图的深度优先遍历 PPT

合集下载

第15讲图的遍历

第15讲图的遍历

V6
V8
V8
V7
V5 深度优先生成树
V8 V1
V2
V3
V4 V5 V6 V7
V8 广度优先生成树
27
例A
B
CD E
F
GH
I
K
J
L
M
A
D
G
LCF
KI E
H M
JB
深度优先生成森林
28
二、图的连通性问题
▪1、生成树和生成森林
▪ 说明
G
▪ 一个图可以有许多棵不同的生成树
KI
▪ 所有生成树具有以下共同特点:
g.NextAdjVex(v, w))
{
if (g.GetTag(w) == UNVISITED)
{
g.SetTag(w, VISITED);
g.GetElem(w, e);
Visit(e);
q.InQueue(w);
}
}}}
24
一、图的遍历 两种遍历的比较
V0
V1 V4
V0
V1 V4
V3
V2 V5
16
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V1
V4
V5 V6
V7
V8
遍历序列: V1
17
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V2 V3
V4
V5 V6
V7
V8
遍历序列: V1 V2 V3
18
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2

第7章图的深度和广度优先搜索遍历算法

第7章图的深度和广度优先搜索遍历算法
7.3 图的遍历
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。

对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。

由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。

⽐⽅堆了。

所以。

对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。

四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。

求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。

然后在訪问左⼦树和右⼦树。

所以。

对于随意结点node。

第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。

若为空。

则须要訪问右⼦树。

注意。

在訪问过左孩⼦之后。

图的连通性精品PPT课件

图的连通性精品PPT课件
ar Cows
给定一个有向图,求有多少个顶点是由任何顶 点出发都可达的。
顶点数<= 10,000,边数 <= 50,000
有用的定理:
有向无环图中唯一出度为0的点,一定可 以由任何点出发均可达(由于无环,所 以从任何点出发往前走,必然终止于 一个出度为0的点)
ACM2186: 解题思路
有向图的强连通分支
定义
在有向图G中,如果任意两个不同的顶点 相互可达,则称该有向图是强连通的。 有向图G的极大强连通子图称为G的强连 通分支。
转置图的定义:将有向图G中的每一条 边反向形成的图称为G的转置GT。(注 意到原图和GT的强连通分支是一样的)
Korasaju算法
procedure Strongly_Connected_Components(G);
学习并没有结束,希望继续努力
Thanks for listening, this course is expected to bring you value and help 为方便学习与使用课件内容,课件可以在下载后自由编辑
ACM1236: 解题思路
1. 求出所有强连通分量
2. 每个强连通分量缩成一点,则形成一个有 向无环图DAG。
3. DAG上面有多少个入度为0的顶点,问题1的 答案就是多少
ACM1236: 解题思路
在DAG上要加几条边,才能使得DAG变成强连通 的,问题2的答案就是多少
加边的方法:
要为每个入度为0的点添加入边,为每个出度 为0的点添加出边
end; 证明参考:
(a)为有向图G, 其中的阴影部分 是G的强连通分 支,对每个顶点 都标出了其发现 时刻与完成时刻 ,黑色边为深度 优先搜索的树 枝;

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。

功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。

按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。

图的两种遍历

图的两种遍历

输入:
9 10 12 13 17 28 27 34 45 47 56 ram xy; var map:array[1..20,1..20] of integer; visited,q:array[1..100] of integer; //使用辅助队列Q和访问标志数组visited。 n,m,a,b,h,r,i,j:integer; procedure bfs(); //按广度优先非递归遍历图,n个顶点,编号为1..n。 var tmp:integer; begin while h<=r do begin tmp:=q[h]; //队头元素出队并置为tmp h:=h+1; write(tmp,' '); for j:=1 to n do if (map[tmp][j]=1) and (visited[j]=0) then //j为tmp的尚未访问的邻接顶点 begin visited[j]:=1;r:=r+1;q[r]:=j; end;//j入队列 end; end;
保证图中所有 顶点被访问
三、广(宽)度优先遍历
宽度优先遍历的基本思想为:
从图中某个顶点v0出发,访问此顶点。然后依次访问v0的 各个未被访问过的邻接结点,然后分别从这些邻接结点出发 宽度优先遍历图,直到图中所有和顶点v0连通的顶点都被访 问到。 若此时图中尚有顶点未被访问,则另选图中一个未曾被访 问的顶点作起始点,重复上述过程,直到图中所有顶点都被 访问到为止。
begin readln(n,m); for i:=1 to m do begin readln(a,b); map[a][b]:=1; map[b][a]:=1; end; for i:=1 to n do if visited[i]=0 then begin visited[i]:=1;work(i);end; end.

第7章-2-(7.3图的遍历)

第7章-2-(7.3图的遍历)

v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5 6 v6 7 v7 8 v8
v2 v8 v3 v7 v3 v6 v4 v5
v,1
v,2
v1 v,4
v5
v1
v2
v,8
v4
v,5
v2
v8
v,3
v,6
v7
0
1 v1
v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
0
1 v1
v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5 6 v6 7 v7 8 v8
v2 v8 v3 v7 v3 v6 v4 v5
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v3
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5
v2 v8
v1 v,4
v5
v2
v,8
6 v6 7 v7 8 v8
v3 v7 v3 v6 v4 v5
v4
v,5
v2
v8
0
v,1
1 v1
v2 v3
2 v2
v1 v4

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

它是许多图的算法的基础。

深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。

它们对无向图和有向图均适用。

注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。

2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。

在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。

为了避免重复访问同一个顶点,必须记住每个已访问的顶点。

为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。

--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。

在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。

若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。

若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

图的深度优先遍历类似于树的前序遍历。

采用的搜索方法的特点是尽可能先对纵深方向进行搜索。

这种搜索方法称为深度优先搜索(Depth-First Search)。

相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。

若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
v,1
v,2
v,3
visited[v]=true;//以前未被访问,此处被访问 //改变对应的标志为已经访问
cout<<mg.vexs[v].data<<" "; //访问结点v for(int w=FirstAdjVex(mg,v);w>0;w=NextAdjVex(mg,v,w)) {//对于v的每一个邻接点进行考察
以v8为起始点:v8-v4-v2-v1-v3-v6-v7-v5
思考题:
若图不是连通图,如何进行深度优先遍历? 请建立下图的邻接表结构,并进行深度
优先遍历.
v1
v2
v3
v4
v5
v6
v7
bool visited[100]={false};
void DFSTraverse(ALGraph mg) {
for(int i=1 ;i<=mg.vexnum;i++) {
v1 v,4
v5
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v,3
v1 v,4v5来自v2v,8v4
v,5
v2
v8
v,1
v,2
v,3
v1 v,4
v5
v1
v6 v7
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v,3
v1 v,4
v5
v1
v6 v7
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v,3
v1 v,4
7.3图的遍历
回顾其他数据结构的遍历: • 顺序表的遍历 • 单链表的遍历 • 二叉树的遍历 展望: 那么对于图,我们怎样进行遍历呢? • 图的深度优先遍历 • 图的广度优先遍历
这两个算法是后面拓扑排序、求关键路径算法的基础
7.3.1.连通图的深度优先遍历
算法描述:
1.深度优先遍历以v开始的连通图
• 访问v • 分别深度优先遍历v的各个未被
访问的邻接点
2.算法演示
例图及其邻接表表示
v1
v2
v3
v4
v5
v6
v7
v8
演示开始,以v1为遍历的起点
v1
v,1
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
9
v,1
v2
v3
v,1
v,2
v3
v,1
v,2
v3
v1 v4
v5
v,1
v,2
3.算法实现
Void DFS(Graph G,int v) {
Visited[v]=True;cout<<v; For(v的每一个邻接点w)
{
If(visited[w]==false)//如果没有被访问过
DFS(G,w)
}
}
3.算法实现
当图的存储结构为邻接表时,深度优先算法可以表示如下: bool visited[100]={false}; void DFS(ALGraph mg,int v) {
if(visited[w]==false)//当该结点未被访问时 DFS(mg,w);//进行深度优先遍历
} }
练习题:
对于下面一个图及其存储结构,写出以 v2、v8为起始点的深度优先遍历序列。
例图及其邻接表表示
v1
v2
v3
v4
v5
v6
v7
v8
答案为: 以v2为起始点:v2-v1-v3-v6-v7-v4-v8-v5
v5
v1
v,6
v7
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v4
v,5
v3
v7
v2
v8
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v4
v,5
v3
v7
v2
v8
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v4
v,5
v3
v,7
v2
if(visited[i]==false) DFS(mg,i);
} }
v1 v,4
v5
v2
v,8
v4
v,5
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v,5
v2
v8
v,1
v,2
v3
v3
v1
v4
v5
v,1
v,2
v3
v1 v,4
v5
v,1
v,2
v3
v1 v,4
v5
v2
v8
v,1
v,2
v3
v1 v,4
v5
v2
v8
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v5
v,1
v,2
v3
v1 v,4
v5
v2
v,8
v4
v5
v,1
v,2
v3
v8
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
v,1
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
演示结束
3.算法实现
从演示过程可以看出,我们必须知道顶点是否 已经被访问过。在具体实现时,我们用一个全局 数组visited[]来记录顶点是否被访问过。如果 visited[i]的值为True,则顶点vi已经被访问,否 则没有被访问。
相关文档
最新文档