图的广度优先遍历C讲解

图的广度优先遍历C讲解
图的广度优先遍历C讲解

图 1

??1V ?0

000011?0

图 2 图1的图广度优先遍历过程图解二、结果分析

图的深度广度优先遍历操作代码

一、实验目的 1.掌握图的各种存储结构,特别要熟练掌握邻接矩阵和邻接表存储结构; 2.遍历是图各种应用的算法的基础,要熟练掌握图的深度优先遍历和宽度优先遍历算法,复习栈和队列的应用; 3.掌握图的各种应用的算法:图的连通性、连通分量和最小生成树、拓扑排序、关键路径。 二、实验内容 实验内容1**图的遍历 [问题描述] 许多涉及图上操作的算法都是以图的遍历为基础的。写一个程序,演示在连通无向图上遍历全部顶点。 [基本要求] 建立图的邻接表的存储结构,实现无向图的深度优先遍历和广度优先遍历。以用户指定的顶点为起点,分别输出每种遍历下的顶点访问序列。 [实现提示] 设图的顶点不超过30个,每个顶点用一个编号表示(如果一个图有N个顶点,则它们的编号分别为1,2,…,N)。通过输入图的全部边输入一个图,每条边是两个顶点编号对,可以对边依附顶点编号的输入顺序作出限制(例如从小到大)。 [编程思路] 首先图的创建,采用邻接表建立,逆向插入到单链表中,特别注意无向是对称插入结点,且要把输入的字符在顶点数组中定位(LocateVex(Graph G,char *name),以便后来的遍历操作,深度遍历算法采用递归调用,其中最主要的是NextAdjVex(Graph G, int v, int w);FirstAdjVex ()函数的书写,依次递归下去,广度遍历用队列的辅助。 [程序代码] 头文件: #include #include #define MAX_VERTEX_NUM 30 #define MAX_QUEUE_NUMBER 30 #define OK 1 #define ERROR 0 #define INFEASIBLE -1

图的深度和广度优先遍历

数据结构课程实验报告 课程名称数据结构班级计算123 实验日期2014年6月1日--3日 姓名学号实验成绩实验名称实验四图的深度和广度优先遍历 实验目的及要求【实验目的】 熟练掌握图的邻接表存储结构及其图的建立方法和深度和广度优先遍历的方法。 【实验要求】 1.图的存储可采用邻接矩阵或邻接表 2.GraphCreate(): 按从键盘的数据建立图 3.GraphDFS():深度优先遍历图 4.GraphBFS():广度优先遍历图 5.编写完整程序完成下面的实验内容并上机运行 6.整理并上交实验报告 实验环境硬件平台:普通的PC机 软件平台:Windows 7 操作系统编程环境:VisualC++ 6.0 实验内容1.以邻接矩阵或邻接表为存储结构,以用户指定的顶点为起始点,实现图的深度优先及广度优先搜索遍历,并输出遍历的结点序列。

算法描述及实验步骤算法: 1)定义图的邻接表存储结构 2)实现图的邻接表存储,即建立图的存储结构 3)实现图的深度优先遍历 4)定义队列的顺序存储结构,并实现队列的基本操作如初始化队列、入队、出对、判断队列是否为空等。利用队列实现图的广度优先遍历。伪代码: 1)定义邻接矩阵和队列的存取结构; 2)创建图L: 1.置空图L->num=0; 2.输入顶点数目num; 3.i++,输入结点L->vexs[i]直到L->num; 3)输出图L的各顶点; 4)深度优先遍历图g中能访问的各个顶点 1.输入起点的下标qidian; 2.标志数组初始化mark[v]=0; 3.for(v=qidian;v

图的生成、图的遍历

数据结构B实验报告 一、实验内容 图的生成、图的遍历 二、实验目的 掌握图的基本存储结构 掌握图的相关算法 掌握图的两种遍历方法 三、功能 本实验要求实现以下功能: 1.以邻接矩阵或者邻接表作为存储结构建立一个无向图。 2.深度优先搜索该无向图,输出遍历序列。 3.广度优先搜索该无向图,输出遍历序列。

四、主要代码 #include #include using namespace std; enum Status{UNVISITED,VISITED,SUCCESS,OVER_FLOW, RANGE_ERROR, NOT_PRESENT, ENTRY_FOUND, UNDER_FLOW}; const int DEFAULT_SIZE = 30; const int DEFAULT_INFAULTY =99999; const int MaxSize = 50; template struct Node { ElemType data; Node*next; Node();//普通构造函数 Node(ElemType e, Node*link = NULL);//带形参的构造函数 }; template Node::Node() { next = NULL; } template Node::Node(ElemType e, Node*link) { data = e; next = link; } template class LinkQueue { protected: Node *front, *rear; // 队头队尾指针 public: LinkQueue(); virtual ~LinkQueue(); int GetLength() const; bool IsEmpty() const; void Clear(); Status DelQueue(ElemType &e); Status GetHead(ElemType &e) const; Status EnQueue(const ElemType e); };

邻接矩阵表示图深度广度优先遍历

*问题描述: 建立图的存储结构(图的类型可以是有向图、无向图、有向网、无向网,学生可以任选两种类型),能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。 1、邻接矩阵表示法: 设G=(V,E)是一个图,其中V={V1,V2,V3…,Vn}。G的邻接矩阵是一个他有下述性质的n阶方阵: 1,若(Vi,Vj)∈E 或∈E; A[i,j]={ 0,反之 图5-2中有向图G1和无向图G2的邻接矩阵分别为M1和M2: M1=┌0 1 0 1 ┐ │ 1 0 1 0 │ │ 1 0 0 1 │ └0 0 0 0 ┘ M2=┌0 1 1 1 ┐ │ 1 0 1 0 │ │ 1 1 0 1 │ └ 1 0 1 0 ┘ 注意无向图的邻接是一个对称矩阵,例如M2。 用邻接矩阵表示法来表示一个具有n个顶点的图时,除了用邻接矩阵中的n*n个元素存储顶点间相邻关系外,往往还需要另设一个向量存储n个顶点的信息。因此其类型定义如下: VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量 AdjMatrix arcs; // 邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧(边)数 GraphKind kind; // 图的种类标志

若图中每个顶点只含一个编号i(1≤i≤vnum),则只需一个二维数组表示图的邻接矩阵。此时存储结构可简单说明如下: type adjmatrix=array[1..vnum,1..vnum]of adj; 利用邻接矩阵很容易判定任意两个顶点之间是否有边(或弧)相联,并容易求得各个顶点的度。 对于无向图,顶点Vi的度是邻接矩阵中第i行元素之和,即 n n D(Vi)=∑A[i,j](或∑A[i,j]) j=1 i=1 对于有向图,顶点Vi的出度OD(Vi)为邻接矩阵第i行元素之和,顶点Vi 的入度ID(Vi)为第i列元素之和。即 n n OD(Vi)=∑A[i,j],OD(Vi)=∑A[j,i]) j=1j=1 用邻接矩阵也可以表示带权图,只要令 Wij, 若或(Vi,Vj) A[i,j]={ ∞, 否则。 其中Wij为或(Vi,Vj)上的权值。相应地,网的邻接矩阵表示的类型定义应作如下的修改:adj:weightype ; {weightype为权类型} 图5-6列出一个网和它的邻接矩阵。 ┌∞31∞∞┐ │∞∞51∞│ │∞∞∞∞∞│ │∞∞6∞∞│ └∞322∞┘ (a)网(b)邻接矩阵 图5-6 网及其邻接矩阵 对无向图或无向网络,由于其邻接矩阵是对称的,故可采用压缩存贮的方法,

实验报告:图的存储结构和遍历

武汉东湖学院 实验报告 学院:计算机科学学院—专业计算机科学与技术2016年11月18日 1.实验目的 (1)了解邻接矩阵存储法和邻接表存储法的实现过程。 (2)了解图的深度优先遍历和广度优先遍历的实现过程。 2.实验内容 1.采用图的邻接矩阵存储方法,实现下图的邻接矩阵存储,并输出该矩阵 2.设计一个将第1小题中的邻接矩阵转换为邻接表的算法,并设计一个在屏幕上显示邻接表的算法 3.实现基于第2小题中邻接表的深度优先遍历算法,并输出遍历序列 4.实现基于第2小题中邻接表的广度优先遍历算法,并输出遍历序列

3.实验环境Visual C++ 6.0

4 .实验方法和步骤(含设计) 我们通过二维数组中的值来表示图中节点与节点的关系。通过上图可 知, 其邻接矩阵示意图为如下: V0 v1 v2 v3 v4 v5 V0 1 0 1 0 1 V1 1 0 1 1 1 0 V2 0 1 0 0 1 0 V3 1 1 0 0 1 1 V4 0 1 1 1 0 0 V5 1 1 此时的 “1 ” 表示这两个节点有关系,“ 0”表示这两个节点无关系 我们通过邻接表来在计算机中存储图时,其邻接表存储图如下:

5.程序及测试结果 #include #include int visited [6]; typedef struct { int a[6][6]; int n; }mgraph; typedef struct ANode { int adjvex; struct ANode *nextarc; }ArcNode; typedef struct Vnode { ArcNode *firstarc; }VNode; typedef VNode AdjList [6]; typedef struct { AdjList adjlist; int n; }ALGraph; void mattolist (mgraph g,ALGraph *&G) { int i,j; ArcNode *p; G=(ALGraph*)malloc(sizeof(ALGraph)); for(i=0;iadjlist[i].firstarc=NULL; for(i=0;i=0;j--) if(g.a[i][j]!=0) { p=(ArcNode*)malloc(sizeof(ArcNode)); p->adjvex=j; p->nextarc=G->adjlist[i].firstarc; G->adjlist[i].firstarc=p; } G->n=g.n; } void dispadj(ALGraph *G) { int i; ArcNode *p;

广度优先搜索和深度优先搜索

有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜索。它们最终都会到达所有 连通的顶点。深度优先搜索通过栈来实现,而广度优先搜索通过队列来实现。 深度优先搜索: 深度优先搜索就是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶子节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。这种方法的搜索树是从树根开始一枝一枝逐渐形成的。 下面图中的数字显示了深度优先搜索顶点被访问的顺序。 "* ■ J 严-* 4 t C '4 --------------------------------- --- _ 为了实现深度优先搜索,首先选择一个起始顶点并需要遵守三个规则: (1) 如果可能,访问一个邻接的未访问顶点,标记它,并把它放入栈中。 (2) 当不能执行规则1时,如果栈不空,就从栈中弹出一个顶点。 (3) 如果不能执行规则1和规则2,就完成了整个搜索过程。 广度优先搜索: 在深度优先搜索算法中,是深度越大的结点越先得到扩展。如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。 在深度优先搜索中,算法表现得好像要尽快地远离起始点似的。相反,在广度优先搜索中, 算法好像要尽可能地靠近起始点。它首先访问起始顶点的所有邻接点,然后再访问较远的区 域。它是用队列来实现的。 下面图中的数字显示了广度优先搜索顶点被访问的顺序。 实现广度优先搜索,也要遵守三个规则: ⑴ 访问下一个未来访问的邻接点,这个顶点必须是当前顶点的邻接点,标记它,并把它插入到队列中。(2)如果因为已经没有未访问顶点而不能执行规则1

图的广度优先搜索的应用

图的广度优先搜索的应用 ◆内容提要 广度优先搜索是分层次搜索,广泛应用于求解问题的最短路径、最少步骤、最优方法等方面。本讲座就最短路径问题、分酒问题、八数码问题三个典型的范例,从问题分析、算法、数据结构等多方面进行了讨论,从而形成图的广度优先搜索解决问题的模式,通过本讲座的学习,能明白什么样的问题可以采用或转化为图的广度优先搜索来解决。在讨论过程中,还同时对同一问题进行了深层次的探讨,进一步寻求解决问题的最优方案。 ◆知识讲解和实例分析 和深度优先搜索一样,图的广度优先搜索也有广泛的用途。由于广度优先搜索是分层次搜索的,即先将所有与上一层顶点相邻接的顶点搜索完之后,再继续往下搜索与该层的所有邻接而又没有访问过的顶点。故此,当某一层的结点出现目标结点时,这时所进行的步骤是最少的。所以,图的广度优先搜索广泛应用于求解问题的最短路径、最少步骤、最优方法等方面。 本次讲座就几个典型的范例来说明图的广度优先搜索的应用。 先给出图的广度优先搜索法的算法描述: F:=0;r:=1;L[r]:=初始值; H:=1;w:=1;bb:=true; While bb do begin H:=h+1;g[h]:=r+1; For I:=1 to w do Begin F:=f+1; For t:=1 to 操作数do Begin ⑴m:=L[f]; {出队列}; ⑵判断t操作对m结点的相邻结点进行操作;能则设标记bj:=0,并生成新结点;不能,则设标记bj:=1; if bj:=0 then {表示有新结点生成} begin for k:=1 to g[h]-1 do if L[k]=新结点then {判断新扩展的结点是否以前出现过} begin bj:=1;k:=g[h]-1

图的深度优先遍历和广度优先遍历

华北水利水电学院数据结构实验报告 20 10 ~20 11 学年第一学期2008级计算机专业 班级:107学号:200810702姓名:王文波 实验四图的应用 一、实验目的: 1.掌握图的存储结构及其构造方法 2.掌握图的两种遍历算法及其执行过程 二、实验内容: 以邻接矩阵或邻接表为存储结构,以用户指定的顶点为起始点,实现无向连通图的深度优先及广度优先搜索遍历,并输出遍历的结点序列。 提示:首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点为起始点,进行深度优先和广度优先遍历,并输出遍历的结果。 三、实验要求: 1.各班学号为单号的同学采用邻接矩阵实现,学号为双号的同学采用邻接表实现。 2.C/ C++完成算法设计和程序设计并上机调试通过。 3.撰写实验报告,提供实验结果和数据。 4.写出算法设计小结和心得。 四、程序源代码: #include #define MaxVerNum 50 struct edgenode { int endver; int inform; edgenode* edgenext; }; struct vexnode { char vertex; edgenode* edgelink; }; struct Graph { vexnode adjlists[MaxVerNum]; int vexnum; int arcnum; }; //队列的定义及相关函数的实现 struct QueueNode

{ int nData; QueueNode* next; }; struct QueueList { QueueNode* front; QueueNode* rear; }; void EnQueue(QueueList* Q,int e) { QueueNode *q=new QueueNode; q->nData=e; q->next=NULL; if(Q==NULL) return; if(Q->rear==NULL) Q->front=Q->rear=q; else { Q->rear->next=q; Q->rear=Q->rear->next; } } void DeQueue(QueueList* Q,int* e) { if (Q==NULL) return; if (Q->front==Q->rear) { *e=Q->front->nData; Q->front=Q->rear=NULL; } else { *e=Q->front->nData; Q->front=Q->front->next; } } //创建图 void CreatAdjList(Graph* G) { int i,j,k; edgenode* p1; edgenode* p2;

图的遍历操作实验报告

实验三、图的遍历操作 一、目的 掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储结构;掌握DFS及BFS对图的遍历操作;了解图结构在人工智能、工程等领域的广泛应用。 二、要求 采用邻接矩阵和邻接链表作为图的存储结构,完成有向图和无向图的DFS 和BFS操作。 三、DFS和BFS 的基本思想 深度优先搜索法DFS的基本思想:从图G中某个顶点Vo出发,首先访问Vo,然后选择一个与Vo相邻且没被访问过的顶点Vi访问,再从Vi出发选择一个与Vi相邻且没被访问过的顶点Vj访问,……依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则回退到已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样方法向前遍历。直到图中所有的顶点都被访问。 广度优先算法BFS的基本思想:从图G中某个顶点Vo出发,首先访问Vo,然后访问与Vo相邻的所有未被访问过的顶点V1,V2,……,Vt;再依次访问与V1,V2,……,Vt相邻的起且未被访问过的的所有顶点。如此继续,直到访问完图中的所有顶点。 四、示例程序 1.邻接矩阵作为存储结构的程序示例 #include"" #include"" ertex); irstedge; irstedge; } } }//endwhile } //==========主函数=========== void main() { ALGraph *G; G=(ALGraph *)malloc(sizeof(ALGraph));

CreatALGraph(G); printf("Print Graph DFS: "); DFS(G); printf("\n"); printf("Print Graph BFS: "); BFS(G,3); printf("\n"); } 五、实验内容 1调试程序。设计一个有向图和一个无向图,任选一种存储结构,完成有向图和无向图的DFS(深度优先遍历)和BFS(广度优先遍历)的操作。 邻接矩阵作为存储结构的运行结果: 邻接链表作为存储结构的运行结果: 六、实验报告要求 画出你所设计的图,写出两种方法的遍历序列。

数据结构课程设计——图的广度优先遍历

课程设计 题目图的广度优先遍历 学院计算机科学与技术 专业计算机科学与技术 班级 姓名 指导教师 2011 年 6 月25 日

图的广度优先遍历 一、课程设计的目的 课程设计是对学生的一种全面的综合训练,是与课堂听讲、自学、练习、上机实习相辅相成的教学环节。课程设计的题目通常比平时练习与上机实习复杂得多,也更接近实际。其目的是使学生深化理解和灵活掌握教学内容,并学会如何把书上学到的知识用于解决实际问题,培养软件工作所需的问题分析、软件设计、算法设计和实际动手编程、调试的能力。 这个题目的课程设计是要掌握图的邻接矩阵的存储结构和图的广度优先遍历。 二、问题分析和任务定义 1、问题描述: 画出下图所示的无向图的邻接表,使得其中每个无项边结点中第一个顶点号小于第二个 顶点号,且每个顶点的各邻接边的链接顺序,,为它所邻接到的顶点序号由小到大的顺序。 列出广度优先搜索遍历该图所得顶点序列和边的序列。 2、问题分析和任务定义 图的邻接表表示:在第i行的单链表中,各结点(称作边结点)分别存放与同一个顶点 vi关联的各条边。各条边配有标识dest,指示该边的另一个顶点(终顶点);还配有 指针link,指向同一链表中的下一条边地边结点(都与顶点vi相关联)。 图的遍历: 图中某个顶点出发访问图中所有顶点,且使得每一顶点仅被访问一次,这个 过程称为图的遍历。图的遍历是从图中某个顶点出发,沿着某条搜索路径对图中其余每 个顶点进行访问, 并且使图中的每个顶点仅被访问一次的过程。 三、存储结构设计

按无向图的邻接表存储 四、主要程序设计 1.广度优先遍历的定义 在访问了起始点之后,首先依次访问起始点的各个邻接点,然后依次访问这些顶点中未被访问过的邻接点.依此类推,直到所有被访问到的顶点的邻接点都被访问过为止. 2. 广度优先搜索的过程 a算法基本思想: 首先访问图中某一指定的出发点Vi; 然后依次访问Vi的所有接点Vi1,Vi2…Vit; 再次访问Vi1,Vi2…,Vit的邻接点中未经访问过的顶点,依此类推,直到图中所有顶点均被访问为止。 b具体过程: 从广度优先搜索遍历方法可知,先被访问的顶点的邻接点也被访问,即假设顶点V在W之前被访问,那么顶点V的所有未经访问的邻接点也在顶点W的所有未经访问的邻接点之前被访问。这样可以在广度优先遍历的算法中设置一个队列结构,用以保存已访问过的顶点的序号,访问该顶点的所有未经访问的顶点。 广度优先搜索是一种分层的搜索过程,每向前走一步可能访问一批顶点,不像深度优先搜索那样会出现回退的现象。因此它不是个递归的过程。为了实现逐层访问,算法中使用了一个队列以记忆正在访问的这一层和上一层的顶点,以便于向下一层访问。为了避免重复访问,需要一个辅助函数visitvex[]给被访问过的顶点加标记。 五、调试过程 1.在求图的第u个顶点,与其相邻的一系列顶点中,第w个顶点的下一个顶点时,若是求最后一个顶点的下一个顶点时,函数进入了死循环。原因是判断条件没有写好,造成了判断值恒为真,因此进入了死循环。修改后,函数正常运行。 2.广度优先遍历图的时候,是从指定的任一顶点开始遍历,当遇到该图为无向非连通图,

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历实现 深度优先遍历过程 1、图的遍历 和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。它是许多图的算法的基础。 深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。它们对无向图和有向图均适用。 注意: 以下假定遍历过程中访问顶点的操作是简单地输出顶点。 2、布尔向量visited[0..n-1]的设置 图中任一顶点都可能和其它顶点相邻接。在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。为了避免重复访问同一个顶点,必须记住每个已访问的顶点。为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。 -------------------------- 深度优先遍历(Depth-First Traversal) 1.图的深度优先遍历的递归定义 假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。 图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。 2、深度优先搜索的过程 设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的

图的深度优先搜索,广度优先搜索,代码

#include #include #include #define MAX_VERTEX_NUM 50 typedef struct Arcnode { int adjvex; struct Arcnode *nextarc; } Arcnode; typedef struct VNode { int data; Arcnode *firstarc; } VNode, AdjList[MAX_VERTEX_NUM]; typedef struct { AdjList vertice; int vexnum, arcnum; int kind; } Graph; int visit[100];//用来标记每个定点是否被访问过 void changeV_G(int v[], Graph &G, int n);//将邻接矩阵转换成邻接表int FirstAdjVex(Graph G, int v); int NextAdjVex(Graph G, int v, int w); void DFS(Graph G, int v); void DFSTraverse(Graph G, int v[]); void changeV_G(int v[], Graph &G, int n) { for(int i=0; iadjvex=j;

无向图的存储及深度和广度优先遍历

《数据结构》实验报告 ◎实验题目:无序图的存储并分别实现深度和广度优先遍历 ◎实验目的:理解并掌握以邻接表的方式存储图,以及图的非递归的深度和广度优先遍历 ◎实验内容:首先将图的元素输入并以邻接表的方式存储,然后分别进行递归和非递归遍历。 一、需求分析 1、输入的形式和输入值的范围: ①输入图的顶点元素和边; ②输入数字选择要进行的操作:深度遍历,广度遍历或结束操作。 2、输出的形式: 按深度或者广度优先顺序输出各节点的编号 3、程序所能达到的功能: (1)以邻接表的方式存储图 (2)对图进行深度优先的非递归遍历 (3)对图进行广度优先的非递归遍历 4、测试数据: 输入各结点元素:a,b,c,d,e,f,g,h; 输入图中的各边:1,2 1,3 2,4 2,5 3,6 3,7 4,8 5,8 操作选项输入1进行深度优先遍历; 遍历结果为:1 3 7 6 2 5 8 4 操作选项输入2进行广度优先遍历; 遍历结果为:1 3 2 7 6 5 4 二概要设计 (1)抽象数据类型定义: #define MaxVerNum 100 //边表结点 typedef struct node{ int adjvex; struct node *next; }EdgeNode,*ENode;

顶点表结点; typedef struct vnode{ char vertex; EdgeNode *firstedge; }VertexNode; typedef VertexNode AdjList[MaxVerNum]; 定义图; typedef struct{ AdjList adjlist; int n,e; }AlGraph; AlGraph G; (2)主程序的流程: 1.根据提示输入顶点个数和边的个数; 2.输入图的各边; 3. 输入数字执行相关操作 (3)其函数之间调用关系如下: 执行结束后,重新执行判定操作和循环。 三详细设计

数据结构中图的两种存储结构和两种遍历

邻接矩阵 #include #include typedef struct { int a[20][20]; int n; int e; }Graph; int visit[20]; void DFS(Graph *p,int n) { int i; printf("%4d",n); visit[n]=1; for(i=1;i<=p->n;i++) if(i!=n&&visit[i]==0&&p->a[n][i]) DFS(p,i); } void BFS(Graph *p,int n) { int i,top=0,t; int a[20]; printf("%4d",n); visit[n]=1; a[++top]=n; while(top) { t=a[1]; for(i=1;in;i++) if(p->a[t][i]&&visit[i]==0) { printf("%4d",i); visit[i]=1;

a[++top]=i; } } } int main() { int i,j,n,m; Graph *p; p=(Graph *)malloc(sizeof(Graph)); printf("输入图的顶点数:");scanf("%d",&p->n); printf("输入图的边数:"); scanf("%d",&p->e); for(i=1;i<=p->n;i++) for(j=1;j<=p->n;j++) p->a[i][j]=0; printf("输入图的每条边:\n"); for(i=1;i<=p->e;i++) { printf("%d: ",i); scanf("%d%d",&n,&m); p->a[n][m]=1; p->a[m][n]=1; } for(i=1;i<=p->n;i++) { for(j=1;j<=p->n;j++) printf("%4d",p->a[i][j]); printf("\n"); } for(i=1;i<=p->n;i++) visit[i]=0; printf("DFS遍历:\n"); DFS(p,1); printf("\n"); for(i=1;i<=p->n;i++) visit[i]=0; printf("BFS遍历:\n"); BFS(p,1); printf("\n"); return 0; }

图的深度和广度遍历 - 实验报告

实验报告 一、实验目的和内容 1.实验目的 掌握图的邻接矩阵的存储结构;实现图的两种遍历:深度优先遍历和广度优先遍历。 2.实验内容 1.图的初始化; 2.图的遍历:深度优先遍历和广度优先遍历。 二、实验方案 程序主要代码: ///

///邻接矩阵的节点数据 /// public struct ArcCell { public int Type; //顶点的关系类型,对无权图,用1或0表示相邻; //对带权图,则为权值类型。 public object Data; //该弧相关信息 public ArcCell(int type,object data) { Type = type; Data = data; } } /// ///图的类型 /// public enum GKind {DG,DN,UDG,UDN}; //有向图,有向网,无向图,无向网

///

///图类 /// public class Graph { public static int Max_Vertex_Num = 20; //最大顶点数 private object [] Vexs; //顶点数据数组 private ArcCell [,] Arcs; //邻接矩阵 private GKind Kind; //图的种类 private int VexNum,ArcNum; //当前顶点数和弧数 /// ///图的初始化方法 /// ///顶点数 ///弧数 ///图的类型 public Graph(int vexnum,int arcnum,GKind k) { VexNum = vexnum; ArcNum = arcnum; Kind = k; Vexs = new object[Max_Vertex_Num]; Arcs = new ArcCell[Max_Vertex_Num,Max_Vertex_Num]; } /// ///设置v1,v2之间的弧的权值,顶点的关系类型,对无权图,用1或0表示相邻; ///对带权图,则为权值类型。 /// ///顶点1 ///顶点2 ///权 ///成功返回真,否则返回假 public bool SetArcInfo(int v1,int v2,int adj,object data) { if(v1

图的两种图的遍历方法

5.3 图的遍历 和树的遍历类似,在此,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次。这一过程就叫做图的遍历(TraversingGraph)。图的遍历算法是求解图的连通性问题、拓扑排序和求关键路径等算法的基础。 然而,图的遍历要比树的遍历复杂得多。因为图的任一顶点都可能和其余的顶点相邻接。所以在访问了某个顶点之后,可能沿着某条路径搜索之后,又回到该顶点上。[例如]图7.1(b)中的G2,由于图中存在回路,因此在访问了v1,v2,v3,v4之后,沿着边(v4 , v1)又可访问到v1。为了避免同一顶点被访问多次,在遍历图的过程中,必须记下每个已访问过的顶点。为此,我们可以设一个辅助数组visited[0..n-1],它的初始值置为“假”或者零,一旦访问了顶点vi,便置visited[i]为“真”或者为被访问时的次序号。 通常有两条遍历图的路径:深度优先搜索和广度优先搜索。它们对无向图和有向图都适用。 5.3.1 深度优先搜索 深度优先搜索(Depth-First Search)遍历类似于树的先根遍历,是树的先根遍历的推广。 其基本思想如下:假定以图中某个顶点vi为出发点,首先访问出发点,然后选择一个vi的未访问过的邻接点vj,以vj为新的出发点继续进行深度优先搜索,直至图中所有顶点都被访问过。显然,这是一个递归的搜索过程。 现以图5-3-1中G为例说明深度优先搜索过程。假定v0是出发点,首先访问v0。因v0有两个邻接点v1、v2均末被访问过,可以选择v1作为新的出发点,访问v1之后,再找v1的末访问过的邻接点。同v1邻接的有v0、v3和v4,其中v0已被访问过,而v3、v4尚未被访问过,可以选择v3作为新的出发点。重复上述搜索过程,继续依次访问v7、v4 。访问v4之后,由于与v4相邻的顶点均已被访问过,搜索退回到v7。由于v7、v3和v1都是没有末被访问的邻接点,所以搜索过程连续地从v7退回到v3,再退回v1,最后退回到v0。这时再选择v0的末被访问过的邻接点v2,继续往下搜索,依次访问v2、v5和v6,止此图中全部顶点均被访问过。遍历过程见图5-3-1(b),得到的顶点的访问序列为:v0 → v1 →v3 → v7 → v4 → v2 → v5 → v7。

数据结构图的深度和广度优先遍历

标题:图的深度和广度优先遍历时限: 2000 ms 内存限制: 5000 K 总时限: 3000 ms 描述:以邻接矩阵给出一张以整数编号为顶点的图,其中0表示不相连,1表示相连。按深度和广度优先进行遍历,输出全部结果。要求,遍历时优先较小的顶点。如,若顶点0与顶点2,顶点3,顶点4相连,则优先遍历顶点2. 输入:顶点个数邻接矩阵 输出:DFS 深度遍历输出WFS 广度遍历输出 输入样例: 3 0 1 1 1 0 1 1 1 0 输出样例:DFS 0 1 2 1 0 2 2 0 1 WFS 0 1 2 1 0 2 2 0 1 提示:顶点整数从0 开始 来源:教材 #include "stdlib.h" #include "stdio.h" #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 #define MAXQSIZE 100 typedef struct { int amount; int *vex;

int **matrix; } Graph; typedef struct { int *base; int *top; int stacksize; } SqStack; void InitStack(SqStack &S) { S.base = (int*)calloc(STACK_INIT_SIZE,sizeof(int)); S.top = S.base; S.stacksize = STACK_INIT_SIZE; } void Push(SqStack &S,int e) { if(S.top - S.base >= S.stacksize) { S.base = (int*)realloc(S.base,(STACKINCREMENT + S.stacksize)*sizeof(int)); S.top = S.base + S.stacksize; S.stacksize += STACKINCREMENT; } *S.top++ = e; } bool Pop(SqStack &S,int &e) { if(S.top == S.base) { puts("This is an empty stack!"); return false; } else { e = *--S.top; return true; } } bool GetTopS(SqStack S,int &e) {

邻接矩阵存储图的两种遍历方式

下面是用邻接矩阵存储一个无向图的深度优先遍历和广度优先遍历代码,深度优先遍历就是树的先根遍历的一种推广,而广度优先也是和树的层次遍历相似的,用邻接矩阵存储,进行这两种遍历的实现,是比较容易的。 因为用了自己写的循环队列的模版,所以代码看起来有点冗长. 1.#include 2.#include https://www.360docs.net/doc/451390286.html,ing namespace std; 4. 5.//下面是循环队列模版 6.template 7.class My_queue; 8. 9.template 10.class Node 11.{ 12.private: 13. T data; 14. Node *next; 15.public: 16. Node() 17. { 18. next=0; 19. } 20. Node(T d) 21. { 22. data=d; 23. next=0; 24. } 25.friend My_queue; 26.}; 27. 28.template 29.class My_queue 30.{ 31.private: 32. Node *tail; 33.public: 34. My_queue() 35. { 36. tail=new Node();

37. tail->next=tail; 38. } 39. 40. ~My_queue() 41. { 42. clean(); 43.delete tail; 44. } 45. 46.bool empty() 47. { 48.return (tail->next==tail); 49. } 50. 51.void push(T d) 52. { 53. Node *p=new Node(d); 54. p->next=tail->next; 55. tail->next=p; 56. tail=p; 57. } 58. 59. T front() 60. { 61.if(empty()) 62. { 63. cout<<"queue is empty!"< *p=tail->next; 67. T data=p->next->data; 68.return data; 69. } 70. 71. T back() 72. { 73.if(empty()) 74. { 75. cout<<"queue is empty!"<data; 79.return data; 80. }

相关文档
最新文档