基)丙烯酸酯类、丙烯腈等常用单 体,还适用于丙烯酸、苯乙烯磺酸钠、甲基丙烯酸羟乙酯、甲基丙烯酸胺基乙 酯等质子性或酸碱性功能单体;(2)聚合所要求的聚合条件温和(60-70℃即可反应) 且反应过程无需保护和解保护;(3)可采用多种聚合方法实施,可用本体、溶液、 乳液、悬浮等方法来实现,可用间歇加料、半连续加料及连续加料法来进行。 (4)可以合成嵌段共聚物及特殊结构的高分子。 存在的问题 R A FT 聚 合所需的链转移剂双硫酷类化合物的制备过程需要多步有机合成, 聚合体系中也存在双基终止现象:双基终止生成的无活性死聚物,使产物的分子 量分散系数增大,而要减少双基终止,体系中的自由基浓度应远远低于RAFT试 剂的浓度,这在本体和溶液聚合中聚合速率会较低;RAFT聚合存在控制程度与分 子量的矛盾,单体浓度一定,要得到高分子量的产物,就必须减少链转移剂的用 量,链转移剂用量的减少会使聚合的可控性减弱。另外,RAFT活性自由基聚合 在新的反应介质中的聚合规律等还需要深入的研究。

可控活性自由基聚合

可控活性自由基聚合
3
3、原子转移自由基聚合(ATRP)
R-X + Cu(I) R . + XCu(II) M RM . Pn-X+ Cu(I) Pn . + XCu(II)
优点:适用单体多。聚合条件温和,分子设计能力强。 有待改进:提高聚合速率、降低聚合温度、进行溶液 或水溶液聚合、过渡金属的脱除等。
4、可逆加成-断裂转移法(RAFT)
三、活性聚合的特征 1、活性中心不消失,一直进行到单体消耗完全 2、当加入单体时,可进一步聚合,形成嵌段共聚物 3、聚合物的数均分子量与转化率呈线性 4、聚合物的分子数由引发剂数目确定,不依赖转化率 当引发过程很快时,所有增长链在瞬间形成,并具有相同长 时间增长寿命,从而使聚合产物具有很窄的分子量分布。 迄今为止,适合活性阴离子聚合的单体 1非极性单体:苯乙烯、甲基苯乙烯、共轭二烯等 2极性单体:甲基丙烯酸酯、2-丁酸酯等含有强吸电子基团 环状单体:环氧烷、环氧硅烷、内酯等
3 2
BPO
R.
+பைடு நூலகம்M
Pn .
+RCNO .
Pn-ONR
H2C
NO .
H2C C(CH3)2
该方法的缺点是适用单体少、聚合温度高、聚合速率低
2、引发转移终止剂法(Iniferter),
C6H5-N=N-C(C6H5)3 C6H5 . + . C(C6H5)3 +N2
优点:可用单体多,缺点:分子量分布不够理想
1
可控/“活性”自由基聚合 概述: 自由基聚合的链增长对自由基浓度呈一级反应, 而链终止则呈二级反应。如能降低自由基的浓度 或活性,就可以减弱双基终止,有望成为可控/“活 性”聚合。 一般措施是令活性自由基与某化合物反应,经链 终止或链转移,使之转化成低活性的共价休种, 但此休眠种仍能分解成增长自由基、构成可逆平 衡,并要求平衡倾向于休眠种一侧,以降低自由 基的浓度和链终止速率,这就成为可控/“活性”自 由基聚合的关键

可控活性聚合

可控活性聚合

那么问题来了。
究竟要采取什么策略才能使自由基再聚合过程中保持如 此低的浓度,从而使自由基聚合由不可控变为可控?
策略
通过可逆的链转移或链终止,使活性种(具有链 增长活性)和休眠种(暂时无链增长活性)进行快 速可逆转换:
• 以上活性种与休眠种的快速动态平衡的建立,使体系
中自由基的浓度控制得很低,便可控制双基终止,实
概述
在聚合体系中引入一种特殊的化合物,它与活性种链自由基
进行可逆的链终止或链转移反应,使其失活变成无增长活性的休 眠种,而此休眠种在实验条件下又可分裂成链自由基活性,这样 便建立了活性种与休眠种的快速动态平衡。这种快速动态的平衡 反应不但使体系中的自由基浓度控制得很低而且抑制双基终止, 而且还可以控制聚合产物的分子量和分子量分布,实现活性/可 控自由基聚合。
现活性可控。
主要的可控/活性聚合方法
(NMRP)
(ATRP) (RAFT)
引发转移终止剂法(iniferter)
• 引发转移终止剂:在聚合过程中同时起到引发、转移、
终止作用的一类化合物。根据目前已发现的可分为光
活化型和链活化型两种。
光引发转移终止剂
一般含有S-S键或者C-S弱键,主要指含有二硫
双基终止的解决办法
假若能使自由基浓度降低到某一程度,即可维持可观 的链增长速率,又可使链终止速率减少到相对于链增长 速率而言可以忽略不计,这样便消除了自由基可控聚合 的主要症结双基终止。 根据动力学参数估算: 当[P· ]≈10-8mol/L时,此时 Rt/Rp≈10-3~-4,即Rt相对 于Rp实际上可以忽略不计。
. NHCCH2 , CH3CH2OCCH2 . O O CH2OCCH2 .
. CH3CH2CH2CH2OCCH2 ,

乳液体系中的RAFT可控_活性自由基聚合研究进展

乳液体系中的RAFT可控_活性自由基聚合研究进展

基金项目:国家自然科学基金资助项目(20276044),江苏省高校自然科学研究指导性计划项目(03KJD150188);作者简介:周晓东,男,硕士研究生,研究方向为乳液体系的活性聚合。

*联系人.Email:phni@.乳液体系中的RAFT 可控 活性自由基聚合研究进展周晓东,倪沛红*(苏州大学化学化工学院,江苏省有机合成重点实验室,苏州 215123)摘要:可逆加成 断裂链转移聚合(RAFT )是新近发展起来的可控 活性自由基聚合方法。

由于该方法具有适用单体范围广、反应条件温和、可采用多种聚合实施方法等优点,已成为一种有效的分子设计手段。

本文总结了近几年文献报道的在乳液和细乳液体系中实施RAFT 聚合反应的研究进展,对非均相体系的稳定性、聚合反应过程中的动力学特点、以及聚合产物的分子量及其分布等方面的研究进行了综述。

关键词:乳液聚合;细乳液聚合;可逆加成-断裂链转移(RAFT);活性聚合引言传统的自由基聚合由于慢引发、快增长、速终止的特点,难以获得分子量可控及分子量分布可控的聚合物,也不能合成嵌段共聚物和精致结构的聚合物。

而各种活性自由基聚合方法却能克服上述不足。

近年来,先后出现了多种活性自由基聚合体系,例如:TE MPO 稳定自由基存在下的可控自由基聚合[1]、原子转移自由基聚合(ATRP)[2]和可逆加成-断裂链转移聚合(RAFT)[3~5]。

RAFT 可控 活性自由基聚合方法是在传统的自由基聚合体系中加入二硫代酯类化合物作为链转移剂,通过可逆加成-断裂链转移聚合机理得到 活性 聚合物链,RAFT 聚合的一般机理如图1所示。

[4]图1 RAFT 聚合反应机理[4]Figure 1 Mechanism of the RAFT polymerization process [4]RAFT 聚合适用的单体范围广,带有羧基、羟基、叔胺基等官能团的单体都可以通过这种方法实现聚合。

聚合过程中,二硫代酯基S=C(Z)S 在活性链和休眠种之间转移,使得聚合物链保持活性,由此可以合成各种结构精致、且具有可控分子量和窄分子量分布的嵌段[6~9]、星型[10~13]、接枝[14]等特殊结构的聚合物。

活性可控自由基聚合在天然高分子改性领域的应用研究

活性可控自由基聚合在天然高分子改性领域的应用研究

活性可控自由基聚合在天然高分子改性领域的应用研究
《活性可控自由基聚合在天然高分子改性领域的应用研究》
自由基聚合技术是近二十多年来新型多重共聚反应的发展的重要研究方向,针对聚合物的物理性能、结构设计和应用已广泛应用于各种行业,并取得了非常可观的成果。

随着科研技术的不断进步,自由基聚合技术更多地应用于天然高分子改性领域,从而获得许多新的发展成果。

活性可控自由基聚合技术使优质的天然高分子能够得以重新定义和优化。

通过使用正确的技术和条件,研究人员可以改变高分子的结构,使其具有良好的性能以满足实际应用的要求。

此外,通过活性可控自由基聚合技术的应用,可以改变溶液性能,增加分子量,提高精度,增加掩模材料的强度和耐热性等。

现有研究表明,活性可控自由基聚合技术在修饰天然高分子结构方面具有许多优势,如冷冻改性、冷凝改性和脱盐改性等,可以有效增强树脂阻燃性能,降低可燃性。

除此之外,活性可控自由基聚合在改变透明度、减少粘度以及改善耐湿性等方面也取得了显著成就。

活性可控自由基聚合技术在天然高分子改性领域的应用,尤其是在生物相关材料方面显得尤为重要和有效。

通过对天然高分子进行活性可控自由基聚合,可以改变材料的属性,从而满足生物相关活性物质的合成要求。

例如,通过调控自由基聚合的活性度,可以构建活性的蛋白质表面特性,改变细胞的表型特征,促进疾病治疗的进展。

可以看出,活性可控自由基聚合技术对于修饰天然高分子结构的开发和应用具有重要的意义,可以极大提升高分子材料的性能,从而满足日益增长的新型材料应用领域的需求,有效提高其功能性。

因此,进一步研究开发这种新型技术,为更好地运用之前,是值得肯定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Iniferter研究进展
一、光Iniferter与热Iniferter结合 光Iniferter和热Iniferter能分别引发不同的单体进行活性自由基聚合, 并且具有各自的优点。钦曙辉等人将六取代乙烷型C—C 键和DC 基团 设计到一个分子中,合成出一种新的化合物DDDCS。
可以选择先光分解后热分解(或倒过来)的顺序进行MMA,St,异戊二 烯和乙酸乙烯酯(VAc)的聚合,制备一系列组分和链长度可控的ABA 型的三嵌段共聚物,尤其是制备PVAc-b-PSt-b-PVAc 三嵌段共聚物。
2)适用丙烯酸甲酯(MA)、乙酸乙烯酯(VAc)、丙烯腈(MAN)、甲基丙烯腈 (MAN)等单体的聚合;
3)用于聚合物的分子设计,如用单官能团、双官能团、多官能团Iniferter可 用于合成AB型、ABA型嵌段共聚物及星状聚合物
Iniferter法的优缺点
• 引发转移终止剂法对聚合过程控制的不是很好,所得聚合物的分子量与理论值 偏差较大,分子量分布较宽。 与RAFT、反向ATRP、SFRP法相比,Iniferter显著的优点是可聚合单体比较多, 能方便地制备接枝和嵌段共聚物。 对于反向ATRP,体系需要催化剂,使用传统引发剂(AIBN或BPO)会导致双 基终止严重。 RAFT法聚合产物的链端为活性基团、在反应最后阶段需进行基团转化。 SFRP法反应温度高时间长,需要加入加速剂。 Iniferter体系比较简单,实验条件温和。
引发转移终止剂
• 引发转移终止剂是指在自由基聚合过程中同时起到引发、转移和终止作用的 合物.

一般可分为热分解和光分解两种类型.
Iniferter的分类
一、热分解型(Thermoiniferter ) 热分解型Iniferter通常是对称的六取代乙烷类化合物,其中又以1, 2-二取代的四苯基乙烷衍生物居多。另外还有偶氮键的三苯甲基偶氮 苯(PAT)和S—S键的四乙基秋兰姆(TD)。
• 研究发现,这些对称的碳-碳键thermoiniferter引发极性单体MMA的 聚合为活性聚合,所得的PMMA 可以作为大分子引发剂引发第二单体 苯乙烯聚合,制备PMMA-b-PSt嵌段共聚物。 • 然而对于引发非极性单体St的聚合来说,它们的作用与传统自由基聚 合引发剂类似,没有活性聚合的特征。

• • • •
参考文献:钦曙辉,丘坤元. 新型引发转移终止剂引发烯类单体活性自由 基聚合及共聚合,高分子学报,2002, 4(2):127-136
Thank you!
采用PSt-CCDCM(以DDDCS 热引发St 聚合产物)还可以引发甲基丙烯酸叔 丁酯(t-BMA)聚合,制备PtBMA-b-PSt-b-PtBMA 嵌段共聚物。此嵌段共聚 物经水解去掉酯基,可得到两端为聚甲基丙烯酸链段的两亲性嵌段共聚物。Βιβλιοθήκη Iniferter法应用小结
1)用于苯乙烯(St)和甲基丙烯酸甲酯(MMA)的控制聚合;
2+ nSt
+
2
异构化
二、光分解型(Photoiniferter) 光分解型Iniferter主要是指含有二乙基二硫代氨 基甲酰氧基(DC)基团的化合物,相对来讲种 类比较多。 2-N,N-二乙基二硫代氨基甲酰氧基乙酰对甲苯胺(TDCA)
2-N,N-二乙基二硫代氨基甲酰氧基乙酸乙酯和丁酯(EDCA和BDCA)等
下图为常用光引发转移终止剂的结构式。
单官能团
双官能团
多官能团
反应机理
引发St所得聚合物数均分子量 随转化率线性增加,并且得到 的PSt 含有DC端基,可以进一 步发生扩链反应和嵌段共聚合 反应。说明聚合具有活性自由 基聚合的特征,但分子量分布 较宽。
这些光引发转移终止剂多用来引发乙烯类单体活性聚合来制备端基 功能化聚合物及嵌段、接枝共聚物。 光引发转移终止剂的一个显著的优点是可聚合单体多,尤其是能实 现乙酸乙烯酯和异戊二烯等单体的活性聚合。
1982 年由日本大阪市立大学Otsu教授 首先提出引发转移终止剂法Iniferter (Initiator-transfer agent-terminator)
大津隆行 Takayuki Ostu
•用一些特殊的引发剂引发单体聚合时,偶合 终止与歧化终止都可忽略,此时,只发生向 引发剂的转移,生成的聚合物两端一定带有 引发剂残基,增长是由单体插入R—R的共价 键之间实现
α-端
ω-端
α-端
ω-端
北京大学钦曙辉等人研究了两种C—C键型高活性热引发转移终止剂 2,3-二氰基-2,3-二苯基丁二酸二乙酯(DCDPS)和 2,3-二氰基-2,3-二(对-甲苯基)丁二酸二乙酯(DCDTS)引发 MMA与St本体聚合。
它们的活性较高,以DCDPS 为例,在50℃就可以实现 MMA 的活性聚合,得到高分 子量、窄分子量分布的PMMA。 此外,采用DCDPS首次在小 分子Iniferter领域实现了非极 性单体St的活性自由基聚合。 DCDPS
引发转移终止剂法(Iniferter) 活性自由基聚合
胡博文
能实现可控/“活性”自由基聚合的方法主要有:
1)引发转移终止剂法(Initiator-transfer Agent Terminator, Iniferter); 2)稳定自由基调控聚合法(Stable Free Radical Polymerization,SFRP), 稳定自由基主要是氮氧自由基; 3)可逆加成-裂解链转移聚合(Reversible Addition Fragment Chain Transfer, RAFT); 4)原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)。
相关文档
最新文档