第七章--图的深度优先遍历

合集下载

深度优先遍历的算法

深度优先遍历的算法

深度优先遍历的算法深度优先遍历(Depth-First Search,DFS)是一种用来遍历或树或图的算法。

它以一个起始节点开始,沿着路径尽可能深地,直到到达最深处或无法继续为止,然后回溯到上一个节点,继续其他路径。

DFS通过栈来实现,每次访问一个节点时,将其标记为已访问,并将其相邻的未访问节点压入栈中。

然后从栈中弹出节点,重复这个过程,直到栈为空为止。

1.创建一个栈,用来存储待访问的节点。

2.将起始节点标记为已访问,并将其压入栈中。

3.当栈不为空时,执行以下步骤:-弹出栈顶节点,并输出该节点的值。

-将该节点的未访问的相邻节点标记为已访问,并将其压入栈中。

4.重复步骤3,直到栈为空为止。

-深度优先遍历是一种先序遍历,即先访问节点本身,然后访问其子节点。

-深度优先遍历可以用来求解连通图、查找路径等问题。

-深度优先遍历的时间复杂度为O(V+E),其中V为节点数,E为边数。

1.求解连通图:深度优先遍历可以用来判断一个图是否连通,即从一个节点是否能够访问到所有其他节点。

2.查找路径:深度优先遍历可以找到两个节点之间的路径。

当遇到目标节点时,即可停止遍历,返回路径结果。

3.拓扑排序:深度优先遍历可以进行拓扑排序,即将有依赖关系的任务按一定的顺序排列。

深度优先遍历的实现可以通过递归或迭代方式来完成。

递归方式更加简洁,但在处理大规模图时可能导致栈溢出。

迭代方式则可以采用栈来避免栈溢出问题。

无论是递归方式还是迭代方式,其核心思想都是通过访问节点的相邻节点来进行深入,直至遍历完整个图或树的节点。

总而言之,深度优先遍历是一种常用的图遍历算法,它以一种深入优先的方式遍历路径。

在实际应用中,深度优先遍历可以用来求解连通图、查找路径和拓扑排序等问题,是图算法中的重要工具之一。

第7章图的深度和广度优先搜索遍历算法

第7章图的深度和广度优先搜索遍历算法
7.3 图的遍历
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }

数据结构第七章:图

数据结构第七章:图


a c G1
b d
vexdata firstarc adjvex next 1 4 ^ a 2 3 4 b c d 1 1 3 ^ ^ ^
19
7.3 图的遍历
深度优先遍历(DFS) 深度优先遍历
方法:从图的某一顶点 出发,访问此顶点; 方法:从图的某一顶点V0出发,访问此顶点;然后依 次从V 的未被访问的邻接点出发,深度优先遍历图, 次从 0的未被访问的邻接点出发,深度优先遍历图, 直至图中所有和V 相通的顶点都被访问到; 直至图中所有和 0相通的顶点都被访问到;若此时图 中尚有顶点未被访问, 中尚有顶点未被访问,则另选图中一个未被访问的顶 点作起点,重复上述过程, 点作起点,重复上述过程,直至图中所有顶点都被访 问为止。 问为止。
ω ij , 若(v i , v j )或 < v i , v j >∈ E(G) A[i, j ] = 0,其它
11

1 3
5
2
8 4 7 5 1 6 3 4 2
0 5 7 0 3
5 0 0 4 8
7 0 0 2 1
0 4 2 0 6
3 8 1 6 0
12
关联矩阵——表示顶点与边的关联关系的矩阵 表示顶点与边的关联关系的矩阵 关联矩阵
1
7.1 图的定义和术语
是由两个集合V(G)和E(G)组成的 组成的, 图(Graph)——图G是由两个集合 图 是由两个集合 和 组成的 记为G=(V,E) 记为
其中: 其中:V(G)是顶点的非空有限集 是顶点的非空有限集 E(G)是边的有限集合,边是顶点的无序对或有序对 是边的有限集合, 是边的有限集合
有向图——有向图 是由两个集合 有向图G是由两个集合 有向图 有向图 是由两个集合V(G)和E(G)组成的 和 组成的

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。

功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。

按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。

第7章-2-(7.3图的遍历)

第7章-2-(7.3图的遍历)

v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5 6 v6 7 v7 8 v8
v2 v8 v3 v7 v3 v6 v4 v5
v,1
v,2
v1 v,4
v5
v1
v2
v,8
v4
v,5
v2
v8
v,3
v,6
v7
0
1 v1
v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
0
1 v1
v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5 6 v6 7 v7 8 v8
v2 v8 v3 v7 v3 v6 v4 v5
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v3
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5
v2 v8
v1 v,4
v5
v2
v,8
6 v6 7 v7 8 v8
v3 v7 v3 v6 v4 v5
v4
v,5
v2
v8
0
v,1
1 v1
v2 v3
2 v2
v1 v4

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

它是许多图的算法的基础。

深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。

它们对无向图和有向图均适用。

注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。

2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。

在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。

为了避免重复访问同一个顶点,必须记住每个已访问的顶点。

为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。

--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。

在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。

若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。

若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

图的深度优先遍历类似于树的前序遍历。

采用的搜索方法的特点是尽可能先对纵深方向进行搜索。

这种搜索方法称为深度优先搜索(Depth-First Search)。

相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。

若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。

数据结构第7章-答案

数据结构第7章-答案

一、单选题C01、在一个图中,所有顶点的度数之和等于图的边数的倍。

A)1/2 B)1 C)2 D)4B02、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。

A)1/2 B)1 C)2 D)4B03、有8个结点的无向图最多有条边。

A)14 B)28 C)56 D)112C04、有8个结点的无向连通图最少有条边。

A)5 B)6 C)7 D)8C05、有8个结点的有向完全图有条边。

A)14 B)28 C)56 D)112B06、用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。

A)栈 B)队列 C)树 D)图A07、用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。

A)栈 B)队列 C)树 D)图A08、一个含n个顶点和e条弧的有向图以邻接矩阵表示法为存储结构,则计算该有向图中某个顶点出度的时间复杂度为。

A)O(n) B)O(e) C)O(n+e) D)O(n2)C09、已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是。

A)0 2 4 3 1 5 6 B)0 1 3 6 5 4 2 C)0 1 3 4 2 5 6 D)0 3 6 1 5 4 2B10、已知图的邻接矩阵同上题,根据算法,则从顶点0出发,按广度优先遍历的结点序列是。

A)0 2 4 3 6 5 1 B)0 1 2 3 4 6 5 C)0 4 2 3 1 5 6 D)0 1 3 4 2 5 6D11、已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是。

A)0 1 3 2 B)0 2 3 1 C)0 3 2 1 D)0 1 2 3A12、已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是。

A)0 3 2 1 B)0 1 2 3 C)0 1 3 2 D)0 3 1 2A13、图的深度优先遍历类似于二叉树的。

A)先序遍历 B)中序遍历 C)后序遍历 D)层次遍历D14、图的广度优先遍历类似于二叉树的。

数据结构第七章课后习题答案 (1)

数据结构第七章课后习题答案 (1)

7_1对于图题7.1(P235)的无向图,给出:(1)表示该图的邻接矩阵。

(2)表示该图的邻接表。

(3)图中每个顶点的度。

解:(1)邻接矩阵:0111000100110010010101110111010100100110010001110(2)邻接表:1:2----3----4----NULL;2: 1----4----5----NULL;3: 1----4----6----NULL;4: 1----2----3----5----6----7----NULL;5: 2----4----7----NULL;6: 3----4----7----NULL;7: 4----5----6----NULL;(3)图中每个顶点的度分别为:3,3,3,6,3,3,3。

7_2对于图题7.1的无向图,给出:(1)从顶点1出发,按深度优先搜索法遍历图时所得到的顶点序(2)从顶点1出发,按广度优先法搜索法遍历图时所得到的顶点序列。

(1)DFS法:存储结构:本题采用邻接表作为图的存储结构,邻接表中的各个链表的结点形式由类型L_NODE规定,而各个链表的头指针存放在数组head中。

数组e中的元素e[0],e[1],…..,e[m-1]给出图中的m条边,e中结点形式由类型E_NODE规定。

visit[i]数组用来表示顶点i是否被访问过。

遍历前置visit各元素为0,若顶点i被访问过,则置visit[i]为1.算法分析:首先访问出发顶点v.接着,选择一个与v相邻接且未被访问过的的顶点w访问之,再从w 开始进行深度优先搜索。

每当到达一个其所有相邻接的顶点都被访问过的顶点,就从最后访问的顶点开始,依次退回到尚有邻接顶点未曾访问过的顶点u,并从u开始进行深度优先搜索。

这个过程进行到所有顶点都被访问过,或从任何一个已访问过的顶点出发,再也无法到达未曾访问过的顶点,则搜索过程就结束。

另一方面,先建立一个相应的具有n个顶点,m条边的无向图的邻接表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 DFS基本思想
例:深度优先遍历
v0
v1
v2
v3
v6 v7 v8
VV00
V11
V66
VV22
V33 VV77 VV88
v4 v5 (a)
VV44 VV55
由此,得到顶点访问序列为:
v0->v1->v2->v3->v4->v5->v6->v7->v8
思考:还能生成其他序列吗?
如何判别顶点V的邻接点是否被访问?
DFS 结果 v2→v1→v3→v5→v4→v6
谢谢学习
主讲教师:李晓娜
《数据结构》 课程
图的遍历
主讲教师:李晓娜
目录 CONTENTS
1 图的遍历的定义 2 深度优先遍历的基本思想 3 深度优先遍历的实现过程
1 图的遍历的定义
图的遍历
从图的任意指定顶点出发,依照某种规则去访问图中所有顶 点,且每个
顶点仅被访问一次,这一过程叫做图的遍历。 遍历实质:找每个顶点的邻接点的过程。
3 DFS的实现过程
12 34 5 6
1 0 01 01 10 0 0
2 01 0 0 0 10 0
3 01 0 0 0 10 0
起点
4 01 0 0 0 0 01
5 0 01 01 0 0 0
6 0 0 0 10 0 0
图的邻接矩阵
辅助数组 visited [n ]
10 0 1 1 1 1 1 20 1 1 1 1 1 1 30 0 0 1 1 1 1 40 0 0 0 0 1 1 50 0 0 0 1 1 1 60 0 0 0 0 0 1
2 DFS基本思想
解决办法:为每个顶点设立一个“访问标志”位。可设置
一个辅助数组 visited [n],用来标记每个被访问过的顶点。
初始状态,将图中每个顶点的访问标志设为 0,之后搜索图中每个顶
点,如果未被访问,就立即改 visited [i]为1,防止它被多次访问。并
且以该顶点为新的起始点,继续进行深度 优先遍历,否则继续检查下一 个未被访问的顶点。
深度优先遍历

广度优先遍历
2 DFS基本思想
深度优先遍历
深度优先遍历(Depth_First Search,DFS)是指按照深度方向搜索 ,它
类似于树的先根遍历。 (1) 从图中某个顶点Vi出发,首先访问Vi。 (2) 选择一个与刚访问过的顶点Vi相邻接且未访问过的顶点Vj,并访问该顶点。以该 顶点为新顶点,重复步骤(2),直到当前顶点的邻接顶点都已被访问为止。 (3) 返回前一个访问过的且仍有未访问的邻接点的顶点,找出并访问该顶点的下一 个未被访问的邻接点,然后重复步骤(2)。
1 图的遍历的定义
图的特殊性
图没有“自然”的首结点
• 图的任意一个顶点都可作为第一个被访问的首结点
非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点
• 需考虑如何选取下一个出发点以访问其余连通分量
图中若有回路存在,则一个顶点被访问之后,有可能沿回路又回到该顶点
• 区分已访问顶点、未访问顶点 搜索路径
相关文档
最新文档