平行线的性质二精品PPT课件
合集下载
平行线的性质ppt课件

(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=
∠
BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=
∠
BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .
1. 2 平行线的性质 课件(沪科版七年级下)

3 2
a//b
2 4 180 (2与4互补)
a//b
b
平行线的判定
2、已知两条直线平行,同位角,内错角,同旁内角 有什么关系?
同 位 角 内 错 角 同 旁 内 角
a
图形 1 2 c 3 2 c 4 2 c
已知
a//b 1 1 2 2
结论
定理
b
a
两直线平行 同位角相等 同位角相等 1 2 a//b a//b 两直线平行 两直线平行 同位角相等 两直线平行 同位角相等 内错角相等 a//b a//b 两直线平行 两直线平行 3 2 内错角相等 两直线平行 同位角相等 同旁内角互补 a//b (2与 4互补) a//b 两直线平行 同旁内角互补 两直线平行
A B
D
C
(1)如图1,AB∥CD, ∠1=45°, ∠D= ∠C,依次求出∠D, ∠C, ∠B的度数. C D
A 1 B
(2)在下图所示的3个图中,a∥b,分别计 算∠1的度数. 1
1
a b 1
36° a b
a b
2
120°
练习二: 填空:如图(1):
AB
CD
(已知),
B= C
分析和处理 (1)由已知条件∠1=∠2,你可以得到什么? (2)结合图形,你可以得到什么? (3)要说明AB∥CD,只需要满足什么条件?
平 行 线 习 题 课
问题2 已知:∠1=∠2 求证:∠3+∠4=180°
A 3 1 B
C 4
2
D
• 课堂练习1、已知:AB∥CD,MG、NH 分别平分∠EMB和∠DNM,那么MG与 平 NH的关系怎样?
)
平 行 线 习 题 课
初中数学《平行线的性质》第2课时课件

4.如何过直线外一点画已知直线的垂线;
5.如何过直线外一点画已知直线的平行线。
看一看,想一想
楼梯的两边像两条 平行线,观察思考:楼 梯的宽度指的是哪些线 段的长?它们都相等吗? 这些线段与这两条平行 线有怎样的位置关系?
画一画,量一量
画两条平行线,过其中一条直线 上任意一点画另一条直线的垂线,测 量垂线段的长度,再过直线上的另一 点画平行线的垂线段,度量所画线段 的长度,你有什么发现?
例题分析
已知:直线AB//直线CD,△ACD的面积是8,CD=4, (1)求:这两条平行线之间的距离; (2)求:△BCD的面积 (3)通过计算你发现△BCD的面积与△ACD的面积有什么 关系? (4)请找出面积相等的三角形有哪几对?
【总结提升】
1.三种距离:两点之间的距离 点到直线的距离
ห้องสมุดไป่ตู้两条平行线之间的距离
2.平行线性质:两条平行线间的距离处处相等. 转化为符号语言:
∵直线m//直线n, AB ⊥直线n, CD⊥直线n,
∴AB=CD 3.应用找平行线间的等积三角形。
谢谢大家!祝同学们学习进步!
反思发现
平行线间的距离 两条平行线,其中一条直线上的任
意一点到另一条直线的距离叫做这两条平 行线间的距离.
如图:直线s//直线t,AB ⊥直线t, 则AB的长是直线s、t的距离
平行线性质 文字语言: 两条平行线间的距离处
处相等. 符号语言:∵直线m//直线n,
AB⊥直线n, CD⊥直线n, ∴AB=CD
两条平行线之间的距 离
明确目标
1.通过实际操作、观察、思考、总结两 条平行线之间的距离的定义和两条平行 线之间距离处处相等的性质。体会新知 识的形成过程。 2.会画图测量两条平行线之间的距离. 3.能运用平行线之间的距离这一概念及 平行线的性质进行简单的计算和说理。
5.如何过直线外一点画已知直线的平行线。
看一看,想一想
楼梯的两边像两条 平行线,观察思考:楼 梯的宽度指的是哪些线 段的长?它们都相等吗? 这些线段与这两条平行 线有怎样的位置关系?
画一画,量一量
画两条平行线,过其中一条直线 上任意一点画另一条直线的垂线,测 量垂线段的长度,再过直线上的另一 点画平行线的垂线段,度量所画线段 的长度,你有什么发现?
例题分析
已知:直线AB//直线CD,△ACD的面积是8,CD=4, (1)求:这两条平行线之间的距离; (2)求:△BCD的面积 (3)通过计算你发现△BCD的面积与△ACD的面积有什么 关系? (4)请找出面积相等的三角形有哪几对?
【总结提升】
1.三种距离:两点之间的距离 点到直线的距离
ห้องสมุดไป่ตู้两条平行线之间的距离
2.平行线性质:两条平行线间的距离处处相等. 转化为符号语言:
∵直线m//直线n, AB ⊥直线n, CD⊥直线n,
∴AB=CD 3.应用找平行线间的等积三角形。
谢谢大家!祝同学们学习进步!
反思发现
平行线间的距离 两条平行线,其中一条直线上的任
意一点到另一条直线的距离叫做这两条平 行线间的距离.
如图:直线s//直线t,AB ⊥直线t, 则AB的长是直线s、t的距离
平行线性质 文字语言: 两条平行线间的距离处
处相等. 符号语言:∵直线m//直线n,
AB⊥直线n, CD⊥直线n, ∴AB=CD
两条平行线之间的距 离
明确目标
1.通过实际操作、观察、思考、总结两 条平行线之间的距离的定义和两条平行 线之间距离处处相等的性质。体会新知 识的形成过程。 2.会画图测量两条平行线之间的距离. 3.能运用平行线之间的距离这一概念及 平行线的性质进行简单的计算和说理。
课件《平行线的性质》精品PPT课件_人教版2

A 解: ∵பைடு நூலகம்B ∥ CD(已知)
∴∠A+∠D=180°,∠B+∠C=180° (两直线平行,同旁内角互补) ∵ ∠A=100°,∠B=115° ∴∠D=180 °-∠A=180°-100°=80° ∠C= 180 °-∠B=180°-115°=65° ∴梯形的另外两个角分别是80° 、 65°.
C B
b
如果两直线不平行, 上述结论还成立吗?
总结归纳
一般地,平行线具有性质:
性质1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
a
1
应用格式:
∵a∥b(已知)
b
∴∠1=∠2 (两直线平行,同位角相等)
2 c
理解运用
1.如图,如果直线AB∥CD, ∠3 =45°,那
么∠4是多少度,为什么?
解: ∵a//b (已知),
∴ 1= 2 (两直线平行,同位角相等).
a ∵ 1+ 4=180°
(邻补角定义),
b
∴ 2+ 4=180°
(等量代换).
1 4 2
c
总结归纳 性质3:两条平行线被第三条直线所截,同旁内角互补。 简单说成:两直线平行,同旁内角互补.
应用格式:
a
∵a∥b(已知)
∴∠2+∠4=180 °
重点:探究平行线的性质。
∴梯形的另外两个角分别是80°、 65°.
如果直线AB ∥CD,那么∠1 =∠2吗? ∠3 =∠2吗?为什么?
如图,已知a//b,那么 2与 4有什么关系呢?为什么?
(
)
两直线平行,同位角相等
∴∠2+∠4=180 °
又∵ ∠1=∠3(对顶角相等),
∴∠A+∠D=180°,∠B+∠C=180° (两直线平行,同旁内角互补) ∵ ∠A=100°,∠B=115° ∴∠D=180 °-∠A=180°-100°=80° ∠C= 180 °-∠B=180°-115°=65° ∴梯形的另外两个角分别是80° 、 65°.
C B
b
如果两直线不平行, 上述结论还成立吗?
总结归纳
一般地,平行线具有性质:
性质1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
a
1
应用格式:
∵a∥b(已知)
b
∴∠1=∠2 (两直线平行,同位角相等)
2 c
理解运用
1.如图,如果直线AB∥CD, ∠3 =45°,那
么∠4是多少度,为什么?
解: ∵a//b (已知),
∴ 1= 2 (两直线平行,同位角相等).
a ∵ 1+ 4=180°
(邻补角定义),
b
∴ 2+ 4=180°
(等量代换).
1 4 2
c
总结归纳 性质3:两条平行线被第三条直线所截,同旁内角互补。 简单说成:两直线平行,同旁内角互补.
应用格式:
a
∵a∥b(已知)
∴∠2+∠4=180 °
重点:探究平行线的性质。
∴梯形的另外两个角分别是80°、 65°.
如果直线AB ∥CD,那么∠1 =∠2吗? ∠3 =∠2吗?为什么?
如图,已知a//b,那么 2与 4有什么关系呢?为什么?
(
)
两直线平行,同位角相等
∴∠2+∠4=180 °
又∵ ∠1=∠3(对顶角相等),
3.5平行线的性质(第2课时)课件(七年级湘教版下册)

A
B E
C
D
巩固新知,深化理解 问题3:如图,平行直线AB,CD被直线EF所截,分 别交直线AB,CD于点G,M。GH和MN分别是∠EGB和 ∠EMD的角平分线。 问: ∠EGH和∠NMD 有何关系?请说明理由。
巩固新知,深化理解
如图,AC//BD, AE平分∠BAC交BD于点E,若 ∠1=64°,求 ∠ 2的度数.
新邵县酿溪镇中学
复习回顾,夯实基础 如图,一条公路两次拐弯后,和原来的方 向相同,也就是拐弯前后的两条路互相平 行.第一次拐的角∠B等于1420,第二次拐的 角∠C是多少度?为什么? C
B
巩固新知,深化理解
如 图 , 直 线 DE 经 过 点 A , DE//BC , ∠B=440,∠C=570.
6.布置作业
教科书 习题4.3 第3、4、5、7题
(1)∠DAB 等于多少度?为什么? (2)∠DAC 等于多少度?为什么? D A E
B
440 57
0
C
巩固新知,深化理解 如图,AB//CD, CD//EF∠A=105º ,∠ ACE=51º , 求 ∠ E的度数.
Z.x.x. K
A E
B
F C
D
巩固新知,深化理解
如 图 , 已 知 : AB//CD。 求 证 : B+D+BED=360
A
1
C
2
B D
巩固新知,深化理解
如图,DE∥BC, ∠ACB=40°, ∠B=80 °,
CD平分∠ACB , 求∠BDC 的度数.
A
Zx.xk
D
E
B
C
归纳小结 (1)平行线的性质是什么? (2)你能用自己的语言叙述研究平行线性 质的过程吗? (3)性质2和性质3是通过简单推理得到的, 在推理论证中需要注意哪些问题?
B E
C
D
巩固新知,深化理解 问题3:如图,平行直线AB,CD被直线EF所截,分 别交直线AB,CD于点G,M。GH和MN分别是∠EGB和 ∠EMD的角平分线。 问: ∠EGH和∠NMD 有何关系?请说明理由。
巩固新知,深化理解
如图,AC//BD, AE平分∠BAC交BD于点E,若 ∠1=64°,求 ∠ 2的度数.
新邵县酿溪镇中学
复习回顾,夯实基础 如图,一条公路两次拐弯后,和原来的方 向相同,也就是拐弯前后的两条路互相平 行.第一次拐的角∠B等于1420,第二次拐的 角∠C是多少度?为什么? C
B
巩固新知,深化理解
如 图 , 直 线 DE 经 过 点 A , DE//BC , ∠B=440,∠C=570.
6.布置作业
教科书 习题4.3 第3、4、5、7题
(1)∠DAB 等于多少度?为什么? (2)∠DAC 等于多少度?为什么? D A E
B
440 57
0
C
巩固新知,深化理解 如图,AB//CD, CD//EF∠A=105º ,∠ ACE=51º , 求 ∠ E的度数.
Z.x.x. K
A E
B
F C
D
巩固新知,深化理解
如 图 , 已 知 : AB//CD。 求 证 : B+D+BED=360
A
1
C
2
B D
巩固新知,深化理解
如图,DE∥BC, ∠ACB=40°, ∠B=80 °,
CD平分∠ACB , 求∠BDC 的度数.
A
Zx.xk
D
E
B
C
归纳小结 (1)平行线的性质是什么? (2)你能用自己的语言叙述研究平行线性 质的过程吗? (3)性质2和性质3是通过简单推理得到的, 在推理论证中需要注意哪些问题?
10.3平行线的性质PPT课件(沪科版)

他山之石 可以攻玉
1.如图,若AB∥CD,则∠B、∠D、∠BED有何关系?
A
B
E
C
D
可否借助练习本纸页的横线,得到解决问题的方法? 如何将这一隐藏的横线表示出来? 添加出这一隐藏的横线的根据是什么?
他山之石 可以攻玉
1.如图,若AB∥CD,则∠B、∠D、∠BED有何关系?
解:∠B+∠D+∠BED=360°.
10.3 平行线的性质(2)
教学目标: 理解并掌握平行线的判定与性质,并能灵活运用.
教学重点: 掌握平行线的判定与性质,并能灵活运用.
教学难点: 综合运用平行线性质和判定解决问题.
复习旧知 激活思维
1.平行线的三个判定方法及三个性质的内容分别是什么?
平行线的判定方法
平行线的性质
同位角相等,两直线平行. 两直线平行,同位角相等. 内错角相等,两直线平行. 两直线平行,内错角相等. 同旁内角互补,两直线平行. 两直线平行,同旁内角互补.
∴AD∥BE. 要说 ∠3=∠4
E
∴∠D=∠4.
D
又∵∠D=∠3, 要说 ∠D=∠4
23
∴∠3=∠4. 要说 AD∥BE 1
4
∴BD∥CE. 要说 ∠1=∠2 A
B
C
细致视察 发现奥秘
如图,若AB∥CD,则∠B、∠D、∠BED有何关系?
A
B
E
C
D
可否借助练习本纸页的横线,得到解决问题的方法?
如何将这一隐藏的横线表示出来? 添加出这一隐藏的横线的根据是什么?
A
B
过点E作EF∥AB,
1
∴∠B+∠1=180°.
F
又∵ EF ∥ AB ,AB∥CD, C
平行线的性质ppt课件

B
A
∵AC∥DF( 已知 )
图2
∴∠D+ ∠__C_P_D___=180o ( 两直线平行,同旁内角互补) ∴∠A+∠D=180o(等量代换 )
3.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度,为什么?
(2)从∠1=110o可以知道 ∠3是多少度,为什么?
例2:已知:如图,AB∥CD,∠B=∠D,
求证:AD∥BC.
A
D
证法一:
∵AB∥DC(已知)
B
C
∴∠B+∠C=180°(两直线平行,同旁内角互补)
∵∠B=∠D(已知) ∴∠D+∠C=180°(等量代换)
∴AD∥BC(同旁内角互补,两直线平行)
例2:已知,如图,AB∥CD,∠B=∠D,求证:AD∥BC.
典例精析
例1:如图所示,已知四边形ABCD 中, AB∥CD,
AD∥BC,试问∠A与∠C,∠B与∠D 的大小关系如何?
解:∠A= ∠ C, ∠B=∠D
A
D
理由:∵AB∥CD (已知 )
B
∴∠B+∠C=180°(两直线平行,同旁内角互补
)C
∵ AD∥BC (已知)
∴∠C+∠D=180°( 两直线平行,同旁内角互补 ) ∴∠ B=∠D ( 同角的补角相等 ) 同理 ∠A=∠C
A
所以梯形的另外两个角分别是80° 、 65°.
C B
6.如图,在∆ABC中,CE⊥AB于点E,DF⊥AB于点F,
AC//ED,CE是∠ACB的平分线,则∠EDF=∠BDF,
请说明理由.
解:因为CE⊥AB, DF⊥AB 所以DF//EC 所以∠BDF=∠1,∠EDF=∠3 因为ED//AC,所以∠3=∠2
最新13.5(1)平行线的性质ppt课件

b
c
1 2
‹# ›
实践与发现
你能根据性质1,说出性质2、性质3成立
的道理吗?
如图
平行线的性质2
1
∵ a∥b (已知)
2
∴∠3=∠2 ( 两直线平行,同位角相等 )
又∵ ∠3 =∠ 1 ( 对顶角相等 )
∴∠2=∠1( 等量代换 )
c
3
a b
两条平行线被第三条直线所截,内错角相等.
简写为:两直线平行,∴内∠错2=角∠相3.等. 符号语言: ∵a∥b,
13.5(1)平行线的性质
回顾
直线平行的条件
E
2 3 2、内错角相等,两直线平行。
A 14
B
67
C
58
D
F Z图
‹# ›
‹# ›
‹# ›
实践与发现 65° c
平行线的性质11
a
2
b
65°
两条平行线被第三条直线所截,同位角相等.
简写为:两直线平行,同位角相等.
a
符号语言: ∵a∥b, ∴∠1=∠2.
练习册:13.5(1)
‹# ›
开放式课堂导学案的 编写与使用
湖南省岳阳市许市中学 田 晴
解读导学案
是什么? 是促进学生自主、合作、探究性学习的师生 互动“教学合一”的设计方案。
作用如何?是高效课堂上学生学习的“路线图”、“指
南针”。
不是教案,也不单是学案,更不是教辅册和 习题集
导学案的功能— “导、学、案”
总体要求 :
不同于教师的备课,它只是教师备课中的一个 组成部分
教师可在导学案上进行创意备课,只是备课的 形式灵活多样
要有教师圈点勾画和补充填写的痕迹 导学案要做到“四精四必”:精选、精讲、精
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年数学下册
第二章 相交线与平行线
3 平行线的性质(第2课时)
第一环节:复习回顾,夯实基础
问题1: 平行线的性质有哪几条? 问题2:判别直线平行的条件有哪几个?
你现在一共有几个判定直线平行 的方法? 问题3:在应用二者时应注意什么问题?
第二环节:层层递进,推理论证
问题1: 如图,直线a,b被直线c所截, (1)当∠1=∠2时,你能结合
图形用推理的方式来说明 a∥b吗? (2)若∠2+∠3=180°呢?
问题2 如图:(1)若∠1=∠2,可以判定哪两 条直线平行 根据是什么?
(3)若∠2 +∠3=180°,可以判定哪两条直 线平行?根据是什么?
问题3 如图 , AB∥CD,如果∠1=∠2, 那么 EF 与 AB 平行吗?说说你的理由.
演讲人:XXXXXX 时 间:XX年XX月XX日
第五环节:归纳小结,反思提高
1、本节课主要应用了哪些知识? 2、在应用它们时,你认为应该注意哪些问题? 3、在写几何推理的过程中,因为和所以分
别表达的意义是什么?根据是什么?
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
= 73° .
问题2:如图,AE∥CD,若∠1 = 37°, ∠D =54°,求∠2 和∠BAE的度数.
第四环节:及时巩固,深化提高
问题1:如图,选择合适的内容填空。
(1)因为AB//CD
所以∠1=∠2(
)
(2)因为∠3=∠1
所以 //__(同位角相等,两直线平行)
(3)因为∠1+∠ =180 ,
所以AB//CD(
)
问题2:如图,∠1=∠3,那么,∠1和∠2的 大小有何关系?∠1和∠4的大小有何关系? 为什么?由此你得到什么结论?
问题3:如图,平行直线AB,CD被直线EF所截, 分别交直线AB,CD于点G,M。GH和MN分别是 ∠EGB和∠EMD的角平分线。
问:GH和MN平行吗?请说明理由。
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
解:因为 ∠1 = ∠2, 根据“内错角相等,两直线平行” , 所以 EF∥CD. 又因为 AB∥CD, 根据“平行于同一条直线的两条直线平行” , 所以 EF∥AB.
第三环节:独立探究,步骤规范
问题1:如图,已知直线a∥b,直线c∥d, ∠1=107°,求∠2,∠3 的度数.
解:因为a∥b, 根据“两直线平行,内错角相等” , 所以 ∠2 = ∠1 = 107° . 因为 c∥d, 根据“两直线平行,同旁内角互补” , 所以 ∠1 + ∠3 = 180° , 所以 ∠3 = 180°- ∠1 = 180°-107°
第二章 相交线与平行线
3 平行线的性质(第2课时)
第一环节:复习回顾,夯实基础
问题1: 平行线的性质有哪几条? 问题2:判别直线平行的条件有哪几个?
你现在一共有几个判定直线平行 的方法? 问题3:在应用二者时应注意什么问题?
第二环节:层层递进,推理论证
问题1: 如图,直线a,b被直线c所截, (1)当∠1=∠2时,你能结合
图形用推理的方式来说明 a∥b吗? (2)若∠2+∠3=180°呢?
问题2 如图:(1)若∠1=∠2,可以判定哪两 条直线平行 根据是什么?
(3)若∠2 +∠3=180°,可以判定哪两条直 线平行?根据是什么?
问题3 如图 , AB∥CD,如果∠1=∠2, 那么 EF 与 AB 平行吗?说说你的理由.
演讲人:XXXXXX 时 间:XX年XX月XX日
第五环节:归纳小结,反思提高
1、本节课主要应用了哪些知识? 2、在应用它们时,你认为应该注意哪些问题? 3、在写几何推理的过程中,因为和所以分
别表达的意义是什么?根据是什么?
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
= 73° .
问题2:如图,AE∥CD,若∠1 = 37°, ∠D =54°,求∠2 和∠BAE的度数.
第四环节:及时巩固,深化提高
问题1:如图,选择合适的内容填空。
(1)因为AB//CD
所以∠1=∠2(
)
(2)因为∠3=∠1
所以 //__(同位角相等,两直线平行)
(3)因为∠1+∠ =180 ,
所以AB//CD(
)
问题2:如图,∠1=∠3,那么,∠1和∠2的 大小有何关系?∠1和∠4的大小有何关系? 为什么?由此你得到什么结论?
问题3:如图,平行直线AB,CD被直线EF所截, 分别交直线AB,CD于点G,M。GH和MN分别是 ∠EGB和∠EMD的角平分线。
问:GH和MN平行吗?请说明理由。
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
解:因为 ∠1 = ∠2, 根据“内错角相等,两直线平行” , 所以 EF∥CD. 又因为 AB∥CD, 根据“平行于同一条直线的两条直线平行” , 所以 EF∥AB.
第三环节:独立探究,步骤规范
问题1:如图,已知直线a∥b,直线c∥d, ∠1=107°,求∠2,∠3 的度数.
解:因为a∥b, 根据“两直线平行,内错角相等” , 所以 ∠2 = ∠1 = 107° . 因为 c∥d, 根据“两直线平行,同旁内角互补” , 所以 ∠1 + ∠3 = 180° , 所以 ∠3 = 180°- ∠1 = 180°-107°