图的深度和广度优先遍历

合集下载

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度深度优先算法和广度优先算法是在图论中常见的两种搜索算法,它们在解决各种问题时都有很重要的作用。

本文将以深入浅出的方式从时间复杂度的角度对这两种算法进行全面评估,并探讨它们在实际应用中的优劣势。

1. 深度优先算法的时间复杂度深度优先算法是一种用于遍历或搜索树或图的算法。

它从图中的某个顶点出发,沿着一条路径一直走到底,直到不能再前进为止,然后回溯到上一个节点,尝试走其他的路径,直到所有路径都被走过为止。

深度优先算法的时间复杂度与图的深度有关。

在最坏情况下,深度优先算法的时间复杂度为O(V+E),其中V表示顶点的数量,E表示边的数量。

2. 广度优先算法的时间复杂度广度优先算法也是一种用于遍历或搜索树或图的算法。

与深度优先算法不同的是,广度优先算法是从图的某个顶点出发,首先访问这个顶点的所有邻接节点,然后再依次访问这些节点的邻接节点,依次类推。

广度优先算法的时间复杂度与图中边的数量有关。

在最坏情况下,广度优先算法的时间复杂度为O(V+E)。

3. 深度优先算法与广度优先算法的比较从时间复杂度的角度来看,深度优先算法和广度优先算法在最坏情况下都是O(V+E),并没有明显的差异。

但从实际运行情况来看,深度优先算法和广度优先算法的性能差异是显而易见的。

在一般情况下,广度优先算法要比深度优先算法快,因为广度优先算法的搜索速度更快,且能够更快地找到最短路径。

4. 个人观点和理解在实际应用中,选择深度优先算法还是广度优先算法取决于具体的问题。

如果要找到两个节点之间的最短路径,那么广度优先算法是更好的选择;而如果要搜索整个图,那么深度优先算法可能是更好的选择。

要根据具体的问题来选择合适的算法。

5. 总结和回顾本文从时间复杂度的角度对深度优先算法和广度优先算法进行了全面评估,探讨了它们的优劣势和实际应用中的选择。

通过对两种算法的时间复杂度进行比较,可以更全面、深刻和灵活地理解深度优先算法和广度优先算法的特点和适用场景。

第7章图的深度和广度优先搜索遍历算法

第7章图的深度和广度优先搜索遍历算法
7.3 图的遍历
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }

深度优先搜索和广度优先搜索

深度优先搜索和广度优先搜索

深度优先搜索和⼴度优先搜索 深度优先搜索和⼴度优先搜索都是图的遍历算法。

⼀、深度优先搜索(Depth First Search) 1、介绍 深度优先搜索(DFS),顾名思义,在进⾏遍历或者说搜索的时候,选择⼀个没有被搜过的结点(⼀般选择顶点),按照深度优先,⼀直往该结点的后续路径结点进⾏访问,直到该路径的最后⼀个结点,然后再从未被访问的邻结点进⾏深度优先搜索,重复以上过程,直⾄所有点都被访问,遍历结束。

⼀般步骤:(1)访问顶点v;(2)依次从v的未被访问的邻接点出发,对图进⾏深度优先遍历;直⾄图中和v有路径相通的顶点都被访问;(3)若此时图中尚有顶点未被访问,则从⼀个未被访问的顶点出发,重新进⾏深度优先遍历,直到图中所有顶点均被访问过为⽌。

可以看出,深度优先算法使⽤递归即可实现。

2、⽆向图的深度优先搜索 下⾯以⽆向图为例,进⾏深度优先搜索遍历: 遍历过程: 所以遍历结果是:A→C→B→D→F→G→E。

3、有向图的深度优先搜索 下⾯以有向图为例,进⾏深度优先遍历: 遍历过程: 所以遍历结果为:A→B→C→E→D→F→G。

⼆、⼴度优先搜索(Breadth First Search) 1、介绍 ⼴度优先搜索(BFS)是图的另⼀种遍历⽅式,与DFS相对,是以⼴度优先进⾏搜索。

简⾔之就是先访问图的顶点,然后⼴度优先访问其邻接点,然后再依次进⾏被访问点的邻接点,⼀层⼀层访问,直⾄访问完所有点,遍历结束。

2、⽆向图的⼴度优先搜索 下⾯是⽆向图的⼴度优先搜索过程: 所以遍历结果为:A→C→D→F→B→G→E。

3、有向图的⼴度优先搜索 下⾯是有向图的⼴度优先搜索过程: 所以遍历结果为:A→B→C→E→F→D→G。

三、两者实现⽅式对⽐ 深度优先搜索⽤栈(stack)来实现,整个过程可以想象成⼀个倒⽴的树形:把根节点压⼊栈中。

每次从栈中弹出⼀个元素,搜索所有在它下⼀级的元素,把这些元素压⼊栈中。

并把这个元素记为它下⼀级元素的前驱。

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。

功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。

按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。

图的两种遍历

图的两种遍历

输入:
9 10 12 13 17 28 27 34 45 47 56 ram xy; var map:array[1..20,1..20] of integer; visited,q:array[1..100] of integer; //使用辅助队列Q和访问标志数组visited。 n,m,a,b,h,r,i,j:integer; procedure bfs(); //按广度优先非递归遍历图,n个顶点,编号为1..n。 var tmp:integer; begin while h<=r do begin tmp:=q[h]; //队头元素出队并置为tmp h:=h+1; write(tmp,' '); for j:=1 to n do if (map[tmp][j]=1) and (visited[j]=0) then //j为tmp的尚未访问的邻接顶点 begin visited[j]:=1;r:=r+1;q[r]:=j; end;//j入队列 end; end;
保证图中所有 顶点被访问
三、广(宽)度优先遍历
宽度优先遍历的基本思想为:
从图中某个顶点v0出发,访问此顶点。然后依次访问v0的 各个未被访问过的邻接结点,然后分别从这些邻接结点出发 宽度优先遍历图,直到图中所有和顶点v0连通的顶点都被访 问到。 若此时图中尚有顶点未被访问,则另选图中一个未曾被访 问的顶点作起始点,重复上述过程,直到图中所有顶点都被 访问到为止。
begin readln(n,m); for i:=1 to m do begin readln(a,b); map[a][b]:=1; map[b][a]:=1; end; for i:=1 to n do if visited[i]=0 then begin visited[i]:=1;work(i);end; end.

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

它是许多图的算法的基础。

深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。

它们对无向图和有向图均适用。

注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。

2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。

在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。

为了避免重复访问同一个顶点,必须记住每个已访问的顶点。

为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。

--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。

在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。

若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。

若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

图的深度优先遍历类似于树的前序遍历。

采用的搜索方法的特点是尽可能先对纵深方向进行搜索。

这种搜索方法称为深度优先搜索(Depth-First Search)。

相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。

若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。

广度优先算法和深度优先算法

广度优先算法和深度优先算法

广度优先算法和深度优先算法
广度优先算法和深度优先算法是最常用的两种图遍历算法,它们都能
够遍历整个图的节点,但在具体应用场景中选择哪种算法需要根据实
际需求来判断。

广度优先算法(BFS)将当前节点的所有邻居节点都遍历一遍后再遍历下一层,可以确保找到最短路径。

具体实现方式是使用一个队列来存
储被访问过但还未被遍历过的节点,同一层的节点都在队列中,不同
层的节点通过队列的先进先出特性被访问。

BFS遍历图通常需要记录
每个节点是否被访问过,以防止重复遍历。

深度优先算法(DFS)是一种递归算法,从某一节点出发一直向下遍
历到底(即遍历到一个叶子节点),然后返回到上一层节点继续遍历,直到遍历完整个图。

DFS相较于BFS具有更好的空间复杂度,但不能
保证找到最短路径。

DFS遍历图时通常需要记录每个节点是否被访问过,并保证不重复访问。

广度优先算法和深度优先算法在选择上需要根据具体算法应用需求。

如果需要找到最短路径,则选择广度优先算法,如果需要搜索所有可
能路径,则选择深度优先算法。

例如,在迷宫的寻找最短路径场景中,BFS可以从迷宫入口出发,按照层级一层一层的向外扩展搜索,最终
一定能够找到终点,但会消耗较大的空间;而DFS则可以搜索所有可能的路径,但不能确保找到最短路径。

综上所述,广度优先算法和深度优先算法都各有优缺点,在选择上需要根据实际应用场景判断。

的遍历算法详解深度优先搜索与广度优先搜索

的遍历算法详解深度优先搜索与广度优先搜索

的遍历算法详解深度优先搜索与广度优先搜索的遍历算法详解——深度优先搜索与广度优先搜索遍历算法是计算机科学中常用的算法之一,用于按照一定规则遍历图或树的各个节点。

本文将详细介绍两种常用的遍历算法——深度优先搜索和广度优先搜索。

1. 深度优先搜索(Depth-First Search,DFS)深度优先搜索是一种先序遍历的算法,其主要思想是从某一个节点出发,优先访问它的所有邻接节点,并递归地遍历各个邻接节点的邻接节点,直到到达没有未访问节点的情况,然后回溯到前一节点,重复上述过程,直到遍历完整个图或树。

深度优先搜索可以使用递归或栈来实现。

以递归方式实现的深度优先搜索算法如下:```procedure DFS(node):if node is null:returnvisit(node)node.visited = truefor each adj_node in node.adjacentNodes:if adj_node.visited is false:DFS(adj_node)```2. 广度优先搜索(Breadth-First Search,BFS)广度优先搜索是一种层序遍历的算法,其主要思想是从某一个节点出发,依次访问其所有邻接节点,然后再访问邻接节点的邻接节点,以此类推,直到遍历完整个图或树。

广度优先搜索可以使用队列来实现。

广度优先搜索算法如下:```procedure BFS(start_node):queue = new Queue()start_node.visited = trueenqueue(queue, start_node)while queue is not empty:node = dequeue(queue)visit(node)for each adj_node in node.adjacentNodes:if adj_node.visited is false:adj_node.visited = trueenqueue(queue, adj_node)```深度优先搜索和广度优先搜索各自有其应用场景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构课程实验报告课程名称数据结构班级计算123 实验日期2014年6月1日--3日姓名学号实验成绩实验名称实验四图的深度和广度优先遍历实验目的及要求【实验目的】熟练掌握图的邻接表存储结构及其图的建立方法和深度和广度优先遍历的方法。

【实验要求】1.图的存储可采用邻接矩阵或邻接表2.GraphCreate(): 按从键盘的数据建立图3.GraphDFS():深度优先遍历图4.GraphBFS():广度优先遍历图5.编写完整程序完成下面的实验内容并上机运行6.整理并上交实验报告实验环境硬件平台:普通的PC机软件平台:Windows 7 操作系统编程环境:VisualC++ 6.0实验内容1.以邻接矩阵或邻接表为存储结构,以用户指定的顶点为起始点,实现图的深度优先及广度优先搜索遍历,并输出遍历的结点序列。

算法描述及实验步骤算法:1)定义图的邻接表存储结构2)实现图的邻接表存储,即建立图的存储结构3)实现图的深度优先遍历4)定义队列的顺序存储结构,并实现队列的基本操作如初始化队列、入队、出对、判断队列是否为空等。

利用队列实现图的广度优先遍历。

伪代码:1)定义邻接矩阵和队列的存取结构;2)创建图L:1.置空图L->num=0;2.输入顶点数目num;3.i++,输入结点L->vexs[i]直到L->num;3)输出图L的各顶点;4)深度优先遍历图g中能访问的各个顶点1.输入起点的下标qidian;2.标志数组初始化mark[v]=0;3.for(v=qidian;v<g.num+qidian;v++) //{v1=v%g.num;if(mark[v1]==0)DFS(g,v1,mark); //从第v1个点出发深度优先遍历图g中能访问的各个顶点(算法描述里的流程图很详细)}5)广度优先周游图g中能访问的各个顶点。

1.构造空队列;2.入队a[0];3.a[0]出队,a[0]的邻接点入队,遍历a[0];4.队首出队,重复3直到队列为空;5.判断是否全遍历完了;6.输出广度优先遍历序列流程图:开始访问V 0,置标志求V 0邻接点有邻接点w求下一邻接点w V 0W 访问过结束NYN YDFS开始标志数组初始化V i =1Vi 访问过DFSV i =V i +1V i ==Vexnums结束NNYY调试过程及实验结果总结本次试验采用的是邻接表的方式实现图的深度优先遍历和广度优先遍历。

对于深度优先遍历,主要是采用递归的方式,广度优先遍历借助队列来实现。

试验本身问题不是太大,但要注意输入的问题,什么时候用空格,什么时候用回车,这一点是需要注意的,因为一旦数据的输入有问题,结果当然也就不可能正确了。

只有正确的输入数据,建立图,才能得出正确的遍历结果。

附录#include <stdio.h>typedef int datatype;#define maxsize 1024# define n 100typedef char VEXTYPE;typedef float ADJTYPE;typedef struct{VEXTYPE vexs[n];ADJTYPE arcs[n][n];int num ;}GRAPH;//邻接矩阵数据类型typedef int DA TA TYPE;typedef struct{DATATYPE data[maxsize];int front,rear;}SEQQUEUE;//队列数据类型void GraphInit(GRAPH *L)//置空图L->num=0;}int GraphVexs(GRAPH *L)//求结点数{return(L->num);}void GraphCreate(GRAPH *L)//创建图{int i;GraphInit(L);printf("请输入顶点数目:");scanf("%d",&L->num);printf("请输入各顶点的信息(单个符号):\n");for(i=0;i<L->num;i++){fflush(stdin);scanf("%c",&L->vexs[i]);}printf("图已经创建完毕!");}void GraphOut(GRAPH L)//图的输出{int i;printf("\n图的顶点数目为:%d",L.num);printf("\n图的各顶点的信息为:\n");for(i=0;i<L.num;i++)printf("%c ",L.vexs[i]);}void DFS(GRAPH g,int qidian,int mark[])//从第qidian个点出发深度优先遍历图g中能访问的各个顶点{int v1;mark[qidian]=1;printf("%c ",g.vexs[qidian]);for(v1=0;v1<g.num;v1++){if(g.arcs[qidian][v1]!=0&&mark[v1]==0)DFS(g,v1,mark);}void GraphDFS(GRAPH g)//深度优先遍历图g中能访问的各个顶点{int qidian,v,v1,mark[maxsize];printf("\n深度优先遍历:");printf("\n请输入起点的下标:");scanf("%d",&qidian);for(v=0;v<g.num;v++){mark[v]=0;}for(v=qidian;v<g.num+qidian;v++){v1=v%g.num;if(mark[v1]==0)DFS(g,v1,mark);}}void QueueInit(SEQQUEUE *sq)//建立空队列{sq->front=0;sq->rear=0;}int QueueIsEmpty(SEQQUEUE sq)//判断队列是否为空{if (sq.rear==sq.front)return(1);else return(0);}int QueueFront(SEQQUEUE sq,DATATYPE *e)//保存队头元素{if (QueueIsEmpty(sq)){printf("queue is empty!\n");return 0;}else { *e=sq.data[(sq.front)]; return 1;}}int QueueIn (SEQQUEUE *sq,DATA TYPE x)//把元素x入队尾{if(sq->front==(sq->rear+1)%maxsize){printf("queue is full!\n");return 0;else{sq->data[sq->rear]=x;sq->rear=(sq->rear+1)%maxsize;return(1);}}int QueueOut(SEQQUEUE *sq)//删除队首元素{if(QueueIsEmpty(*sq)){printf("queue is empty!\n");return 0;}else{sq->front=(sq->front+1)%maxsize;return 1;}}void BFS(GRAPH g,int v,int mark[])//从v出发广度优先遍历图g中能访问的各个顶点{int v1,v2;SEQQUEUE q;QueueInit(&q);QueueIn(&q,v);mark[v]=1;printf("%c ",g.vexs[v]);while(QueueIsEmpty(q)==0){QueueFront(q,&v1);QueueOut(&q);for(v2=0;v2<g.num;v2++){if(g.arcs[v1][v2]!=0&&mark[v2]==0){QueueIn(&q,v2);mark[v2]=1;printf("%c ",g.vexs[v2]);}}}void GraphBFS(GRAPH g)//深度优先周游图g中能访问的各个顶点{int qidian,v,v1,mark[maxsize];printf("\n广度优先遍历:");printf("\n请输入起点的下标:");scanf("%d",&qidian);for(v=0;v<g.num;v++){mark[v]=0;}for(v=qidian;v<g.num+qidian;v++){v1=v%g.num;if(mark[v1]==0)BFS(g,v1,mark);}}void main()//主函数{GRAPH tu;GraphCreate(&tu);GraphOut(tu);GraphDFS(tu);GraphBFS(tu);printf("\n");}。

相关文档
最新文档