平行线的判定ppt课件
合集下载
平行线的性质ppt课件

(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=
∠
BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=
∠
BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .
平行线的性质 课件(共22张PPT)

3
∴∠2=∠3(两直线平行,同位角相等),
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
你发现了什么?
两条平行直线被第三条直线所截,内错角相等. 简写成:两直线平行,内错角相等. 表达方式:如图,
∵a∥b(已知),
∴∠1=∠2(两直线平行,内错角相等).
如图,直线a∥b,直线a、b被直线c所截
试一试
翻开你的数学练习横格本,每一页上都有许多如图所示的互 相平行的横线条,随意画一条斜线与这些横线条相交, 找出其中 任意一对同位角.观察或用量角器度量这对同位角,你有什么发现?
∠1=∠2
那么,一般情况下,如图,如果直线a与直线b平行,直线l与 直线a、b分别交于点O和点P,其中的同位角∠1与∠2也必定相等吗?
A.65°
B.55°
C.45°
D.35°
课堂小结
知识点 平行线的性质
1.两直线平行,同位角 相等 . 2.两直线平行,内错角 相等 . 3.两直线平行,同旁内角 互补 .
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
(2)从∠1=110o可以知道 ∠3是多少度?为什么?
(3)从 ∠1=110 o可以知道∠4 是多少度?为什么?B
D
解:(1)∠2=110o 理由:两直线平行,内错角相等;
(2)∠3=110o 理由:两直线平行,同位角相等;
(3)∠4=70o 理由:两直线平行,同旁内角互补.
C 2E 43
2.如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为 ( B )
例3 将如左图所示的方格图中的图形向右平行移动4格,再向上 平行移动3格,画出平行移动后的图形.
人教版七年级数学下册《平行线的判定》课件ppt

思考:根据平行线的定义,如果同一平面内的两条直线不相交,就可以判断 这两条直线平行.但是,由于直线无限延伸,检验它们是否相交有困难,所 以难以直接根据两条直线是否相交来判定是否平行,那么有没有其他判定方 法呢?
1.放 2.靠 3.推
4.画
平行线画法
E C
A
D B
F
思考 (1)画图过程中,什么角始终保持相等? (2)直线a,b位置关系如何?
图1
2.如图2
∵∠B=∠_C__G__F__,∴ AB∥ CD(同位角相等,两直线平行.)
∵∠BGC=∠__F_____,∴ CD∥ EF(同位角相等,两直线平行.)
∵AB∥ CD ,CD∥ EF,
∴ AB∥___E__F__(如果两条直线都与第三条直线平行,那么这 )
图2
两条直线也互相平行.
3.下图中若∠1=55° ,∠2=55°,直线AB、CD平行吗?为什么?
也互相平行.)
已知∠3=45 °,∠1与∠2互余,试说明 AB//CD ?
解:∵∠1=∠2(对顶角相等)
A C
∠1+∠2=90°(已知Байду номын сангаас ∴∠1=∠2=45°
3
1
2
∵ ∠3=45°(已知) ∴∠ 2=∠3
B
D
∴ AB∥CD(内错角相等,两直线平行)
做一做
内错角相等, 两直线平行.
同旁内角互补, 两直线平行.
c
a 3 2
1 b
3.如图.(1)从∠1=∠4,可以推出 AB ∥ CD ,理由是内错角相等,两直线平行 . (2)从∠ABC +∠BCD =180°,可以推出AB∥CD ,理由是同旁内角互补,两直线平行. (3)从∠ 3 =∠ 2 ,可以推出AD∥BC,理由是 内错角相等,两直线平行 . (4)从∠5=∠ ABC ,可以推出AB∥CD,理由是 同位角相等,两直线平行 .
平行线的判定ppt课件

4.8.2 平行线的判定
新奇点 丫丫
与被截直线的关系
与截线的关录
CONTENTS
01
同位角、内错角、同旁内角的特点:
截线的同旁
05
截线的同旁
“三线八角”回顾
03
被截直线之间
单击添加文本具体内容
02
单击添加文本具体内容
06
截线的两旁
单击添加文本具体内容
04
被截直线之间
单击添加文本具体内容
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
4.如图,直线a,b被c所截,已知∠1=120°,∠2=60°,直线a,b平行吗?为什么?
解:a与b平行, ∵∠1=∠3(对顶角相等) ∠1=120°(已知)∴∠3=120° ∵∠2=60°∴∠2+3=180° ∴a//b(同旁内角互补,两直线平行)
a
b
c
1
2
3
1.如果∠A=∠3,那么 ∥ , ( ) 2.如果∠2=∠E,那么 ∥ , ( ) 3.如果∠A+∠ABE=1800,那么 ∥ , ( ) 4.如果∠2= ,那么DA∥EB ( ) 5.如果∠DBC+ =1800,那么DB∥EC ( )
2. 两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简单地说:内错角相等,两直线平行。
3. 两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简单地说:同旁内角互补,两直线平行。
总结
a
b
c
m
n
1
2
3
4
a ∥ b.
c ∥m.
c ∥n.
1.当图中各角满足下列条件时,你能指出哪两条直线平行? (1) ∠1 = ∠4,
《平行线的判定定理》课件

平行线的同旁内角互补定理
总结词
同旁内角互补是判断两直线平行的关键条件。
详细描述
当两条直线被第三条直线所截,如果同旁内角互补,则这两条直线平行。具体来 说,如果同旁内角之和等于180度,则这两条直线平行。
平行线的内错角相等定理
总结词
内错角相等是判断两直线平行的又一 重要条件。
详细描述
当两条直线被第三条直线所截,如果 内错角相等,则这两条直线平行。具 体来说,如果内错角相等,则这两条 直线平行。
平行线表示方法
用“//”表示两条直线平行。
平行线性质符号表示
同位角相等(∠1=∠2),内错角相等(∠3=∠4),同旁内角互补( ∠5+∠6=180°)。
平行线的性质
平行线的性质
同位角相等、内错角相等、同旁内角 互补。
平行线性质的应用
证明两直线平行、计算角度大小、解 决几何问题。
02
平行线的判定定理
键之一。
04
练习题与解析
基础练习题
01
基础练习题1:题目1 、2、3
02
基础练习题2:题目4 、5、6
03
基础练习题3:题目7 、8、9
进阶练习题
1 2
3
进阶练习题1
题目10、11、12
进阶练习题2
题目13、14、15
进阶练习题3
题目16、17、18
综合练习题
综合练习题1 综合练习题2 综合练习题3
题。
角的度量与计算
02
介绍角的度量单位和方法,以及如何进行角的计算。
复习与巩固
03
对本单元所学知识进行复习巩固,强化学生对平行线和相交线
知识的掌握。
THANKS
《平行线的判定定理》课件

《平行线的判定定理》 PPT课件
欢迎来到《平行线的判定定理》的PPT课件!在本课程中,我们将深入探讨两 条直线平行的判定定理,帮助您更好地理解和应用这一重要概念。
平行线的定义
1 什么是平行线?
2 为什么平行线很重要?
平行线是指在同一个平面内永不相交的两条 直线。它们具有相同的斜率,但不会有交点。
平行线在几何学和实际应用中扮演着重要角 色,如测量、建筑设计、电路布局等。
如何利用距离测量判断两条直线 是否平行?
常见错误和易混淆概念
1 错误:角度相等就一定是平行线吗?
不一定。平行线的角度可以相等行线有什么区别?
垂直线是相互交叉、形成直角的线,而平行线在同一个平面内永不相交。
结论及提出问题
通过本课件,您已经掌握了《平行线的判定定理》的重要概念和应用方法。接下来,您可以思考以下问题: 1. 在日常生活中,你能想到哪些使用平行线的例子? 2. 是否存在一个平行线的判定定理三?如果有,请尝试提出一个并推理其正确性。
具体方法
1. 画出所给直线及其上的一点。 2. 过该点作与直线垂直的线段。 3. 判断垂直线段是否与另一直线重合。
实例应用
这一方法在地图制作和导航系统中很常见,用于判断公路或铁路是否平行。
相关例题
例题 1
给定两条直线,如何判定它们是 否平行?
例题 2
如何利用角度测量判断两条直线 是否平行?
例题 3
平行线判定定理一
1
具体步骤
2
1. 画出所给直线。
2. 判断给定角的性质。
3. 如果对应角、内错角或同位角等均相
3
等,则两直线平行。
定理一介绍
通过角的性质判定两条直线是否平行。
实际应用举例
欢迎来到《平行线的判定定理》的PPT课件!在本课程中,我们将深入探讨两 条直线平行的判定定理,帮助您更好地理解和应用这一重要概念。
平行线的定义
1 什么是平行线?
2 为什么平行线很重要?
平行线是指在同一个平面内永不相交的两条 直线。它们具有相同的斜率,但不会有交点。
平行线在几何学和实际应用中扮演着重要角 色,如测量、建筑设计、电路布局等。
如何利用距离测量判断两条直线 是否平行?
常见错误和易混淆概念
1 错误:角度相等就一定是平行线吗?
不一定。平行线的角度可以相等行线有什么区别?
垂直线是相互交叉、形成直角的线,而平行线在同一个平面内永不相交。
结论及提出问题
通过本课件,您已经掌握了《平行线的判定定理》的重要概念和应用方法。接下来,您可以思考以下问题: 1. 在日常生活中,你能想到哪些使用平行线的例子? 2. 是否存在一个平行线的判定定理三?如果有,请尝试提出一个并推理其正确性。
具体方法
1. 画出所给直线及其上的一点。 2. 过该点作与直线垂直的线段。 3. 判断垂直线段是否与另一直线重合。
实例应用
这一方法在地图制作和导航系统中很常见,用于判断公路或铁路是否平行。
相关例题
例题 1
给定两条直线,如何判定它们是 否平行?
例题 2
如何利用角度测量判断两条直线 是否平行?
例题 3
平行线判定定理一
1
具体步骤
2
1. 画出所给直线。
2. 判断给定角的性质。
3. 如果对应角、内错角或同位角等均相
3
等,则两直线平行。
定理一介绍
通过角的性质判定两条直线是否平行。
实际应用举例
《平行线的判定》PPT课件

理由。
D
C
1
3
2
4
A
B
1.由∠1=∠2判定 D∥C A,B理由
解答
是 内错角相等,两直线平行。
.
2.由∠4=∠A判定 A∥D B,C理由 是 同位角相等,两直线平行。
解答
.
3.由∠A+ ∠2+∠3= 1 判定8 A∥D 0 B,C 理由
是 同旁内角互补,两直线平行。
. 解答
思 如图,如果CD∥AB,EF∥AB,那么直线CD
<<<返回
直线有几条?画画看。
!!解答
应用练习:A组
4.如图,已知∠1=∠2,∠3= 110, 求∠4的度数。
M
cd C
D
A
D
a
1
3
C
3
b4 2
(第4题)
1
A2
(第5题)
B
E
(第6题)
B
N
5.如图,AD平分∠BAC, ∠1=∠3,能推出AB∥CD 吗?说明理由。
6.如图,已知∠MCA= ∠ A, ∠ DEC= ∠ B,那么
F
解:
1
2
因为∠1=∠A,所以AB∥EF, D
C
(同位角相等,两直线平行。)
因为∠2=∠B,所以AB∥DC,
解答
(内错角相等,两直线平行。)
因为AB∥EF、 AB∥DC,所以EF∥DC。 (如果两条直线都与第三条直线平行,那 么这两条直线平行。)
注意体会推理哦!
(1)画两条平行直线 l1和 l2。 (2)在直线 l1上任取一点A,经过点A作 AC⊥l2,垂
1.如图,D为AC上的一点,F是AB上的一点。在什么
平行线的判定优秀教学课件ppt

在同一平面 内 ,垂直于 同一条直线 的两条直线 互相平行。
4:如图所示BE平分∠ABC, ∠CBF= ∠ CFB,请说明AB∥DC的理由
E
D
FC
A
B
如图,哪两个角相等能 判定直线AB∥CD?
A
3
B
12
4
C∠3=∠4
D
如果∠213 =∠524 , 能判定 哪两条直线平行?
E
G
A1 3
2 C
B
4
5
D
F
H
EEAFFB∥∥∥GGCHHD
火眼金睛,找出图中的平行线
如果∠ADE=∠ABC,则__∥ __
A
D
E 如果∠ACD=∠F, 则__∥ __
B
C
如果∠DEC=∠BCF,则__∥ __
合作学习: 按如图所示方法可以画平行线.把图中的直线
AB,CD看成被尺边EF所截,那么在画图过程中, 什么角始终保持相等?由此你能发现判定两直 线平行的方法吗?
E
A
B
C
D
F
一般地,判断两直线平行有下面的方法:
两条直线被第三条直线所截, 如果同位 角相等, 那么这两条直线平行. 简单地说, 同位角相等, 两直线平行。
1.3平行线的判定(1)
复习:
角的名称 位置特征 基本图形 相同点 共同特征
同位角
在截线的同 旁,在被截
4
两直线的同
8
一侧。
同旁内角 在截线的同旁, 4
在被截两直线
5
之间。
内错角
在截线的异侧,
在被截两直线 3 5
之间。
都在截 线的同 这三类 一侧。 角都是
没有公 都在被 共顶点 截两直 的。 线之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.如图,直线a,b被c所截,已知∠1=120°, ∠2=60°,直线a,b平行吗?为什么?
a 1 3 2 b
解:a与b平行, ∵∠1=∠3(对顶角相等)
c ∠1=120°(已知)∴∠3=120°
∵∠2=60°∴∠2+3=180° ∴a//b(同旁内角互补,两直线平行)
反馈评价 游戏接龙
D E
1.如果∠A=∠3,那么AD ∥ BE , 2 1 3 ( 同位角相等,两直线平行.) 2.如果∠2=∠E,那么BD ∥ CE , A B ( 内错角相等,两直线平行.) 3.如果∠A+∠ABE=1800,那么 AD ∥ BE , ( 同旁内角互补,两直线平行.) 4.如果∠2= ∠D ,那么DA∥EB ( 内错角相等,两直线平行.) 5.如果∠DBC+∠C =1800,那么DB∥EC ( 同旁内角互补,两直线平行.)
随堂练习
1.当图中各角满足下列条件时,你能 指出哪两条直线平行? (1) ∠1 = ∠4, 4
a
b
2 3 m n
1
a ∥ b. (2) ∠2 = ∠4,
c
c ∥m.
(3)∠1+ ∠3=180°, c ∥ n.
2.如图, AD BC 如果∠B=∠1,则可得 // 同位角相等,两直线平行 根据是
, .
CD , 如果∠D=∠1,则可得到 AB // 内错角相等,两直线平行. 根据是
A B 1 C D
3.如图,四边形ABCD中,已知∠B=60°, ∠C=120°,AB与CD平行吗?AD与BC平行吗?
解:直线AB与CD平行, ∵∠B=60°,∠C=120°∴∠B+C=180°, ∴AB//CD(同旁内角互补,两直线平行) 根据题目条件无法所截,如果 同位角相等,那么两直线平行。简 单地说:同位角相等,两直线平行。
a
l
2
如图:
b
1
∵ ∠1=∠2(已知) ∴ a∥b(同位角相等,两直线平行)
练习:
如图,∠1=100°,∠2=100°,a∥b吗?
1 2 b a
80° 若∠2=100°,∠3=___时, a∥b。
a ∥___ b (内错角相等,两直线平行) ∴ ___
进一步探索!
② 如图: 如果∠1+∠2=180 , 那么a与b平行吗?
同旁内角互补,两直线平行。
o
l
a 2 b 1
∵
o ∠ 1 ∠ 2 ____+____=180 (已知)
a b ∴ ___∥___(同旁内角互补,两直线平行)
总结
1.两条直线被第三条直线所截,如果同位角相等,那么两 直线平行。简单地说:同位角相等,两直线平行。 2. 两条直线被第三条直线所截,如果内错角相等,那么 两直线平行。简单地说:内错角相等,两直线平行。 3. 两条直线被第三条直线所截,如果同旁内角互补,那 么两直线平行。简单地说:同旁内角互补,两直线平行。
2 D
5 4
B
同旁内角互补,两直线平行
我们的收获……
结合本堂课内容,请用下列句式造句。 我学会了……
我明白了…… 我认为…… 我会用…… 我想……
作业
课本178.习题4.8 3. 4题做到作业本上
3 2 a b
大家来探索!
① 如图: 如果∠1=∠2, 那么a与b平行吗?
l
a 3
2
b 1
② 如图: 如果∠1+∠2=180 , 那么a与b平行吗?
o
l
a 2 b 3 1
① 如图: 如果∠1=∠2, 那么a与b平行吗?
l
a
2
b 1
内错角相等,两直线平行。
∠1 =____ ∠2 (已知) ∵ ____
回顾:平行线的性质及画法。
判断下列语句是否正确,并加以改正。
(1)两条不相交的直线叫平行线;
(2)过一点画已知直线的平行线能且只能 画一条 ; (3)与已知直线平行的直线有且只有一条;
(4)若直线a、b都和c平行,那么a与b平行.
画图并回答问题:
过直线l 外一点P画直线l 的平行线, ① 三角尺紧靠直尺的边和直线l 所成的角在平移前 同位 角, 的位置和平移后的位置构成了一对______ 始终不变 其大小______ 。 同位角 相等,画出的直线就平行于 ② 只要保持_________ 已知直线。 ③由上面的画图与问题,你能否用一句话来概括?
同旁内角互补,两直线平行
3.如图:
∠2 (已知) ① ∵ ∠1 =_____
C 1
F 3
E
∴ AB∥CE 内错角相等,两直线平行 ∠3 =180o(已知) ② ∵ ∠1 +_____ A
∴ CD∥BF 同旁内角互补,两直线平行 o ③ ∵ ∠1 +∠5 =180 (已知) ∴ _____ AB ∥_____ CE 同旁内角互补,两直线平行 o ∠ 3 ④ ∵ ∠4 +_____=180 (已知) ∴ CE∥AB
C
2.如图:
∠6(已知) ① ∵ ∠2 =___ ∴ ___ AB∥___ CD
A 2 3 6 7 1 B 4 5 D 8
同位角相等,两直线平行
C
② ∵ ∠3 = ∠5(已知)
∴ ___ CD AB∥___
内错角相等,两直线平行
o
③∵ ∠4 +∠ ___ 5=180 (已知) ∴ ___ CD AB∥___