抛物线及其标准方程

合集下载

抛物线的定义与标准方程

抛物线的定义与标准方程

抛物线的定义与标准方程
抛物线是一种几何图形,它的形状像弓形,早在古希腊时期就已被哲学家用来描述天体运动的轨道。

抛物线拥有独特的几何结构,是分析数学中的一个重要的几何图形。

抛物线定义为一个二次方程
y=ax^2+bx+c的解集合,其中a是不等于0的实数,b与c是实数。

bx 和c分别表示抛物线的斜率和截距。

抛物线有若干不同的特性,其定义可以用标准方程表示,即:
y=ax2+bx+c,其中a、b、c分别是抛物线的系数,而a必须为不等于0的实数。

抛物线的系数a可以用来确定抛物线的开口方向,如果a>0,则抛物线向上开口;如果a<0,则抛物线向下开口。

抛物线的中点是抛物线函数的最高点或最低点,即y的最大值或最小值。

另外,抛物线的对称轴是横坐标x的值,由其标准方程中的b系数决定。

此外,抛物线的几何图形还具有一些特殊的性质,比如切线的斜率,其斜率的值等于解抛物线方程时的系数a。

另外,抛物线的曲线旁线总是平行于切线,这对抛物线几何图形的描述非常重要。

在学习数学时,抛物线可以用来解决许多复杂的问题,抛物线的定义与标准方程可以帮助人们理解抛物线的相关特性,从而更好地解决各种复杂的数学问题。

尽管抛物线的定义看起来很简单,但是人们在分析抛物线的运动轨迹及其性质时,还有许多需要注意的地方。

抛物线及其标准方程

抛物线及其标准方程

抛物线1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.其数学表达式:|MF |=d (其中d 为点M 到准线的距离).2.抛物线的标准方程与几何性质1(1)定点不在定直线上.(2)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线.2.抛物线的方程特点方程y =ax 2(a ≠0)可化为x 2=1ay ,是焦点在y 轴上的抛物线.3.结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则:(1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AF |=p 1-cos α,|BF |=p 1+cos α,弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角),S △OAB =p 22sin α;(3)1|FA |+1|FB |=2p;(4)以弦AB 为直径的圆与准线相切;(5)以AF 或BF 为直径的圆与y 轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.(7)过抛物线y 2=2px (p >0)的顶点O (0,0)作互相垂直的两条射线且都与抛物线相交,交点为A ,B (如图).则直线AB 过定点M (2p,0);反之,若过点M (2p,0)的直线l 与抛物线y 2=2px (p >0),交于两点A ,B ,则必有OA ⊥OB .1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.()(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.()(3)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎪⎭⎫⎝⎛0,4a,准线方程是x =-a 4.()(4)抛物线既是中心对称图形,又是轴对称图形.()2.抛物线y =14x 2的准线方程是()A .y =-1B .y =-2C .x =-1D .x =-23.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =()A .2B .3C .4D .84.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点.如果x 1+x 2=6,那么|AB |=()A .6B .8C .9D .105.已知抛物线C 1:x 2=2py (p >0)的准线与抛物线C 2:x 2=-2py (p >0)交于A ,B 两点,C 1的焦点为F ,若△FAB 的面积等于1,则C 1的方程是()A .x 2=2y B .x 2=2y C .x 2=yD .x 2=22y 6.(教材改编)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.7.焦点在直线2x +y +2=0上的抛物线的标准方程为_______________抛物线的定义及应用例:1.动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是()A .直线B .椭圆C .双曲线D .抛物线(2)(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9(3)若点P 到点F(0,2)的距离比它到直线y +4=0的距离小2,则P 的轨迹方程为()A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y(4)在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是()A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)(5).已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.(6).已知椭圆x 24+y 23=1的右焦点F 为抛物线y 2=2px (p >0)的焦点,点P 的坐标为(3,2).若点M 为该抛物线上的动点,则|MP |+|MF |的最小值为__________.(7).若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为()A .(0,0)B .⎪⎭⎫⎝⎛121C .(1,2)D .(2,2)(8).已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是___________.(9).已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是()A .3B .5C .2D .5-1(10).已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=______.抛物线的标准方程例:(1)(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9(2)(2021·山西吕梁二模)如图,过抛物线x 2=2py (p >0)的焦点F 的直线l 交抛物线于A ,B 两点,交其准线于点C ,若|BC |=2|BF |,且|AF |=2,则p =()A .1 B.2C .2D .2-2(3).顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是()A .y 2=-xB .x 2=-8yC .y 2=-8x 或x 2=-yD .y 2=-x 或x 2=-8y(4).如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=6,则此抛物线方程为()A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x(5).已知抛物线x 2=ay 与直线y =2x -2相交于M ,N 两点,若MN 中点的横坐标为3,则此抛物线的方程为()A .x 2=32yB .x 2=6yC .x 2=-3yD .x 2=3y(6).抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为()A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x(7).抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为__________.抛物线的几何性质例:(1)(2020·全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A .⎪⎭⎫⎝⎛041,B .⎪⎭⎫⎝⎛021,C .(1,0)D .(2,0)(2)已知抛物线y 2=2px (p >0),过其焦点且斜率为-1的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为()A .x =1B .x =2C .x =-1D .x =-2(3)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为______________.(4).若双曲线C :2x 2-y 2=m (m >0)与抛物线y 2=16x 的准线交于A ,B 两点,且|AB |=43,则m 的值是____________.(5).在平面直角坐标系xOy 中有一定点A (4,2),若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是_____________(6).已知抛物线y 2=4x 的焦点F ,准线l 与x 轴的交点为K ,P 是抛物线上一点,若|PF |=5,则△PKF 的面积为()A .4B .5C .8D .10(7)(2021·新高考Ⅰ卷)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为__________________.(8).过抛物线:y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,若直线l 与抛物线在第一象限的交点为A ,并且点A 也在双曲线:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线上,则双曲线的离心率为()A.213B.13C.233D.5(9).如图,已知抛物线y 2=4x 的焦点为F ,过点F 且斜率为1的直线依次交抛物线及圆(x -1)2+y 2=14于A ,B ,C ,D 四点,则|AB |+|CD |的值是()A .6B .7C .8D .9直观想象、数学运算——抛物线中最值问题的求解方法与抛物线有关的最值问题是历年高考的一个热点,由于所涉及的知识面广,题目多变,一般需要通过数形结合或利用函数思想来求最值,因此相当一部分同学对这类问题感到束手无策.下面就抛物线最值问题的求法作一归纳.1.定义转换法【典例1】(2021·上海虹口区一模)已知点M(20,40),抛物线y2=2px(p>0)的焦点为F.若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于________.2.平移直线法【典例2】抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是________.[切入点]解法一:求出与已知直线平行且与抛物线相切的直线方程,从而求两平行线间的距离.解法二:求出与已知直线平行且与抛物线相切的直线与抛物线的切点坐标,从而求切点到已知直线的距离.3.函数法【典例3】若点P在抛物线y2=x上,点Q在圆(x-3)2+y2=1上,则|PQ|的最小值为________.[切入点]P、Q都是动点,转化为圆心与点P的最值.1.(2021·东北三省四市二模)若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.12C.14D.182.(2021·云南省高三统一检测)设P,Q分别为圆x2+y2-8x+15=0和抛物线y2=4x上的点,则P,Q两点间的最小距离是________.直线与抛物线的位置关系1.直线与抛物线的位置关系2=2px,=kx+m,得k2x2+2(mk-p)x+m2=0.(1)相切:k2≠0,Δ=0.(2)相交:k2≠0,Δ>0.(3)相离:k2≠0,Δ<0.2.焦点弦的重要结论抛物线y2=2px(p>0)的焦点为F,过F的焦点弦AB的倾斜角为θ,则有下列性质:(1)y1y2=-p2,x1x2=p24.(2)|AF|=x1+p2=p1-cosθ;|BF|=x2+p2=p1+cosθ;|AB|=x1+x2+p=2psin2θ.(3)抛物线的通径长为2p,通径是最短的焦点弦.(4)S△AOB=p22sinθ.(5)1|AF|+1|BF|为定值2p.(6)以AB为直径的圆与抛物线的准线相切.(7)以AF(或BF)为直径的圆与y轴相切.(8)过焦点弦的端点的切线互相垂直且交点在准线上.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线与抛物线有且仅有1个公共点,则它们相切.()(2)所有的焦点弦中,以通径的长为最短.()(3)直线l过(2p,0),与抛物线y2=2px交于A、B两点,O为原点,则OA⊥OB.()(4)过准线上一点P作抛物线的切线,A、B为切点,则直线AB过抛物线焦点.() 2.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有() A.1条B.2条C.3条D.4条3.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=()A .9B .8C .7D .64.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为()A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x5.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为__________.直线与抛物线的位置关系【例1】(1)过点(0,3)的直线l 与抛物线y 2=4x 只有一个公共点,则直线l 的方程为__________.(2)已知抛物线C :x 2=2py ,直线l :y =-p2,M 是l 上任意一点,过M 作C 的两条切线l 1,l 2,其斜率为k 1,k 2,则k 1k 2=________.焦点弦问题【例2】(1)(2021·石家庄市质检)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22)的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于()A .1∶2B .1∶3C .1∶2D .1∶3(2)(2021·湖南五市十校摸底)过抛物线C :y 2=2px (p >0)的焦点F 的直线l 与抛物线交于M 、N 两点(其中M 点在第一象限),若MN →=3FN →,则直线l 的斜率为________.(3)过抛物线y 2=4x 焦点F 的直线交抛物线于A 、B 两点,交其准线于点C ,且A 、C 位于x 轴同侧,若|AC |=2|AF |,则|BF |等于()A .2B .3C .4D .5(2020·山东卷)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.直线与抛物线的综合问题例题1:已知以F 为焦点的抛物线C :y 2=2px (p >0)过点P (1,-2),直线l 与C 交于A ,B 两点,M 为AB 的中点,O 为坐标原点,且OM →+OP →=λOF →.(1)当λ=3,求点M 的坐标;(2)当OA →·OB →=12时,求直线l 的方程.例题2:设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .例题3:已知抛物线P :y 2=2px (p >0)上的点⎪⎭⎫ ⎝⎛a ,43到其焦点的距离为1.(1)求p 和a 的值;(2)求直线l :y =x +m 交抛物线P 于A ,B 两点,线段AB 的垂直平分线交抛物线P 于C ,D 两点,求证:A ,B ,C ,D 四点共圆.例题4.如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程;(2)若线段|AB |=20,求直线l 的方程.例题5:已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎪⎭⎫ ⎝⎛250,为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.。

抛物线及其标准方程教案

抛物线及其标准方程教案

抛物线及其标准方程教案教案:抛物线及其标准方程目标:1.了解抛物线的定义和性质。

2.学习抛物线的标准方程,并能够根据给定的条件写出抛物线的标准方程。

3.能够利用抛物线的标准方程求解与抛物线相关的问题。

教学步骤:Step 1:导入通过展示一张抛物线的图片,引起学生对抛物线的兴趣,并提出问题:“你认为抛物线有什么特点?”Step 2:定义抛物线讲解抛物线的定义:抛物线是一个平面曲线,它的每个点到焦点的距离与该点到直线的距离相等。

Step 3:抛物线的性质- 抛物线是对称的,它关于焦点所在的直线称为对称轴。

- 抛物线的顶点是对称轴上的点,也是抛物线的最低点(凹部)或最高点(凸部)。

- 抛物线的焦点到顶点的距离称为焦距。

- 抛物线是单调增加或单调减少的。

Step 4:抛物线的标准方程介绍抛物线的标准方程:y = ax^2 + bx + c,其中a,b,c是常数,a不等于零。

说明标准方程的各个参数的含义:- a决定抛物线的开口方向和大小。

- b决定抛物线在对称轴上的位置。

- c是抛物线的顶点的纵坐标。

Step 5:根据条件写出抛物线的标准方程示范如何根据给定的条件写出抛物线的标准方程,例如:- 已知抛物线的顶点坐标为(2,5),求抛物线的标准方程。

- 已知抛物线与x轴相交于点(1,0)和(-3,0),求抛物线的标准方程。

- 已知抛物线经过点(1,3)和(4,6),求抛物线的标准方程。

Step 6:练习与讨论让学生自主完成一些练习题,并与全班讨论答案。

示范题目:1. 已知抛物线的焦点在原点,对称轴与x轴平行,焦距为4,求抛物线的标准方程。

2. 已知抛物线过点(3,-1),且与y轴平行,求抛物线的标准方程。

3. 已知抛物线的标准方程为y = -2x^2 + 4x - 3,求抛物线的顶点坐标和焦距。

Step 7:拓展如果时间允许,可以讲解一些与抛物线相关的应用问题,例如:一个摄像机抛出的炮弹在空中的轨迹是一个抛物线,如何求解炮弹的最大高度和飞行距离等。

《抛物线及其标准方程》教案(公开课

《抛物线及其标准方程》教案(公开课

《抛物线及其标准方程》教案(公开课《抛物线及其标准方程》教案(公开课)一、教学内容本节课选自高中数学教材选修22第二章第四节《抛物线及其标准方程》。

具体内容包括:1. 抛物线的定义及其简单性质;2. 抛物线的标准方程:y²=2px(p>0)和x²=2py(p>0);3. 抛物线的图形及其在实际问题中的应用。

二、教学目标1. 让学生掌握抛物线的定义、标准方程及其简单性质;2. 培养学生运用抛物线知识解决实际问题的能力;3. 培养学生的观察能力、空间想象能力和逻辑思维能力。

三、教学难点与重点1. 教学难点:抛物线标准方程的推导,抛物线图形的识别;2. 教学重点:抛物线的定义,标准方程及其性质。

四、教具与学具准备1. 教具:多媒体课件,黑板,粉笔;2. 学具:直尺,圆规,量角器,练习本。

五、教学过程1. 实践情景引入(1)展示图片:篮球投篮、投掷铅球、卫星轨道等;(2)提问:这些情景中,物体的运动轨迹有什么共同特点?2. 知识讲解(1)抛物线的定义:物体在只受重力作用下,从一点出发,经过一段时间后,落回到这一点,且在运动过程中始终受到同一平面的约束,这样的运动轨迹称为抛物线;(2)抛物线的标准方程:y²=2px(p>0)和x²=2py(p>0);(3)抛物线的性质:对称性、开口方向、顶点、焦点、准线等。

3. 例题讲解(1)求抛物线y²=4x的焦点、顶点和准线;(2)已知抛物线的焦点为F(1,0),求该抛物线的标准方程。

4. 随堂练习(2)已知抛物线的焦点和顶点,求其标准方程。

5. 小结六、板书设计1. 定义:抛物线是物体在只受重力作用下,从一点出发,经过一段时间后,落回到这一点,且在运动过程中始终受到同一平面的约束的运动轨迹;2. 标准方程:y²=2px(p>0)和x²=2py(p>0);3. 性质:对称性、开口方向、顶点、焦点、准线;4. 例题:抛物线y²=4x的焦点、顶点和准线;已知焦点求抛物线标准方程。

《抛物线及其标准方程》教案(公开课

《抛物线及其标准方程》教案(公开课

《抛物线及其标准方程》教案(公开课《抛物线及其标准方程》教案(公开课)一、教学内容本节课选自《解析几何》教材第四章第一节,主要内容包括抛物线的定义、性质及其标准方程的推导和应用。

二、教学目标1. 理解抛物线的定义,掌握抛物线的性质。

2. 学会推导抛物线的标准方程,并能解决实际问题。

3. 能够运用抛物线标准方程解决几何问题和实际应用。

三、教学难点与重点重点:抛物线的定义、性质及其标准方程。

难点:抛物线标准方程的推导和应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、练习本。

五、教学过程1. 实践情景引入2. 知识讲解(1) 抛物线的定义:平面内到一个定点F的距离等于到一条定直线l的距离的点的轨迹。

(2) 抛物线的性质:① 对称性;② 焦点、准线;③ 直线与抛物线的交点;④ 平面几何关系。

(3) 抛物线的标准方程:y^2 = 2px (p > 0) 或 x^2 = 2py (p > 0)。

3. 例题讲解(1) 求抛物线y^2 = 4x的焦点和准线。

(2) 已知抛物线x^2 = 8y,求过点P(2,3)且与抛物线相切的直线方程。

4. 随堂练习(1) 求抛物线y^2 = 12x的焦点、准线及对称轴。

(2) 已知抛物线x^2 = 16y,求过点A(4,2)且与抛物线相交的直线方程。

5. 课堂小结六、板书设计1. 定义2. 性质3. 标准方程4. 例题解析5. 随堂练习七、作业设计1. 作业题目(1) 求抛物线y^2 = 20x的焦点、准线及对称轴。

(2) 已知抛物线x^2 = 18y,求过点B(3,2)且与抛物线相切的直线方程。

2. 答案(1) 焦点:F(5,0),准线:x = 5,对称轴:y轴。

(2) 直线方程:y = 4/3x 2/3。

八、课后反思及拓展延伸本节课通过实践情景引入、知识讲解、例题讲解、随堂练习等环节,使学生掌握了抛物线的定义、性质和标准方程。

抛物线及其标准方程

抛物线及其标准方程
p 2
位于X轴的正半轴上,其准线交于X 位于X轴的正半轴上,其准线交于X轴的负半轴 p 焦点F( 即 焦点 ( 2 ,0), 准线 :x =), 准线L:

y
o
x
但是,一条抛物线, 但是,一条抛物线,由于它在坐标平面 内的位置不同,方程也不同, 内的位置不同,方程也不同,所以抛物 线的标准方程还有其它形式。 线的标准方程还有其它形式。

A
y
4
2)设抛物线的标准方程为 ) y2 = -2px,把A(-3,2)代入, , ( , )代入, 得p= 2
O
x
4 9 ∴抛物线的标准方程为x2 = y或y2 = − x 3 2
3

四、课堂练习
已知抛物线方程为x=ay2(a≠0),讨论 例4:已知抛物线方程为 已知抛物线方程为 , 抛物线的开口方向、焦点坐标和准线方程? 抛物线的开口方向、焦点坐标和准线方程? 1 1 2= x 即2p= a 抛物线的方程化为: 解:抛物线的方程化为:y a
①当a>0时, 时
p 2
=
1 4a
1 4a
,抛物线的开口向右 抛物线的开口向右
1 4a
∴焦点坐标是( ②当a<0时, 时
p 2
,0),准线方程是: x=
1 4a
=
1 4a
,抛物线的开口向左 抛物线的开口向左
1 4a
∴焦点坐标是(
,0),准线方程是: x=
思考题、M是抛物线 2 = 2px(P>0)上一点,若点 是抛物线y ( > )上一点, 是抛物线
三、抛物线的标准方程
抛物线的标 准方程还有 哪些形式? 哪些形式
想 一 想 ?
其它形式的 抛物线的焦 点与准线呢? 点与准线呢?

高中数学公式—抛物线及抛物线标准方程_公式总结

高中数学公式—抛物线及抛物线标准方程_公式总结

高中数学公式—抛物线及抛物线标准方程_公式总结
高中数学公式之抛物线公式:
抛物线:y=ax^2+bx+c
就是y等于ax 的平方加上bx再加上c
a &gt; 0时开口向上
a &lt; 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)^2 + k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 以上是小编为大家整理的高中数学公式的抛物线方程,希望便于大家牢记。

抛物线及其标准方程

抛物线及其标准方程

抛物线及其标准方程
抛物线是一种二次曲线,其标准方程为y^2=2px。

这个方程表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0),准线方程为x=-p/2。

抛物线的标准方程有不同的形式,如y^2=2px、y^2=-2px、x^2=2py和x^2=-2py等。

这些方程分别表示了不同的抛物线,其中p为焦点到准线的距离,决定了抛物线的形状和大小。

除了标准方程外,抛物线还可以用一般形式来表示,即y=ax^2+bx+c。

这个方程表示抛物线的开口方向、顶点坐标和与y轴的交点等特性。

另外,抛物线还可以用顶点式来表示,即y=a(x-h)^2+k。

这个方程表示抛物线的顶点坐标为(h,k),a为开口方向的系数。

在求解抛物线的问题时,需要根据具体问题选择适当的方程形式,并利用已知条件来求解未知量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y

x
| FF | p p p F (0, ), 准线y 2 2
| PF || PD |
| PD | y p p ; | PF | x 2 ( y ) 2 2 2
p p 2 2 y x (y ) 2 2 p 2 p 2 2 即( y ) x ( y ) 2 2 即py x 2 py 即x 2 2 py( p 0)
点F叫做抛物线的焦点 ,直线l叫做抛物线的准线 , 焦点到准线的距离(定 长p)叫做抛物线的焦参数
| PF || PD |
注:遇到“ 点到焦点距离 ”、“ 点到准线距离 ”问题, 需考虑此关系式
引例:一辆宽2米高3米的货车,要通过 跨度为8米,拱高为4米的抛物线型隧道, 问该货车能否通过?
建系,求方程
| PF || PD |)及其应用 1、抛物线的定义( 及其焦点准线和对应图 形 2、四种形式的标准方程 焦点和准线 3、已知方程求抛物线的 4、已知具体条件求抛物 线的标准方程
| PF || PD |
所以解决抛物线问题要 建系,求方程
y
y

x

x
y
y

x

x
y
| FF | p p p F ( ,0), 准线x 2 2

x
ቤተ መጻሕፍቲ ባይዱ
| PF || PD |
| PD | x p p ; | PF | ( x ) 2 y 2 2 2
p p 2 x (x ) y2 2 2 p 2 p 2 即( x ) ( x ) y 2 2 2 即px px y 2 即 y 2 2 px( p 0)
y
x p 2
p ( ,0 ) 2 p ( ,0) 2
y
x p 2

x

x
y 2 px( p 0)
2
y
y 2 2 px( p 0)
y
y p 2
p (0, ) 2
p (0, ) 2

x

x
p y 2
x2 2 py( p 0)
x 2 2 py( p 0)
y
x p 2
p ( ,0 ) 2
y
p 2

x
x
( p ,0) 2

x
y 2 px( p 0)
2
y
y 2 2 px( p 0)
y
p y 2
p (0, ) 2

x
y p
x
2
p (0, ) 2
x2 2 py( p 0)
x 2 2 py( p 0)
y
x p 2
p ( ,0 ) 2
y
p 2

x
x
( p ,0) 2

x
y 2 px( p 0)
2
y
y 2 2 px( p 0)
y
p y 2
p (0, ) 2

x
y p
x
2
p (0, ) 2
x2 2 py( p 0)
x 2 2 py( p 0)
难点:抛物线标准方程的推导.
椭圆与双曲线的第二定义?
已知点F和直线l ( F不在l上),动点 P到l的距离记为 PD:
PF ( 1)当 e(0 e 1)时, 点P的轨迹为椭圆 PD PF (2)当 e(e 1)时, 点P的轨迹为双曲线 PD
抛物线的定义:
平面内到一定点 F和一条定直线 l(F l)的距离相等的点的轨 迹
1. 通过展示几何画板对比展示,理解抛物线的定义的核心 性质并会应用. 2.通过一种抛物线标准方程推导,观察类比得出其他三种 类型抛物线标准方程及其对应的图形 3.会根据具体条件求抛物线的标准方程;根据抛物线的标准 方程求出焦点坐标、标准方程. 4.培养学生运用数形结合的思想理解有关问题.
重点:抛物线的定义, 根据具体条件求抛物线的标准方程; 根据抛物线的标准方程求出焦点坐标、标准方程.
y
x p 2
p ( ,0 ) 2
y
p 2

x
x
( p ,0) 2

x
y 2 px( p 0)
2
y
y 2 2 px( p 0)
y
y p 2
p (0, ) 2
p (0, ) 2

x
y p
x
2
x2 2 py( p 0)
x 2 2 py( p 0)
y
| FF | p p p F ( ,0), 准线x 2 2
| PF || PD |

x
| PD |
p p x; | PF | ( x ) 2 y 2 2 2
p p 2 x (x ) y2 2 2 p p 2 2 即( x ) ( x ) y 2 2 2 即 px px y 2 即 y 2 2 px( p 0)
1、已知点P是抛物线y 2 2 x上的一动点,则点 P到点A(0,2) 的距离与点P到该抛物线准线的距离 之和的最小值 2、已知抛物线 y 2 x的焦点为F , A( x0 , y0 )是抛物线上一点, | AF | 5 x0 , 求x0 4
3、已知抛物线顶点在原 点,对称轴为x轴,焦点在双曲线 x2 y2 1上,求抛物线的方程 4 2
例1、 (1)已知抛物线方程 20x y 2 0 求它的焦点坐标和准线 方程 (2)已知抛物线y 2 2 x的焦点坐标是F , 点P是抛物线上的动点, A(3,2), 求 | PA | | PF | 的最小值及此时P点坐标
例2、 (1)已知抛物线焦点是 (0,2),求它的标准方程 (2)已知抛物线过 (2,4),求它的标准方程
y
| FF | p p p ), 准线y F (0, 2 2 x
| PF || PD |
| PD | y p p ; | PF | x 2 ( y ) 2 2 2
p p 2 2 y x (y ) 2 2 p 2 p 2 2 即( y ) x ( y ) 2 2 即 py x 2 py 即x 2 2 py( p 0)
相关文档
最新文档