C语言版图的深度和广度优先遍历源代码
图的深度优先遍历(DFS)c++非递归实现

图的深度优先遍历(DFS)c++⾮递归实现深搜算法对于程序员来讲是必会的基础,不仅要会,更要熟练。
ACM竞赛中,深搜也牢牢占据着很重要的⼀部分。
本⽂⽤显式栈(⾮递归)实现了图的深度优先遍历,希望⼤家可以相互学习。
栈实现的基本思路是将⼀个节点所有未被访问的“邻居”(即“⼀层邻居节点”)踹⼊栈中“待⽤”,然后围绕顶部节点猛攻,每个节点被访问后被踹出。
读者可以⾃⼰画图分析⼀下,难度并不⼤。
代码写的⽐较随意,仅供参考。
~#include <iostream>#include <stack>using namespace std;#define MaxNode 20#define MAX 2000#define StartNode 1int map[MaxNode+1][MaxNode+1];void dfs_stack(int start, int n){int visited[MaxNode],s_top;for(int i = 0;i <= MaxNode; i++){visited[i] = 0;}visited[start] = 1;stack <int> s;cout<<start<<"";for(int i = 1; i <= n; i++){if(map[i][start] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}while(!s.empty()){s_top = s.top();visited[s_top] = 1;cout<<s_top<<"";s.pop();for(int i = 1; i <= n; i++){if(map[i][s_top] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}}}int main(int argc, const char * argv[]) {int num_edge,num_node;int x,y;cout<<"Input number of nodes and edges >"<<endl;cin>>num_node>>num_edge;for(int i =0;i<num_node;i++){for(int j=0;j<num_node;j++){map[i][j] = 0;}}for(int i = 1; i <= num_edge; i++){cin>>x>>y;map[x][y] = map[y][x] = 1;}dfs_stack(StartNode, num_node);return0;}。
c语言中常用的查找

c语言中常用的查找C语言中常用的查找引言:在编程中,查找是一项非常常见且重要的操作。
无论是在数组、链表、树还是图等数据结构中,都需要进行查找操作来寻找特定的数据或者确定某个元素的存在与否。
C语言提供了多种查找算法和数据结构,本文将介绍C语言中常用的查找方法。
一、线性查找线性查找是最简单的查找方法之一,也称为顺序查找。
其基本思想是从数据集合的起始位置开始逐个比较待查找元素与集合中的元素,直到找到目标元素或者遍历完整个集合。
在C语言中,可以使用for循环或者while循环实现线性查找。
线性查找的时间复杂度为O(n),其中n为数据集合中元素的个数。
二、二分查找二分查找又称为折半查找,是一种高效的查找算法,但要求数据集合必须是有序的。
其基本思想是将数据集合分为两部分,然后通过与目标元素的比较来确定目标元素在哪个部分中,从而缩小查找范围。
重复这个过程直到找到目标元素或者确定目标元素不存在于数据集合中。
二分查找的时间复杂度为O(logn),其中n为数据集合中元素的个数。
三、哈希表查找哈希表是一种通过哈希函数将关键字映射到存储位置的数据结构,它能够以常数时间复杂度O(1)进行查找操作。
在C语言中,可以使用数组和链表的结合来实现哈希表。
哈希表的关键之处在于哈希函数的设计,良好的哈希函数能够将关键字均匀地映射到不同的存储位置,从而提高查找效率。
四、二叉搜索树查找二叉搜索树是一种常用的数据结构,它满足以下性质:对于任意节点,其左子树中的所有节点的值都小于该节点的值,而右子树中的所有节点的值都大于该节点的值。
在C语言中,可以使用指针和递归的方式来实现二叉搜索树。
通过比较目标值与当前节点的值,可以确定目标值位于左子树还是右子树中,从而缩小查找范围。
五、图的遍历在图的数据结构中,查找操作通常是指遍历操作。
图的遍历有两种方式:深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索通过递归的方式依次访问图中的每个节点,直到找到目标节点或者遍历完整个图。
深度优先搜索示例代码

深度优先搜索示例代码深度优先搜索(Depth First Search,DFS)是一种用于遍历或搜索树或图的算法。
它通过从根节点或某个指定节点开始,尽可能深地探索每个分支,直到找到目标节点或到达叶子节点为止。
本文将给出一个深度优先搜索的示例代码,帮助读者理解算法的实现过程。
示例代码如下:```class Graph:def __init__(self):self.graph = {}def add_edge(self, vertex, edge):if vertex in self.graph:self.graph[vertex].append(edge)else:self.graph[vertex] = [edge]def dfs(self, start):visited = set()self.dfs_helper(start, visited)def dfs_helper(self, vertex, visited):visited.add(vertex)print(vertex)if vertex in self.graph:for neighbor in self.graph[vertex]:if neighbor not in visited:self.dfs_helper(neighbor, visited)```在示例代码中,首先定义了一个`Graph`类,用于表示图结构。
`Graph`类包含了两个方法:`add_edge`用于添加边,`dfs`用于执行深度优先搜索。
`add_edge`方法用于向图中添加边,其中`vertex`表示起始节点,`edge`表示目标节点。
`dfs`方法用于执行深度优先搜索,其中`start`表示搜索的起始节点。
在深度优先搜索的实现中,我们使用了一个`visited`集合来记录已经访问过的节点,避免重复访问。
`dfs_helper`方法用于递归地进行深度优先搜索,其中`vertex`表示当前访问的节点,`visited`表示已访问节点的集合。
dfs和bfs算法代码

dfs和bfs算法代码深度优先搜索(DFS)和广度优先搜索(BFS)是常用的图遍历算法,它们可以帮助我们解决很多实际问题。
本文将详细介绍这两种算法的实现原理和应用场景。
一、深度优先搜索(DFS)深度优先搜索是一种递归的搜索算法,它从图的某个顶点开始,沿着一条路径尽可能深地搜索,直到无法继续为止,然后回溯到上一级节点,继续搜索其他路径。
DFS一般使用栈来实现。
DFS的代码实现如下:```def dfs(graph, start):visited = set() # 用一个集合来记录已访问的节点stack = [start] # 使用栈来实现DFSwhile stack:node = stack.pop() # 取出栈顶元素if node not in visited:visited.add(node) # 将节点标记为已访问neighbors = graph[node] # 获取当前节点的邻居节点stack.extend(neighbors) # 将邻居节点入栈return visited```DFS的应用场景很多,比如迷宫问题、拓扑排序、连通分量的计算等。
在迷宫问题中,我们可以使用DFS来寻找从起点到终点的路径;在拓扑排序中,DFS可以用来确定任务的执行顺序;在连通分量的计算中,DFS可以用来判断图是否连通,并将图分割成不同的连通分量。
二、广度优先搜索(BFS)广度优先搜索是一种逐层遍历的搜索算法,它从图的某个顶点开始,先访问该顶点的所有邻居节点,然后再访问邻居节点的邻居节点,依次进行,直到遍历完所有节点。
BFS一般使用队列来实现。
BFS的代码实现如下:```from collections import dequedef bfs(graph, start):visited = set() # 用一个集合来记录已访问的节点queue = deque([start]) # 使用队列来实现BFSwhile queue:node = queue.popleft() # 取出队首元素if node not in visited:visited.add(node) # 将节点标记为已访问neighbors = graph[node] # 获取当前节点的邻居节点queue.extend(neighbors) # 将邻居节点入队return visited```BFS的应用场景也很广泛,比如寻找最短路径、社交网络中的人际关系分析等。
深度优先遍历算法实现及复杂度分析

深度优先遍历算法实现及复杂度分析深度优先遍历算法(Depth First Search, DFS)是一种常用的图遍历算法,用于查找或遍历图的节点。
本文将介绍深度优先遍历算法的实现方法,并进行对应的复杂度分析。
一、算法实现深度优先遍历算法的基本思想是从图的某个节点出发,沿着深度方向依次访问其相邻节点,直到无法继续下去,然后返回上一层节点继续遍历。
下面是深度优先遍历算法的伪代码:```1. 初始化访问标记数组visited[],将所有节点的访问标记置为false。
2. 从某个节点v开始遍历:- 标记节点v为已访问(visited[v] = true)。
- 访问节点v的相邻节点:- 若相邻节点w未被访问,则递归调用深度优先遍历算法(DFS(w))。
3. 遍历结束,所有节点都已访问。
```二、复杂度分析1. 时间复杂度深度优先遍历算法的时间复杂度取决于图的存储方式和规模。
假设图的节点数为V,边数为E。
- 邻接表存储方式:对于每个节点,需要访问其相邻节点。
因此,算法的时间复杂度为O(V+E)。
- 邻接矩阵存储方式:需要检查每个节点与其他节点的连通关系,即需要遍历整个邻接矩阵。
因此,算法的时间复杂度为O(V^2)。
2. 空间复杂度深度优先遍历算法使用了一个辅助的访问标记数组visited[]来记录每个节点的访问状态。
假设图的节点数为V。
- 邻接表存储方式:访问标记数组visited[]的空间复杂度为O(V)。
- 邻接矩阵存储方式:访问标记数组visited[]的空间复杂度同样为O(V)。
综上所述,深度优先遍历算法的时间复杂度为O(V+E),空间复杂度为O(V)。
三、应用场景深度优先遍历算法在图的遍历和搜索问题中广泛应用。
以下是一些典型的应用场景:1. 连通性问题:判断图中两个节点之间是否存在路径。
2. 非连通图遍历:对于非连通图,深度优先遍历算法可以用于遍历所有连通分量。
3. 寻找路径:在图中寻找从起始节点到目标节点的路径。
深度优先搜索算法详解及代码实现

深度优先搜索算法详解及代码实现深度优先搜索(Depth-First Search,DFS)是一种常见的图遍历算法,用于遍历或搜索图或树的所有节点。
它的核心思想是从起始节点开始,沿着一条路径尽可能深入地访问其他节点,直到无法继续深入为止,然后回退到上一个节点,继续搜索未访问过的节点,直到所有节点都被访问为止。
一、算法原理深度优先搜索算法是通过递归或使用栈(Stack)的数据结构来实现的。
下面是深度优先搜索算法的详细步骤:1. 选择起始节点,并标记该节点为已访问。
2. 从起始节点出发,依次访问与当前节点相邻且未被访问的节点。
3. 若当前节点有未被访问的邻居节点,则选择其中一个节点,将其标记为已访问,并将当前节点入栈。
4. 重复步骤2和3,直到当前节点没有未被访问的邻居节点。
5. 若当前节点没有未被访问的邻居节点,则从栈中弹出一个节点作为当前节点。
6. 重复步骤2至5,直到栈为空。
深度优先搜索算法会不断地深入到图或树的某一分支直到底部,然后再回退到上层节点继续搜索其他分支。
因此,它的搜索路径类似于一条深入的迷宫路径,直到没有其他路径可走后,再原路返回。
二、代码实现以下是使用递归方式实现深度优先搜索算法的代码:```pythondef dfs(graph, start, visited):visited.add(start)print(start, end=" ")for neighbor in graph[start]:if neighbor not in visited:dfs(graph, neighbor, visited)# 示例数据graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']}start_node = 'A'visited = set()dfs(graph, start_node, visited)```上述代码首先定义了一个用于实现深度优先搜索的辅助函数`dfs`。
图的深度广度优先遍历C语言程序

scanf("%d",&L->num);
printf("请输入各顶点的信息(单个符号):");
for(i=0;i<L->num;i++)
{
fflush(stdin);
scanf("%c",&L->vexs[i]);
}
printf("请输入边权矩阵的信息:");
{ *e=sq.data[(sq.front)]; return 1;}
}
/*******************************************************************பைடு நூலகம்*********/
int QueueIn (SEQQUEUE *sq,DATATYPE x)
for(v2=0;v2<g.num;v2++)
{
if(g.arcs[v1][v2]!=0&&mark[v2]==0)
{
QueueIn(&q,v2);
mark[v2]=1;
printf("%c ",g.vexs[v2]);
}
}
//如果顺序循环队列sq为空,成功返回1,否则返回0
{
if (sq.rear==sq.front)
return(1);
else
return(0);
}
/*****************************************************************************/
广度优先算法和深度优先算法

广度优先算法和深度优先算法
广度优先算法和深度优先算法是最常用的两种图遍历算法,它们都能
够遍历整个图的节点,但在具体应用场景中选择哪种算法需要根据实
际需求来判断。
广度优先算法(BFS)将当前节点的所有邻居节点都遍历一遍后再遍历下一层,可以确保找到最短路径。
具体实现方式是使用一个队列来存
储被访问过但还未被遍历过的节点,同一层的节点都在队列中,不同
层的节点通过队列的先进先出特性被访问。
BFS遍历图通常需要记录
每个节点是否被访问过,以防止重复遍历。
深度优先算法(DFS)是一种递归算法,从某一节点出发一直向下遍
历到底(即遍历到一个叶子节点),然后返回到上一层节点继续遍历,直到遍历完整个图。
DFS相较于BFS具有更好的空间复杂度,但不能
保证找到最短路径。
DFS遍历图时通常需要记录每个节点是否被访问过,并保证不重复访问。
广度优先算法和深度优先算法在选择上需要根据具体算法应用需求。
如果需要找到最短路径,则选择广度优先算法,如果需要搜索所有可
能路径,则选择深度优先算法。
例如,在迷宫的寻找最短路径场景中,BFS可以从迷宫入口出发,按照层级一层一层的向外扩展搜索,最终
一定能够找到终点,但会消耗较大的空间;而DFS则可以搜索所有可能的路径,但不能确保找到最短路径。
综上所述,广度优先算法和深度优先算法都各有优缺点,在选择上需要根据实际应用场景判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表示的图:
#include""
#include""
#define MaxVertexNum 50 ertex=a; irstedge=NULL; irstedge;
G->adjlist[i].firstedge=s; irstedge;
G->adjlist[j].firstedge=s; ertex); irstedge; ertex); irstedge; ertex); //访问Vj visited[p->adjvex]=TRUE;
r=r+1; cq[r]=p->adjvex; //访问过的Vj入队
}
p=p->next; //找Vi的下一个邻接点
}
}//endwhile
}
//==========主函数===========
void main()
{
//int i;
ALGraph *G;
G=(ALGraph *)malloc(sizeof(ALGraph)); CreatALGraph(G);
printf("Print Graph DFS: ");
DFS(G);
printf("\n");
printf("Print Graph BFS: ");
BFS(G,3);
printf("\n");
}
表示的图:
#include""
#include""
#define MaxVertexNum 100 //定义最大顶点数
typedef struct{
char vexs[MaxVertexNum]; //顶点表
int edges[MaxVertexNum][MaxVertexNum]; //邻接,可看作边表int n,e; //图中的顶点数n和边数e
}MGraph; //用邻接矩阵表示的图的类型
//=========建立邻接矩阵=======
void CreatMGraph(MGraph *G)
{
int i,j,k;
char a;
printf("Input VertexNum(n) and EdgesNum(e): ");
scanf("%d,%d",&G->n,&G->e); //输入顶点数和边数
scanf("%c",&a);
printf("Input Vertex string:");
for(i=0;i<G->n;i++)
{
scanf("%c",&a);
G->vexs[i]=a; //读入顶点信息,建立顶点表
}
for(i=0;i<G->n;i++)
for(j=0;j<G->n;j++)
G->edges[i][j]=0; //初始化邻接矩阵
printf("Input edges,Creat Adjacency Matrix\n");
for(k=0;k<G->e;k++) { //读入e条边,建立邻接矩阵
scanf("%d%d",&i,&j); //输入边(Vi,Vj)的顶点序号
G->edges[i][j]=1;
G->edges[j][i]=1; //若为无向图,矩阵为;若建立有向图,去掉该条语句}
}
//=========定义标志向量,为全局变量=======
typedef enum{FALSE,TRUE} Boolean;
Boolean visited[MaxVertexNum];
//========DFS:深度优先遍历的递归算法======
void DFSM(MGraph *G,int i)
{ //以Vi为出发点对邻接矩阵表示的图G进行DFS搜索,邻接矩阵是0,1矩阵int j;
printf("%c",G->vexs[i]); //访问顶点Vi
visited[i]=TRUE; //置已访问标志
for(j=0;j<G->n;j++) //依次搜索Vi的邻接点
if(G->edges[i][j]==1 && ! visited[j])
DFSM(G,j); //(Vi,Vj)∈E,且Vj未访问过,故Vj为新出发点
}
void DFS(MGraph *G)
{
int i;
for(i=0;i<G->n;i++)
visited[i]=FALSE; //标志向量初始化
for(i=0;i<G->n;i++)
if(!visited[i]) //Vi未访问过
DFSM(G,i); //以Vi为源点开始DFS搜索
}
//===========BFS:广度优先遍历=======
void BFS(MGraph *G,int k)
{ //以Vk为源点对用邻接矩阵表示的图G进行广度优先搜索int i,j,f=0,r=0;
int cq[MaxVertexNum]; //定义队列
for(i=0;i<G->n;i++)
visited[i]=FALSE; //标志向量初始化
for(i=0;i<G->n;i++)
cq[i]=-1; //队列初始化
printf("%c",G->vexs[k]); //访问源点Vk
visited[k]=TRUE;
cq[r]=k; //Vk已访问,将其入队。
注意,实际上是将其序号入队while(cq[f]!=-1) { //队非空则执行
i=cq[f]; f=f+1; //Vf出队
for(j=0;j<G->n;j++) //依次Vi的邻接点Vj
if(!visited[j] && G->edges[i][j]==1) { //Vj未访问
printf("%c",G->vexs[j]); //访问Vj
visited[j]=TRUE;
r=r+1; cq[r]=j; //访问过Vj入队
}
}
}
//==========main=====
void main()
{
//int i;
MGraph *G;
G=(MGraph *)malloc(sizeof(MGraph)); //为图G申请内存空间CreatMGraph(G); //建立邻接矩阵
printf("Print Graph DFS: ");
DFS(G); //深度优先遍历
printf("\n");
printf("Print Graph BFS: ");
BFS(G,3); //以序号为3的顶点开始广度优先遍历printf("\n");
}。