活性自由基聚合,TEMPO

合集下载

tempo的质谱

tempo的质谱

Tempo的质谱:探索分子精神的奥秘
Tempo是一种含有自由基的小分子化合物,该化合物因其强大的自由基化学活性而被广泛用于有机化学和生物化学中。

尽管它的应用非常广泛,但我们对其分子结构和局部化学性质的认识仍然不完整。

为了更好地理解Tempo分子的特性,科学家们用质谱技术研究了Tempo分子的质谱,并发现了令人惊叹的结果。

Tempo分子的质谱图显示出其分子式为C9H18NO,并且有一个特征峰出现在m/z = 172处。

这说明Tempo分子的分子量为172,而其结构与N-tert-丁基尿素的相似,有一个氧化乙酰氨基团。

进一步的研究表明,Tempo分子具有一个较为稳定的自由基。

在分析Tempo分子的质谱图时,我们能够清楚地发现其电子自旋共振信号,这表明自由基存在于分子中。

另外,还可发现一些碎片离子,表明Tempo分子很容易分解。

在质谱分析中,可以通过不同的碎片质量-to-charge比例来推断化合物的部分结构。

在Tempo分子的质谱图中,可以清楚地看到其主要的分解模式为α C-H断裂和α C-N断裂。

这意味着Tempo分子的α-C-H基团和α-C-N基团更倾向于分解,这对于了解其基本结构和化学性质是至关重要的。

通过对Tempo分子的质谱分析,科学家能够更好地了解其分子结构和性质。

这些研究有助于深入探索分子精神的奥秘,为生物医学、有机化学和材料科学的发展提供有力支撑。

活性自由基聚合

活性自由基聚合

Wang, J. S.; Matyjaszewski, K. Macromolecules 1995, 28, 7901-7910
11
Iniferter试剂 氮氧自由基 引发剂,催化剂/配体 链转移剂(RAFT试剂)
引发-转移-终止剂法聚合
(Initiator-Transfer agent-Terminator, Iniferter )
G. K. Hamer, Macromolecules 26, 2987 (1993).
10
Iniferter试剂 氮氧自由基
引发-转移-终止剂法聚合
(Initiator-Transfer agent-Terminator, Iniferter )
稳定自由基聚合
(Stable Free Radical Polymerization, SFRP)
Vol. 38, 2121–2136 (2000)
4
Dr. Takayuki Otsu is a Professor Emeritus, Osaka City University. He was born in Osaka in 1929 and received his B.Sc. degree from the Osaka Institute of Science and Technology in 1951. He then was appointed as an instructor at Osaka City University and started his research work on radical polymerization under the late Professor Minoru Imoto.
This being the case, I had an interest in new initiators and their mechanisms, and I focused my attention on the unique reaction behavior of organic sulfur compounds, which have been used as a thiyl radical source, an accelerator, a modifier, a terminator for vinyl or diene polymerization, and an accelerator for vulcanization in the rubber industry.

活性自由基聚合

活性自由基聚合

活性自由基聚合活性自由基聚合是一种在化学合成中非常有效和重要的方法。

它包括一系列彼此之间相互作用的活性自由基和共价化合物,从而形成新的高分子化合物。

活性自由基聚合的这种特性使其在生物合成中得到越来越多的应用。

此外,活性自由基聚合还可以用于制备有用材料,如塑料,橡胶,和聚合物复合材料。

活性自由基聚合的基本过程可以分为几个步骤,即催化剂的应用,反应物的配对,活性自由基的形成,活性自由基的反应以及合成产物的分离和纯化。

在催化剂应用方面,通常需要采用表面活性剂和金属离子来促进反应,从而改善活性自由基聚合的效率。

在反应物配对方面,它们通常以不同的物种形式存在,如卤素和烃类,碳酸根和烃类,或氧化物和烃类,聚合物和聚合物复合材料等。

在这些不同的组合中,活性自由基的形成可以由反应物的极性,热力学条件和其他因素来控制。

一旦形成活性自由基,就可以进行活性自由基反应,形成反应产物。

活性自由基聚合有许多优点。

首先,它是一种高选择性的反应方法,具有高效率,可以降低反应条件的复杂性。

,它的产物可以在一定的结构参数范围内有效地调控,以满足特定应用的要求。

最后,活性自由基聚合反应可以使试剂的使用量减少,从而更加环保。

由于活性自由基聚合有如此多的优势,它已经广泛应用于各种高分子材料的合成中。

例如,在塑料行业,活性自由基聚合可用于制备高性能聚合物,如聚酯和聚氨酯,以及复合材料材料,如复合橡胶,聚合物复合材料和复合塑料等。

此外,活性自由基聚合也可用于生物分子的合成,如蛋白质,脂质,糖类和抗原等。

活性自由基聚合可以用于调节生物分子的结构,从而增强其功能。

例如,在蛋白质合成中,可以通过活性自由基交联的方式来控制蛋白质的结构,从而使蛋白质具有更强的抗体活性。

因此,活性自由基聚合可以在许多不同的领域应用,有助于制备各种类型的有用材料和生物分子,改善生物分子的功能,以满足各种特殊的应用要求。

由于活性自由基聚合是一种高效、灵活、选择性高的反应方法,它最终会在不同领域取得更大的发展,特别是在医学,农业和化学工程领域,为各种特殊的应用提供更多的选择。

活性自由基聚合讲解

活性自由基聚合讲解
17
目前已发现很多可作为引发转移终止剂的化合物, 可分为热分解和光分解两种。
热引发转移终止剂:主要为是C-C键的对称六取 代乙烷类化合物。其中,又以1, 2-二取代的四苯基乙 烷衍生物居多,其通式如下图所示。主要品种包括四 苯基丁二腈TPSTN,五苯基乙烷PPE,四(对-甲氧 基)苯基丁二腈TMPSTN,l,1,2,2-四苯基-1,2-二苯氧 基乙烷TPPE和1,1,2,2-四苯基-l,2-二(三甲基硅氧基) 乙烷(TPSTE)等。
R R' + n M
R [ M ]n R'
16
根据以上反应机理,可将自由基聚合简单地视 为单体分子向引发剂分子中R-R’键的连续插入反 应,得到聚合产物的结构特征是两端带有引发剂碎 片。Otsu等由此得到启示,若能找到满足上述条件 的合适引发剂,则可通过自由基聚合很容易地合成 单官能或双官能聚合物,进而达到聚合物结构设计 之目的。由于该引发剂集引发、转移和终止等功能 于一体,故称之为引发转移终止剂(iniferter)。
C2H5 S
CH2 SCN C2H5 S C2H5
多官能度
C2H5
常用光引发转移终止剂结构式
NCS CH2
CH2 SCN C2H5
C2H5
H2
NCS
C
C2H5 S
C2H5
NCS
C
H2
C2H5
S
易断链
C2H5
H2
C
SCN
S
C2H5
C2H5
C
SCN
H2
S
C2H5
22
适用的单体
Iniferter技术不仅可以用于苯乙烯St和甲基丙烯酸
20
单官能度

活性自由基聚合

活性自由基聚合
活性自由基聚合可以用于高分子 材料的改性,通过引入功能性基 团或改变高分子链结构,提高高
分子材料的性能和功能。
功能性化
通过活性自由基聚合,可以将功 能性单体引入高分子链中,制备 功能性高分子材料,如具有光敏、 热敏、导电、磁性等功能的高分
子材料。
高分子链结构调控
通过活性自由基聚合,可以精确 调控高分子链的微观结构和聚集 态结构,从而改善高分子材料的 力学性能、流变性能和加工性能
THANKS FOR WATCHING
感谢您的观看
特性
活性自由基聚合具有高分子量、窄分 子量分布、低副反应和易控制等特点 ,能够合成结构规整、性能优异的聚 合物材料。
历史与发展
历史
活性自由基聚合的概念最早由美 国科学家于20世纪50年代提出, 但直到20世纪80年代才得到实际 应用。
发展
随着对活性自由基聚合机理的深 入研究和新型聚合技术的开发, 活性自由基聚合已成为高分子合 成领域的重要研究方向之一。
压力
聚合过程中通常需要加压,以使单体更好地溶解和传递。
引发剂与抑制剂
选择适当的引发剂和抑制剂,以控制聚合反应的速度和产物的分 子量。
聚合产物的特性
高分子量
活性自由基聚合可制备高 分子量的聚合物,分子量 可达到数百万至数千万。
窄分子量分布
活性自由基聚合产物的分 子量分布较窄,有利于提 高聚合物材料的性能。
案例二:高分子改性研究
总结词
采用活性自由基聚合技术对现有高分子材料 进行改性,提高了其性能和应用范围。
详细描述
在案例二中,研究者采用活性自由基聚合方 法对现有高分子材料进行了改性。通过引入 功能性单体和共聚单体,成功改善了高分子 材料的亲水性、生物相容性和光敏性等性能。 此外,研究者还研究了改性后高分子材料的 流变性能和加工性能,为其在实际应用中的 加工和成型提供了理论支持。

活性自由基聚合TEMPO

活性自由基聚合TEMPO
1
1. NMP的发现及历史:
分子量与转化率间线性关系! TEMPO/BPO比例对聚合的影响!
2
1. NMP的发现及历史:
Many subsequent studies have confirmed Georges findings and have also shown that increasing the molar ratio of nitroxide to initiator result in slower reactions, lower PDIs, and lower molecular weight polymers.
As a comparison, Georges performed a suspension copolymerization of styrene and butadiene with (a) and without (b) TEMPO. The PDI of the polymer with TEMPO was 1.36 while the PDI of the polymer without TEMPO was 4.61.
双分子体系 BPO:TEMPO=1:1.3
Conditions: Initial heating at 95oC for 3.5h, followed by heating at
P1o2o3orClyfodre69fihn. ed nature of the initiating species
Results: Narrow molecular weight polystyrene with polydispersity
1. NMP的发现及历史:
2,2,4,4-四甲基派啶氮氧稳定自由基 (2,2,4,4-tetramethyl-1-piperidinyloxy, TEMPO)

可控 活性自由基聚合

可控 活性自由基聚合

反应方程式如下:
+
O
O
O PhC O
N O
-
O O CPh
PhC O O CPh + O N
TEMPO可以加速BPO的分解,活化能由 120kJ/mol降为40kJ/mol,大大提高了链引发 的速率。
SFRP方法在现实中的应用:
O C O CH2 CH n CH2 CH O N kL k-L
O C O CH2 CH n CH2 CH O N
以上四种方法都在进一步的进展中„„
Thank you!
BPO可以被TEMPO分解为初级自由基, 活化能为40kJ/mol,远低于BPO单独的分解 活化能(120kJ/mol)。初级自由基引发单 体聚合而增长。增长自由基迅速被TEMPO捕 捉,偶合成共价休眠种。在较高温度下,休 眠种均裂成链自由基,进一步与单体加成而 增长;均裂的另一个产物RNO· 又能与新的链 自由基结合为休眠种,如此反复下去,使分 子量不断增长,最终形成高分子化合物。
● ●
休眠种逆分解成增长自由基,继续与单 体加成而增长,如此反复,聚合度不断增加
• 13.4、原子转移自由基聚合(ATRP)法 • ATRP(Atom Transfer Radical Polymerization)聚合反应以过渡金属作为催 化剂,使卤原子实现可逆转移,包括卤原子从 烷基卤化物到过渡金属络合物(盐),再从过 渡金属络合物(盐)转移至自由基的反复循环 的原子转移过程,伴随着自由基活性(增长链 自由基)种和大分子有机卤化物休眠种之间的 可逆转换平衡反应,并抑制着自由基活性种在 较低的浓度,减少增长链自由基之间的不可逆 双基终止副反应,使聚合反应得到有效的控制。 ATRP的核心是引发剂卤代烷R-X与单体中C=C键 加成,加成物中C-X键断裂产生自由基引发聚 合。示意图如下:

“活性”可控自由基聚合

“活性”可控自由基聚合

“活性”/可控自由基聚合熊鹏鹏2010214110 摘要: 自由基聚合是生产高分子量聚合物的重要方法, “活性”/ 可控自由基聚合综合了自由基聚合和离子聚合的优点, 使自由基聚合具有可控性。

本文对目前可以实现“活性”/ 可控自由基聚合的途径和各自机理进行介绍, 指出应该重视对“活性”/可控自由基聚合的研究。

关键词: “活性”/可控自由基聚合; 稳定自由基; 可逆加成-裂解链转移; 原子转移; 引发转移终止剂;退化转移。

自由基聚合是工业上和实验室中生产高分子量聚合物的重要方法, 该法具有可聚合的单体种类多、反应条件宽松、以水为介质、容易实现工业化生产等优点, 但也存在着缺陷, 如自由基聚合的本质( 慢引发, 快速链增长, 易发生链终止和链转移等) 决定了聚合反应的失控行为,其结果常常导致聚合产物呈现宽分布, 分子量和结构不可控, 有时甚至会发生支化、交联等,从而严重影响聚合物的性能, 此外, 传统的自由基聚合也不能用于合成指定结构的规整聚合物。

鉴于离子聚合和配位聚合可以很好地控制聚合物结构, 而能不能控制自由基聚合体系则成为当前的研究热点, 但近年来从离子聚合和可控有机自由基反应的研究进展来看, 答案是肯定的。

就聚合反应而言, 要合成具有确定结构的聚合物, 则要求所有的链应同时引发, 增长相似, 这就需要快速引发, 在聚合结束前增长链应保持活性, 链转移和链终止的效应可以忽略, 而自由基聚合的本质( 慢引发, 快终止) 与之正好相反。

所以实现可控自由基聚合要基于以下三个原则:1) 自由基体系中的增长反应应对自由基敏感, 终止反应对自由基浓度的敏感度次之。

这样, 在自由基浓度很低时, 链增长反应与终止反应的速率比才足够高, 才能合成出分子量很大的聚合物。

2) 增长链的浓度必须比初始游离自由基的浓度高得多, 在整个反应过程中所有的链均需保持活性, 且游离自由基与高浓度休眠链处于动态平衡之中, 这种持续自由基效应对任何控制自由基反应来说都是最重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. NMP的聚合机理 2.1 平衡的建立: persistent radical effect
R·Y· , 活泼自由基,则产物有三种, 1:2:1。 R· 活泼自由基,Y· persistent radical, 产物只有一种
2. NMP的聚合机理 2.1 平衡的建立: persistent radical effect
the term living, controlled and step growth were used.
N O N O
polystyrene
CH 2
CH
polystyrene
CH 2
CH
Polymerization Systen: Monomer: Styrene 双分子体系 Initiator: BPO BPO:TEMPO=1:1.3 Additive: TEMPO Conditions: Initial heating at 95oC for 3.5h, followed by heating at 123oC for 69h. Poorly defined nature of the initiating species Results: Narrow molecular weight polystyrene with polydispersity of 1.26. The number-average molecular weight increased linearly
2. NMP的聚合机理
2.1 平衡的建立: persistent radical effect
Radicals (2) and (4) are present at very low concentrations (approx. 10-8 M) but the persistent radical (6) is at a concentration around 10-3 M. It is critical to note that the PRE is a very important concept, which is at the heart of both NMP and ATRP. it is possible to enhance the PRE by the addition of stable radicals at the beginning of the polymerization. The Persistent Radical Effect: A Principle for Selective Radical Reactions and Living Radical Polymerizations Hanns Fischer Chem. Rev. 2001, 101, 3581-3610
1. NMP的发现及历史:
2,2,4,4-四甲基派啶氮氧稳定自由基 (2,2,4,4-tetramethyl-1-piperidinyloxy, TEMPO)
H3C H3C N O
CH3 CH3
相对TD,其活性更低 ,不能引发聚合,且与 苯乙烯增长链末端结合 的键更弱。
自由基捕获剂、阻聚剂、抗老化剂、热降解抑制剂和热稳定剂等。
J. Am. Chem. Soc. 2000, 122, 5929-5939
2.4 副反应
苯乙烯中的 热引发:
说明双基终止 的存在?
热引发对苯乙烯的 聚合十分有利! 双基终止的程度:严 重影响速率,对分子 量和分布影响很小! 因自由基浓度:约为10-8M,大分子浓度为10-2M!
2.4 副反应
烷氧胺的分解或提氢副反应:
[P.]:利用转化率和时间的函数 Kd的测定: Macromolecules 1996, 29, 6393-6398
2.3 动力学参数
K=[P.][T.]/[PT]
Macromolecules 1996, 29, 6393-6398
N-tert-butyl-N-[1-diethylphosphono-(2,2dimethylpropyl)] nitroxide (DEPN).
2.2 关于自由基的性质:
does the radical pair exist as a caged pair or are they free to diffuse through the reaction?
2.2 关于自由基的性质:
radical: a caged pair or free to diffuse through the reaction?
2. NMP的聚合机理 2.1 平衡的建立: persistent radical effect
2.1 平衡的建立: persistent radical effect
The stable radical (6) is capable of reaction with either (2) or (4) but not itself. Due to the fact that irreversible termination will occur between active radicals the concentration of the stable radical present will increase. Due to the build up in concentration of (6), very little coupling products between active radicals (2)-(2), (2)-(4), or (4)-(4) are formed, as the active radicals react almost exclusively with the stable or persistent radical (6) .
J. Am. Chem. SOC. 1994,116, 11185-11186
SOLOMON八十年代的工作:
用稳定自由基封端研究St、 MMA关于引发和终止的结构
SOLOMON八十年代的工作:
SOLOMON八十年代的工作:
1. NMP的发现及历史:
Rizzardo等与TEMPO/SFRP失之交臂?温度低,分布宽
Steady-state
X• depends on the reversible reaction as well as the initiation/termination parameters.
Steady-state
Ri =0 Ri = 0
此式常用来测平衡常数
2.3 动力学参数
K=[P.][T.]/[PT] [T.]:ESR测定
Experimental results that quasi-equilibrium exists and the time needed to reach quasi-equilibrium is much less than 1 second, typically 1 – 100 ms. Ri > 0
1. NMP的发现及历史:
分子量与转化率间线性关系! TEMPO/BPO比例对聚合的影响!
1. NMP的发现及历史:
Many subsequent studies have confirmed Georges findings and have also shown that increasing the molar ratio of nitroxide to initiator result in slower reactions, lower PDIs, and lower molecular weight polymers. As a comparison, Georges performed a suspension copolymerization of styrene and butadiene with (a) and without (b) TEMPO. The PDI of the polymer with TEMPO was 1.36 while the PDI of the polymer without TEMPO was 4.61.
2.4 副反应
烷氧胺的分解或提氢副反应:
These results help to explain the differences in the polymerization of styrenics and methacrylates under the same NMP conditions. Due to the extra β hydrogen's on the methacrylates, there is a much greater amount of H transfer and therefore lack of control. This has been observed experimentally with significant amounts of “ene” terminated polymer chains detected by MALDI-MS and NMR and UV-vis studies. Acrylates : much greater amount of H transfer
单分子体系(Unimolecular) :
单分子体系可控效果 优于双分子体系!
2. NMP的聚合机理

Typically these propagating carbon centered radicals are transient species , tend to disappear by self-termination, which is typically a diffusion controlled process. This raises the question, why do we only see minor amounts of irreversible termination in NMP?
相关文档
最新文档