振动理论及应用期末复习题题

合集下载

《大学物理》期末考试复习题(振动与波)

《大学物理》期末考试复习题(振动与波)


(A) 2 ;
答案:(D)
(B)
m1 m2
2

(C)
m2 m1
2

(D) 2
m2 . m1
一物体作简谐振动,振动方程为
x
A cos(t
1 4
) 。在
t = T/4(T
为周期)时刻,物体的
加速度为 ( )
(A)
2 2
A 2

(B)
2 2
A 2 ;
(C)
3 2
A 2

(D)
3 2
A 2

一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判
一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的 1/4 时,其动能为振 动总能量的
(A) 7/16 ; (B) 9/16 ; (C) 11/16 ; (D) 15/16 。 []
答案:(D)
第十章 波动
10-1 机械波的几个概念
10-2 平面简谐波的波函数
如图所示,有一平面简谐波沿 x 轴负方向传播,
断下列情况正确的是
(A)竖直放置作简谐振动,在光滑斜面上不作简谐振动;
(B)竖直放置不作简谐振动,在光滑斜面上作简谐振动;
(C)两种情况都作简谐振动;
(D)两种情况都不作简谐振动。
[]
竖直放置 放在光滑斜面上
答案:(C)
同一弹簧振子悬挂相同的质量,分别按如图(a)、(b)、(c)所示的三种方式放置,摩擦力都
(A) 曲线 3,1,2 分别表示 x,v,a 曲线; (B) 曲线 2,1,3 分别表示 x,v,a 曲线; (C) 曲线 1,2,3 分别表示 x,v,a 曲线; (D) 曲线 2,3,1 分别表示 x,v,a 曲线.

《机械振动基础》期末复习试题5套含答案.doc

《机械振动基础》期末复习试题5套含答案.doc

中南大学考试试卷2005 - 2006学年上学期时间门o分钟《机械振动基础》课程32学时1.5学分考试形式:闭卷专业年级:机械03级总分100分,占总评成绩70 %注:此页不作答题纸,请将答案写在答题纸上一、填空题(本题15分,每空1分)1>不同情况进行分类,振动(系统)大致可分成,()和非线性振动;确定振动和();()和强迫振动;周期振动和();()和离散系统。

2、在离散系统屮,弹性元件储存(),惯性元件储存(),()元件耗散能量。

3、周期运动的最简单形式是(),它是时间的单一()或()函数。

4、叠加原理是分析()的振动性质的基础。

5、系统的固有频率是系统()的频率,它只与系统的()和()有关,与系统受到的激励无关。

二、简答题(本题40分,每小题10分)1、简述机械振动的定义和系统发生振动的原因。

(10分)2、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

(10分)3、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(20分)4、多自由系统振动的振型指的是什么?(10分)三、计算题(本题30分)图1 2、图2所示为3自由度无阻尼振动系统。

(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设k t[=k t2=k t3=k t4=k9 /, =/2/5 = /3 = 7,求系统固有频率(10 分)。

13 Kt3四、证明题(本题15分)对振动系统的任一位移{兀},证明Rayleigh商R(x)=⑷严⑷满足材 < 尺⑴ < 忒。

{x}\M\{x}这里,[K]和[M]分别是系统的刚度矩阵和质量矩阵,®和①,分别是系统的最低和最高固有频率。

(提示:用展开定理{x} = y{M} + y2{u2}+……+ y n{u n})3 •简述无阻尼单自由度系统共振的能量集聚过程。

(10 分) 4.简述线性多自由度系统动力响应分析方法。

(10 分)中南大学考试试卷2006 - 2007学年 上 学期 时间120分钟机械振动 课程 32 学时 2 学分 考试形式:闭卷专业年级: 机械04级 总分100分,占总评成绩 70%注:此页不作答题纸,请将答案写在答题纸上一、填空(15分,每空1分)1. 叠加原理在(A )中成立;在一定的条件下,可以用线性关系近似(B ) o2. 在振动系统中,弹性元件储存(C ),惯性元件储存(D ) , (E )元件耗散 能量。

振动考试题(带答案)

振动考试题(带答案)

振动考试试卷一、选择题:(30分)在正确的答案后面打对号。

1、以下那些因素会引发轴承使用寿命达不到设计要求?(1)润滑不良(2)不对中(3)过载(4)转动惯量不平衡(5)轴承座松动(6)转速过低2、最简单的周期振动称为:(1)简谐振动(2)阻尼震动(3)共振3、振动三要素包括:振幅、()和()(1)时间(2)频率(3)相位4、简谐振动公式:F=kx,k反映了系统的:(1)刚度(2)挠度(3)硬度5、振动问题都可以简化为一个含有基本参数m()、c(阻尼)、k(刚度)的系统模型。

(1)m(质量)(2)T(惯量)(3)F(外力)6、以下三种振动传感器哪一种响应最快?(1)位移型(2)速度型(3)加速度型7、两种分析振动的基本频谱是时域谱和()(1)质量谱(2)频域谱(3)色谱8、不平衡震动的特点是:(1)通常水平方向的振幅大于垂直方向的幅值、振幅随转速增加而增加、振动主要发生在1倍频(2)通常垂直方向的振幅大于水平方向的幅值、振幅随转速增加而增加、振动主要发生在1倍频(3)通常水平方向的振幅大于垂直方向的幅值、振幅随转速增加而减少、振动主要发生在1倍频9、不平衡分为:静不平衡、()、动不平衡(1)奇不平衡(2)偶不平衡(3)简谐不平衡10、不对中类型:平行不对中,(),综合不对中。

(1)角度不对中(2)垂直不对中(3)距离不对中二、问答题(20分)提高转速能否区分不对中和不平衡振动?为什么?答:能,区分不对中和不平衡的一个方法是提高机器的转速。

如果是不平衡,振幅的增加会与速度的平方成正比;反之,不对中引起的振动却不会随速度发生变化。

三、频域谱分析题(30分)1、判断以下频域谱,哪个是转子不平衡、哪个是轴弯曲、哪个是轴承座松动?频谱1判断为(转子不平衡)频谱2判断为(轴弯曲)频谱3判断为(轴承座松动)四、时域谱分析题(20分)以下时域谱中,哪个是轴承外滚道损伤?哪个是内滚道损伤?判断为(外滚道损伤)判断为(内滚道损伤)。

最经典机械振动总结、试题及答案(全)

最经典机械振动总结、试题及答案(全)

最经典机械振动总结、试题及答案(全)一、简谐运动(一)知识要点1.定义:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。

表达式为:F = -kx⑴简谐运动的位移必须是指偏离平衡位置的位移。

也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。

⑵回复力是一种效果力。

是振动物体在沿振动方向上所受的合力。

⑶“平衡位置”不等于“平衡状态”。

平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。

(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)⑷F=-kx 是判断一个振动是不是简谐运动的充分必要条件。

凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x 、回复力F 、加速度a 、速度v 这四个矢量的相互关系。

⑴由定义知:F ∝x ,方向相反。

⑵由牛顿第二定律知:F ∝a ,方向相同。

⑶由以上两条可知:a ∝x ,方向相反。

⑷v 和x 、F 、a 之间的关系最复杂:当v 、a 同向(即 v 、 F 同向,也就是v 、x 反向)时v 一定增大;当v 、a 反向(即 v 、 F 反向,也就是v 、x 同向)时,v 一定减小。

3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。

因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所须的时间。

⑴振幅A 是描述振动强弱的物理量。

(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的) ⑵周期T 是描述振动快慢的物理量。

(频率f =1/T 也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。

任何简谐振动都有共同的周期公式:km T π2=(其中m 是振动物体的质量,k 是回复力系数,即简谐运动的判定式F = -kx 中的比例系数,对于弹簧振子k 就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。

振动理论及工程应用_天津大学中国大学mooc课后章节答案期末考试题库2023年

振动理论及工程应用_天津大学中国大学mooc课后章节答案期末考试题库2023年

振动理论及工程应用_天津大学中国大学mooc课后章节答案期末考试题库2023年1.振动问题属于动力学问题中的第二类问题,即已知主动力求()。

答案:运动2.振动是指物体在平衡位置附近所做的()。

答案:往复运动3.弹簧串联、等效刚度(),弹簧并联,等效刚度()。

答案:减小增加4.在建立单自由度弹簧—质量系统的运动微分方程时,当选择物块的静平衡位置为坐标原点,假设x轴正方向垂直向下,则物块的位移、速度和加速度的正方向如何确定()。

答案:都垂直向下5.质点或质点系的运动相互影响的现象叫做()。

答案:耦联6.激振力与受迫振动的位移相位差为()时,振动系统达到共振状态。

答案:90°7.小车重P在斜面自高度h处滑下与缓冲器相撞,斜面倾角为α,缓冲弹簧刚度系数为k。

如缓冲质量不计,斜面摩擦不计,小车碰撞后,系统的自由振动周期为()。

答案:8.在图示振动系统中,已知重为P的AB杆对O轴的回转半径为ρ,物块重为Q,两个弹簧的刚度系数均为k,当系统静止时,杆处于水平。

则此系统微振动的圆频率为:()答案:9.关于主振型的正交性,下列说法错误的是()答案:零固有圆频率对应的主振型不与系统的其他主振型关于质量矩阵和刚度矩阵正交10.关于主振型矩阵和正则振型矩阵的关系是()。

答案:将主振型矩阵的各列除以其对应主质量矩阵元素的平方根,得到的振型就是正则振型11.关于主振型矩阵和正则振型矩阵下列说法错误的是()。

答案:将主振型矩阵的各列除以其对应主刚度的平方根,得到的振型就是正则振型12.瑞利第一商用()方程求解,瑞利第二商用()方程求解。

答案:作用力位移13.瑞利法估算基频的结果是精确值的(),邓克莱法估算基频的结果是精确值的()答案:上限下限14.子空间迭代法是将()与()结合起来的计算方法,它对自由度数较大系统的前若干阶固有频率及主振型非常有效。

答案:里兹法矩阵迭代法15.一维单元应变位移关系矩阵B为:()答案:16.在杆的纵向振动中,要考虑的边界条件是()答案:位移和轴向力17.以下不属于梁横向振动的近似解法的是()答案:传递矩阵法18.下列哪些是主动控制的特点()。

机械行业振动力学期末考试试题

机械行业振动力学期末考试试题

机械行业振动力学期末考试试题第一大题:单自由度振动1.无阻尼自由振动系统,在初始时刻位移为A,速度为0,求解该振动系统的解析解。

2.阻尼比为0.2的单自由度振动系统受到正弦激励力,激励力的频率为系统固有频率的两倍,求解该振动系统的响应。

3.阻尼比为0.5的单自由度振动系统受到冲击激励力,激励力的持续时间为0.1秒,求解该振动系统的响应。

第二大题:多自由度振动1.有两个自由度的系统,求解其固有频率和模态振型。

2.有三个自由度的系统,求解其固有频率和模态振型。

3.给定一个多自由度振动系统的质量矩阵和刚度矩阵,求解其特征值和特征向量,进而得到固有频率和模态振型。

第三大题:振动测量与分析1.请列举常用的振动测量仪器,并对其原理进行简要说明。

2.振动信号的采样频率应该如何选择?请解释原因。

3.请说明振动信号的功率谱密度函数,并给出其计算公式。

4.请解释振动传感器的灵敏度是什么意思,并给出其计算公式。

第四大题:振动控制1.请说明主动振动控制和被动振动控制的区别。

2.请解释模态分析在振动控制中的作用。

3.请列举常用的振动控制方法,并对其原理进行简要说明。

第五大题:振动摆1.请列举用振动摆进行的实验,并对其原理进行简要说明。

2.请解释摇摆周期与摆长的关系,并给出相关公式。

3.一个摆长为1m的振动摆,其重力加速度为9.8m/s^2,求解其摇摆周期。

本文档由Markdown格式输出。

Markdown是一种轻量级的标记语言,常用于编写文档和博客。

可通过Markdown编辑器进行编辑和输出。

以上是机械行业振动力学期末考试试题的内容。

希望对您的学习有所帮助!。

期末测试的题目(振动和波动、热学)

期末测试的题目(振动和波动、热学)

大 学 物 理 期 末 测 试 题专业________________班级______________学号____________姓名________________一、选择题(一)振动和波动部分1. 一弹簧振子,当把它水平放置时,它作简谐振动。

若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 ( C )(A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。

提示:两种情况都作简谐振动,平衡位置会变化。

2. 两个简谐振动的振动曲线如图所示,则有 ( A )(A )A 超前π/2; (B )A 落后π/2; (C )A 超前π; (D )A 落后π。

3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: ( B )(A )T /4; (B )T /12; (C )T /6; (D )T /8。

4. 分振动方程分别为)25.050cos(31ππ+=t x 和)75.050cos(42ππ+=t x (SI 制)则它们的合振动表达式为: ( D )(A ))25.050cos(2ππ+=t x ; (B ))50cos(5t x π=; (C ))71250cos(51-++=tg t x ππ; (D )()15cos 507x t tg π-=-。

5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ∆和2l ∆,且1l ∆=22l ∆,两弹簧振子的周期之比T 1:T 2为 ( B )(A )2; (B )2; (C )21; (D )2/1。

6. 一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。

x =0处,质点振动曲线如图所示,则该波的表式为 ( B )(A ))2202cos(2πππ++=x t y m ; (B ))2202cos(2πππ-+=x t y m ;(C ))2202sin(2πππ++=x t y m ; (D ))2202sin(2πππ-+=x t y m 。

机械振动期末试题及答案

机械振动期末试题及答案

机械振动期末试题及答案1. 选择题1.1 哪种情况下,系统的振动是简谐振动?A. 有耗尽能量的情况B. 存在非线性的力恢复系统中C. 无外部干扰D. 系统的振幅随时间而增长答案:C1.2 振动系统达到稳态的条件是:A. 初始位移为零B. 扰动力为零C. 初始速度为零D. 振幅随时间减小答案:B1.3 一个简谐振动的周期与振幅的关系是:A. 周期与振幅无关B. 周期与振幅成正比C. 周期与振幅成反比D. 周期与振幅正弦相关答案:A2. 判断题2.1 简谐振动的周期和角频率之间满足正比关系。

A. 对B. 错答案:B2.2 简谐振动的中心力是恒力。

A. 对B. 错答案:A2.3 当振动系统有阻尼情况时,振幅会随时间增大。

A. 对B. 错答案:B3. 简答题3.1 什么是简谐振动?它的特点是什么?答案:简谐振动是指振动系统在没有外力干扰的情况下,其平衡位置附近以某一频率固定幅度上下振动的现象。

它的特点包括振动周期与振幅无关,且系统的振动可由正弦或余弦函数进行描述。

3.2 请简要说明受迫振动的原理。

答案:受迫振动是指振动系统在外力作用下的振动。

外力的频率与系统的固有频率相近或相等时,会发生共振现象。

在共振时,外力的能量会以最大幅度传递给振动系统,导致振动幅度增大。

4. 计算题4.1 一个弹簧振子平衡位置附近的势能函数为U(x) = 4x^2 + 3,求振子的振动周期。

答案:根据简谐振动的势能函数表达式,势能函数为U(x) =1/2kx^2,其中k为弹簧的劲度系数。

将已知的势能函数与标准表达式进行比较,可得4x^2 = 1/2kx^2,解得k = 8。

由振动周期公式T =2π√(m/k),代入m和k的值,可计算出振子的振动周期。

5. 算法题设计一个程序,计算一个简谐振动系统的振动频率和振幅,并将结果打印输出。

// 输入参数float k; // 弹簧的劲度系数float m; // 系统的质量// 计算振动频率float omega = sqrt(k / m);// 计算振幅float A = 1; // 假设振幅为1// 打印输出结果print("振动频率:", omega);print("振幅:", A);经过以上计算,我们可以得到一个简谐振动系统的振动频率和振幅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年振动力学期末考试试题第一题(20分)1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。

当AB 杆处于水平时为系统的静平衡位置。

试采用能量法求系统微振时的固有频率。

解:系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。

AB 转角:L y /=ϕ 系统动能:m 1动能:21121y m T =m 2动能:222222222222)31(21))(31(21)31(2121y m L y L m L m J T ====ϕω m 3动能:232232333)21(21))(21(2121ym R y R m J T ===ω 系统势能:221)21(21)21(y k y g m gy m V ++-=在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有:E y k gy m gy m ym m m V T =++-++=+2212321)21(2121)2131(21 上式求导,得系统的微分方程为:E y m m m ky'=+++)2131(4321固有频率和周期为:)2131(43210m m m k++=ω2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。

试采用能量法求系统的固有频率。

解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。

物体B 动能:22121x m T =轮子与地面接触点为速度瞬心,则轮心速度为x v c 21=,角速度为x R21=ω,转过的角度为x R21=θ。

轮子动能: )83(21)41)(21(21)41(212121212221212212x m x RR m xm J v m T c =+=+=ω 系统势能:22228)21(21)(2121x kxR R k R k kx V c ====θ 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,有:E x kxm m V T =++=+22218)83(21上式求导得系统的运动微分方程:083221=++x m m kx固有频率为:210832m m k+=ω第二题(20分)1、在图示振动系统中,重物质量为m ,外壳质量为2m ,每个弹簧的刚度系数均为k 。

设外壳只能沿铅垂方向运动。

采用影响系数方法:(1)以x 1和x 2为广义坐标,建立系统的微分方程;(2)求系统的固有频率。

解:系统为二自由度系统。

当x1=1,x2=0时,有:k11=2k ,k21=-2k 当x2=1,x2=1时,有:k22=4k ,k12=-2k 因此系统刚度矩阵为:⎥⎦⎤⎢⎣⎡--k k k k 4222 系统质量矩阵为:⎥⎦⎤⎢⎣⎡m m 200 系统动力学方程为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0042222002121x x k k k k xx m m频率方程为:024222)(Δ22=----=ωωωm k kkm k 解出系统2个固有频率:m k )22(21-=ω,mk )22(22+=ω2、在图示振动系统中,物体A 、B 的质量均为m ,弹簧的刚度系数均为k ,刚杆AD 的质量忽略不计,杆水平时为系统的平衡位置。

采用影响系数方法,试求:(1)以x 1和x 2为广义坐标,求系统作微振动的微分方程;(2)系统的固有频率方程。

解:系统可以简化为二自由度振动系统,以物体A 和B 在铅垂方向的位移x 1和x 2为系统的广义坐标。

当x1=1,x2=0时,AD 转角为L 3/1=θ,两个弹簧处的弹性力分别为L k θ和L k θ2。

对D 点取力矩平衡,有:kL k 91411=;另外有kL k -=21。

同理,当x2=1,x2=1时,可求得:kL k =22,kL k -=12 因此,系统刚度矩阵为:⎥⎥⎦⎤⎢⎢⎣⎡--kL kL kL kL 914 系统质量矩阵为:⎥⎦⎤⎢⎣⎡m m 00 系统动力学方程为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00914002121x x kL kL kL kL x x m m频率方程为:091422=----ωωm kL kLkL m kL即:0523922242=+-L k kmL m ωω第三题(20分)在图示振动系统中,已知:物体的质量m 1、m 2及弹簧的刚度系数为k 1、k 2、k 3、k 4。

(1)采用影响系数方法建立系统的振动微分方程;(2)若k 1= k 3=k 4= k 0,又k 2=2 k 0,求系统固有频率;(3)取k 0 =1,m 1=8/9,m 2 =1,系统初始位移条件为x 1(0)=9和x 2(0)=0,初始速度都为零,采用模态叠加法求系统响应。

解:(1)系统可以简化为二自由度振动系统。

当x1=1,x2=0时,有:k11=k1+k2+k4,k21=-k2x x当x2=1,x2=1时,有:k22=k2+k3,k12=-k2。

因此,系统刚度矩阵为:⎥⎦⎤⎢⎣⎡+--++3222421k k k k k k k系统质量矩阵为:⎥⎦⎤⎢⎣⎡2100m m 系统动力学方程为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+--+++⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00002132224212121x x k k k k k k k x xm m(2)当0431k k k k ===,022k k =时,运动微分方程用矩阵表示为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡003224002100002121x x k k k k x xm m 频率方程为:04)3)(4(20220210=---k m k m k ωω 08)43(202021421=++-k k m m m m ωω求得:)168943(22221212121021m m m m m m m m k +--+⋅=ω)168943(22221212121022m m m m m m m m k +-++⋅=ω(3)当k 0=1,m 1=8/9,m 2 =1时,系统质量阵:⎥⎥⎦⎤⎢⎢⎣⎡=10098M 系统刚度阵:⎥⎦⎤⎢⎣⎡--=3224K固有频率为:2321=ω,622=ω 主模态矩阵为:⎥⎥⎦⎤⎢⎢⎣⎡-=112343Φ 主质量阵:⎥⎥⎦⎤⎢⎢⎣⎡==30023M ΦΦM Tp主刚度阵:⎥⎥⎦⎤⎢⎢⎣⎡==180049K ΦΦK Tp 模态空间初始条件:⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-44)0()0()0()0(21121x x q q Φ, ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-00)0()0()0()0(21121xx q q Φ 模态响应:01211=+q q ω ,02222=+q q ω即:t t q 11cos 4)(ω=,t t q 22cos 4)(ω-=因此有:⎩⎨⎧-+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡t t t t t q t q t x t x 21212121cos 4cos 4cos 6cos 3)()()()(ωωωωΦ第四题(20分)一匀质杆质量为m ,长度为L ,两端用弹簧支承,弹簧的刚度系数为k 1和k 2。

杆质心C 上沿x 方向作用有简谐外部激励t ωsin 。

图示水平位置为静平衡位置。

(1)以x 和θ为广义坐标,采用影响系数方法建立系统的振动微分方程;(2)取参数值为m=12,L =1,k 1 =1,k 2 =3,求出系统固有频率;(2)系统参数仍取前值,试问当外部激励的频率ω为多少时,能够使得杆件只有θ方向的角振动,而无x 方向的振动? 解:(1)系统可以简化为二自由度振动系统,选x 、θ为广义坐标,x 为质心的纵向位移,θ 为刚杆的角位移,如图示。

当1=x 、0=θ时:2111k k k +=,2)(1221L k k k -= 当0=x 、1=θ时:2)(1211L k k k -=,4)(22122L k k k +=因此,刚度矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+=4)(2)(2)(221121221L k k Lk k L k k k k K 质量矩阵为:⎥⎥⎦⎤⎢⎢⎣⎡=212100mL m M 系统动力学方程:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡0sin 4)(2)(2)(121002*********t x L k k L k k L k k k k x mL m ωθθ(2)当m=12,L =,k 1 =1,k 2 =3时,系统动力学方程为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0sin 111410012t x x ωθθ频率方程为:0111124202=--ωω即:0316122040=+-ωω求得:67420±=ω (3)令t x x ωθθsin ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡,代入上述动力学方程,有:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--0111112422θωωx 由第二行方程,解得21ωθ--=x,代入第一行的方程,有:21k ⋅⋅θ 1=1)124(122---=ωωx ,]1)124[(2---=ωθ 要使得杆件只有θ方向的角振动,而无x 方向的振动,则需0=x ,因此1=ω。

第五题(20分)如图所示等截面悬臂梁,梁长度为L ,弹性模量为E ,横截面对中性轴的惯性矩为I ,梁材料密度为ρ。

在梁的a 位置作用有集中载荷)(t F 。

已知梁的初始条件为:)()0,(1x f x y =,)()0,(2x f x y = 。

(1)推导梁的正交性条件;(2)写出求解梁的响应),(t x y 的详细过程。

(假定已知第i 阶固有频率为i ω,相应的模态函数为)(x i φ,∞=~1i )提示:梁的动力学方程为:),(]),([222222t x f ty S x t x y EI x =∂∂+∂∂∂∂ρ,其中)()(),(a x t F t x f -=δ,δ为δ函数。

解:(1)梁的弯曲振动的动力学方程为:0),(]),([222222=∂∂+∂∂∂∂tt x y S x t x y EI x ρ ),(t x y 可写为:)sin()()()(),(θωφφ+==t a x t q x t x y代入梁的动力学方程,有:φρωφS EI 2)(=''''设与i ω、j ω对应有i φ、j φ,有: i i i S EI φρωφ2)(=''''(1)j j j S EI φρωφ2)(=''''(2)式(1)两边乘以j φ并沿梁长对x 积分,有:⎰⎰=''''lj i i li j dx S dx EI 020)(φφρωφφ (3)利用分部积分,上式左边可写为:⎰⎰''''+'''-'''=''''l lj i l i j l i j i j dx EI EI EI dx EI 000)()()(φφφφφφφφ (4)由于在梁的简单边界上,总有挠度或剪力中的一个与转角或弯矩中的一个同时为零,所以,上式右边第一、第二项等于零,成为:⎰⎰''''=''''l lj i i j dx EI dx EI 0)(φφφφ 将上式代入(3)中,有:⎰⎰=''''llj i i j i dx S dx EI 02φφρωφφ(5)式(2)乘i φ并沿梁长对x 积分,同样可得到:⎰⎰=''''llji jji dx S dx EI 02φφρωφφ (6)由式(5)、(6)得:⎰=-lj i ji dx S 0220)(φφρωω(7)如果j i ≠时,j i ωω≠,则有:⎰=lji dx S 00φφρ 当j i ≠(8)上式即梁的主振型关于质量的正交性。

相关文档
最新文档