图的广度优先遍历C讲解

合集下载

图的深度优先遍历(DFS)c++非递归实现

图的深度优先遍历(DFS)c++非递归实现

图的深度优先遍历(DFS)c++⾮递归实现深搜算法对于程序员来讲是必会的基础,不仅要会,更要熟练。

ACM竞赛中,深搜也牢牢占据着很重要的⼀部分。

本⽂⽤显式栈(⾮递归)实现了图的深度优先遍历,希望⼤家可以相互学习。

 栈实现的基本思路是将⼀个节点所有未被访问的“邻居”(即“⼀层邻居节点”)踹⼊栈中“待⽤”,然后围绕顶部节点猛攻,每个节点被访问后被踹出。

读者可以⾃⼰画图分析⼀下,难度并不⼤。

代码写的⽐较随意,仅供参考。

~#include <iostream>#include <stack>using namespace std;#define MaxNode 20#define MAX 2000#define StartNode 1int map[MaxNode+1][MaxNode+1];void dfs_stack(int start, int n){int visited[MaxNode],s_top;for(int i = 0;i <= MaxNode; i++){visited[i] = 0;}visited[start] = 1;stack <int> s;cout<<start<<"";for(int i = 1; i <= n; i++){if(map[i][start] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}while(!s.empty()){s_top = s.top();visited[s_top] = 1;cout<<s_top<<"";s.pop();for(int i = 1; i <= n; i++){if(map[i][s_top] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}}}int main(int argc, const char * argv[]) {int num_edge,num_node;int x,y;cout<<"Input number of nodes and edges >"<<endl;cin>>num_node>>num_edge;for(int i =0;i<num_node;i++){for(int j=0;j<num_node;j++){map[i][j] = 0;}}for(int i = 1; i <= num_edge; i++){cin>>x>>y;map[x][y] = map[y][x] = 1;}dfs_stack(StartNode, num_node);return0;}。

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。

图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。

图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。

本文将详细讲解图的遍历算法及其应用。

二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。

(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。

(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。

(4)重复步骤(2)和(3),直到栈为空。

2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。

(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。

(3)重复步骤(2),直到队列为空。

三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。

1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。

图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。

具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。

(2)重复步骤(1),直到所有顶点都被访问。

2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。

第7章图的深度和广度优先搜索遍历算法

第7章图的深度和广度优先搜索遍历算法
7.3 图的遍历
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }

图的遍历和搜索PPT课件

图的遍历和搜索PPT课件

7
1
2 4
3 5
Dfs: 124356
6
2021/3/12
8
1
2 4
3
6
5
Bfs: 123645
2021/3/12
9
A
B
C
D
E
2021/3/12
10
A
AB
AC
ABC
ACD ACE
ABCD ABCE ACDE ACED
ABCDE ABCDE ACDEC
ACEDC
ABCDEC ABCDEC ACDECB
readln(f,ch1,ch2,ch3); data[ch1,ch3]:=1; data[ch3,ch1]:=1; end; close(f);assign(f,'wjx.out');rewrite(f); end;
2021/3/12
14
procedure main(ch:char;step:integer); var r:char; begin
2021/3/12
3
1
2

3
4
6
5
Dfs: 124563 Bfs: 123465
2021/3/12
4
1 2 4 5 6 3
Dfs: 124563
2021/3/12
5
1
2
3
4
6
5
Bfs: 123465
2021/3/12
6
1
2
3
4
5
6
Dfs: 124356 Bfs: 123645
2021/3/12
2021/3/12
22
一. 递归算法:

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。

功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。

按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。

图的遍历技巧

图的遍历技巧

图的遍历技巧
图的遍历是指按照一定的规则,从图的某个顶点出发,沿着边遍历图中的所有顶点,使得每个顶点都被访问一次且仅一次的过程。

常用的图的遍历技巧有以下两种:
1. 深度优先遍历(Depth First Search, DFS):从图的某个顶点出发,先访问该顶点,然后依次访问与该顶点相邻的未被访问过的顶点,并以此递归地进行遍历。

当不存在未被访问的相邻顶点时,回溯到上一个顶点,继续遍历其他未被访问的相邻顶点,直至所有顶点都被访问完。

2. 广度优先遍历(Breadth First Search, BFS):从图的某个顶点出发,先访问该顶点,然后依次访问与该顶点相邻的未被访问过的顶点,并将这些顶点按照入队的顺序加入队列中。

接下来再从队列中取出一个顶点,重复前述操作,直至队列为空。

这两种遍历技巧可以分别应用于不同场景的图问题。

深度优先遍历一般适用于需要探索整个图中某一支路径的问题,而广度优先遍历一般适用于需要确定最短路径或者按层遍历的问题。

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

它是许多图的算法的基础。

深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。

它们对无向图和有向图均适用。

注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。

2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。

在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。

为了避免重复访问同一个顶点,必须记住每个已访问的顶点。

为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。

--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。

在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。

若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。

若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

图的深度优先遍历类似于树的前序遍历。

采用的搜索方法的特点是尽可能先对纵深方向进行搜索。

这种搜索方法称为深度优先搜索(Depth-First Search)。

相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。

若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。

图的深度广度优先遍历C语言程序

图的深度广度优先遍历C语言程序
printf("请输入顶点数目:");
scanf("%d",&L->num);
printf("请输入各顶点的信息(单个符号):");
for(i=0;i<L->num;i++)
{
fflush(stdin);
scanf("%c",&L->vexs[i]);
}
printf("请输入边权矩阵的信息:");
{ *e=sq.data[(sq.front)]; return 1;}
}
/*******************************************************************பைடு நூலகம்*********/
int QueueIn (SEQQUEUE *sq,DATATYPE x)
for(v2=0;v2<g.num;v2++)
{
if(g.arcs[v1][v2]!=0&&mark[v2]==0)
{
QueueIn(&q,v2);
mark[v2]=1;
printf("%c ",g.vexs[v2]);
}
}
//如果顺序循环队列sq为空,成功返回1,否则返回0
{
if (sq.rear==sq.front)
return(1);
else
return(0);
}
/*****************************************************************************/
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
if(Q==NULL) return -1;
if(E==NULL) return -2;
pE=LinkedListGet(Q->LinkQueue,1);
ElemCopy(pE,E);
LinkedListDel(Q->LinkQueue,1);
Q->Count--;
return 0;
}
表6数据E出队列,见B0.c
出队列函数总是把第一个结点删除掉,注意队列完全可能数据出完后再次有数据进入队列,则原来的结点删除函数有Bug,这在程序开发中很正常,修改后就是:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
int LinkedListDel(struct LinkedList *L,int n)
{
int i;
struct Node *p0,*p1;
V1(1)
0
1
1
0
0
0
0
0
V2(2)
1
0
0
1
1
0
0
0
V3(3)
1
0
0
0
0
1
1
0
V4(4)
0
1
0
0
0
0
0
1
V5(5)
010ຫໍສະໝຸດ 0000
1
V6(6)
0
0
1
0
0
0
1
0
V7(7)
0
0
1
0
0
1
0
0
V8(8)
0
0
0
1
1
0
0
0
表1图1的邻接矩阵表
为了记录那些顶点是已经走过的,还要设计一个表来标记已经走过的顶点,在开始,我们假设未走过的是0,走过的是1,于是有:
有了队列的初始化,则进入队列、实际相当于给这个链表追加一条记录,就是Append()的另类包装:
1
2
3
4
5
6
7
8
int EnQueue(struct Queue *Q,struct ElemType *E)
{
if(Q==NULL) return -1;
if(E==NULL) return -2;
Append(Q->LinkQueue,E);
一般要计算这样的问题,画成表格来处理是相当方便的事情,实际中计算机处理问题,也根本不知道所谓矩阵是什么,所以画成表格很容易帮助我们完成后面的编程任务。在我们前面介绍的内容中,有不少是借助着表格完成计算任务的,如Huffman树。
V1(1)
V2(2)
V3(3)
V4(4)
V5(5)
V6(6)
V7(7)
V8(8)
Q->Count++;
return 0;
}
表5数据E进入队列,见B0.c
注意数据出队列,出队列总是把链表中第一个结点的数据给出来、并删除第一个结点,所以出队列就是:
1
2
3
4
5
6
7
8
9
10
11
int DeQueue(struct Queue *Q,struct ElemType *E)
{
struct ElemType *pE;
西北师范大学地环学院地理信息系
数据结构实验讲义
十一图的广度优先遍历
张长城
2011-2-8
[图存储以及深度优先遍历算法分析,C语言实现]
实验任务描述
1分析广度优先遍历算法;
2用C语言实现图的广度优先遍历。
一、
邻接矩阵存储图的广度优先遍历过程分析
对图1这样的无向图,要写成邻接矩阵,则就是下面的式子
图1
顶点矩阵:V= 弧长矩阵:A=
V1
V2
V3
V4
V5
V6
V7
V8
0
0
0
0
0
0
0
0
表2图1的顶点访问表Visited
对广度优先遍历,还需要补充一个队列、来记录一个顶点可以抵达到的其他顶点。
广度优先遍历过程如下:
图2图1的图广度优先遍历过程图解
二、结果分析
从上面的过程可以看出:仅仅就顶点访问到的次序而言,图1的广度优先遍历结果是:
V1->V2->V3>V4->V5->V6->7->V8
return 0;
}
表7修改后的链表结点删除函数,见B0.c
修改的这个链表结点函数、仅仅加了第14行,在过去,所以结点删除后,最后的尾巴结点指针Tail所指的存储空间被释放,导致这个指针变量不可用,现在在结点个数为0的情况下,再次让尾结点指向头结点,保证下次进入链表的数据依然正确。
而判断队列是否为空则相对简单的多,就是:
QueueInit()、EnQueue、DeQueue()、QueueEmpty()这4个函数,于是有以下队列定义:
1
2
3
4
5
struct Queue
{
struct LinkedList * LinkQueue;
int Count;
};
表3为广度优先遍历图准备队列见B0.c
由于我们已经确定使用链表做队列,所以队列实际就是链表的换名包装,所以我们可以理解为队列就是链表的另一种应用,表3的程序就是这样的做法,所以对队列的初始化,就是:
但实际执行过程中我们可以发现:所谓图的广度优先遍历、其结果应该是一个树:
图3广度优先遍历生成树
在C语言中,显示这个结果并不容易,所以大多C语言的教材中并不会给出这样的结果。
三、C语言实现队列编程
根据上面的分析,我们可以知道:要广度优先遍历图,首先要一个队列系统。
队列在C语言上只能自己构造,好在我们前面有链表、有顺序表,我们可以复制过来一个链表程序构造一个队列,于是从链表程序中复制过来b5.c或者b6.c即可,我们分析队列的ADT可知,最需要的队列功能需求是:
1
2
3
4
5
6
7
8
struct Queue * QueueInit()
{
struct Queue *q;
q=(struct Queue *)malloc(sizeof(struct Queue));
q->LinkQueue=LinkedListInit();
q->Count=0;
return q;
}
表4队列初始化函数见B0.c
if(L==NULL) return -1;
if(n<0||n>L->Count) return -2;
p0=L->Head;
for(i=0;i<n-1;i++)
p0=p0->next;
p1=p0->next;
p0->next=p1->next;
free(p1);
L->Count--;
if(L->Count==0) L->Tail=L->Head;
1
2
3
4
5
int QueueEmpty(struct Queue *Q)
{
if(Q==NULL) return -1;
return !(Q->Count);
}
表8判断队列是否为空,见B0.c
补充main()函数,测试多批次进入队列、出队列,全部程序见B0.c
在我们的图遍历应用中,我们对队列的数据仅仅要求一个整数即可,而这个程序进出队列的数据有三列数据,为加强该程序可靠行,修改ElemType(),就是:
1
2
3
4
5
6
void ElemCopy(struct ElemType *s,struct ElemType *d)
相关文档
最新文档