电力电子器件的保护及串并联使用
电力电子技术(第4版)第3讲 电力电子器件

电力电子技术
第1章:
电力电子器件
⑵ GTO的动态特性
iG
开通过程:与普通晶闸管相同 关断过程:与普通晶闸管有所不同 储存时间 t s ,使等效晶体退出饱 和 。 下降时间 t f ,
O t
尾部时间 t —残存载流子复
t
iA IA 90%合。
10%IA 0
电力电子器件
③最大可关断阳极电流 I A T O ——GTO额定电流。 ④ 电流关断增益off ——最大可关断阳极电流与门极负脉冲电 流最大值IGM 之比称为电流关断增益。
o ff
I ATO I GM
off一般很小,只有5左右,这是GTO的一个主要缺点。
1000A的GTO关断时门极负脉冲电流峰值要200A 。 电力电子技术
A 强 G K O U AK 光强度 弱
a)
b)
因此目前在高压大功率 的场合。
图1-10 光控晶闸管的电气 图形符号和伏安特性
a) 电气图形符号 b) 伏安特性
电力电子技术
第1章:
电力电子器件
1.6
典型全控型器件
1.6.0 引言
门极可关断晶闸管——在晶闸管问世后不久出现。
20世纪80年代以来,电力电子技术进入了一个崭新时 代。
第1章:
电力电子器件
1.6.2
术语用法:
电力晶体管
电力晶体管(Giant Transistor——GTR,直译为 巨型晶体管) 。
耐 高 电 压 、 大 电 流 的 双 极 结 型 晶 体 管 ( Bipolar Junction Transistor——BJT),英文有时候也称 为Power BJT。 应用:
电力电子器件概述

5. 反向恢复时间trr 6. 浪涌电流IFSM
1.2.4 主要类型
1. 普通二极管——又称整流二极管 1KHZ以下 数千安和数千伏以上
2. 快恢复二极管 5μs以下 3. 肖特二极管
1.3 半控型器件——晶闸管(SCR)
常用晶闸管的结构
螺栓型晶闸管
晶闸管模块
Id
1
2
3
Im
sin td
t
3
4
Im
0.24Im
I
1
2
Im
sin t
2
d
t
0.46Im
3
Kf
I Id
0.46 0.24
1.92
IT ( AV )
100 2
50
Id
1.57 50 1.92
41 A
Im
Id 0.24
41 0.24
171
A
⑵ 维持电流IH 使晶闸管维持通态所必需的最小主电流。 ⑶ 擎住电流IL ⑷ 浪涌电流ITSM
4. 光控晶闸管LTT
⑴又称光触发晶闸 管,是利用一定 波长的光照信号 触发导通的晶闸 管。
⑵光触发保证了主 电路与控制电路 之间的绝缘,且 可避免电磁干扰 的影响。
⑶在高压大功率的 场合占有重要地位。
1.4 典型全控型器件
门极可关断晶闸管——在晶闸管问世后不久出现。 20世纪80年代以来,电力电子技术进入了一个崭新时代。
不可控器件:电力二极管
半控型器件:晶闸管及其派生器件 全控型器件:功率场效应管、绝缘栅双极性晶体管、
门极可关断晶闸管
⑵ 按照控制信号性质可分为: 电流控制型 电压控制型:控制功率小
第1章 电力电子器件概述(第一部分)(2)

1.1.2 应用电力电子器件的系统组成
1.1.3 电力电子器件的分类 1.1.4 本章内容和学习要点
华东理工大学
1-3
1.1.1 电力电子器件的概念和特征
电力电子器件
1)概念:
电力电子器件(Power Electronic Device)
——可直接用于主电路中,实现电能的变换或控制的电 子器件。
主电路(Main Power Circuit)
和控制电 路中附加 一些电路, 以保证电 力电子器 件和整个 系统正常 可靠运行
V1 L R
V2
主电路
电气隔离 图1-1 电力电子器件在实际应用中的系统组成
华东理工大学
1-7
注重对器件的保护:通常采用吸收(缓冲) 保护电路( Snubber )来限制器件的 du/dt 和di/dt,减小由于大电流跃变在引线(寄 生)电感上形成的反电势尖峰,以防器件 过压击穿。 需要驱动与隔离:强、弱电系统之间电气 隔离,不共地,消除相互影响,减小干扰, 提高可靠性。
通态损耗是器件功率损耗的主要成因。 器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
华东理工大学
1-6
1.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路 和以电力电子器件为核心的主电路组成。 在主电路
控 制 控制电路 电 路 检测 电路 保护 电路 驱动 电路
额定电流 —— 在指定的管壳温度和散热条件下, 其允许流过的最大工频正弦半波电流的平均值。 IF(AV)是按照电流的发热效应来定义的,使用时应 按有效值相等的原则来选取电流定额,并应留 有一定的裕量。 在工频正弦半波的情况下:
平均值 IF(AV) 有效值 1.57 IF(AV)
电力电子器件大全及使用方法详解

第1章电力电子器件主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFET、IGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。
重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。
难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。
基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则,掌握典型全控型器件,了解电力电子器件的串并联,了解电力电子器件的保护。
1 电力电子器件概述(1) 电力电子器件的概念和特征主电路(main power circuit)--电气设备或电力系统中,直接承担电能的变换或控制任务的电路;电力电子器件(power electronic device)--可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件;广义上电力电子器件可分为电真空器件和半导体器件两类。
两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。
因此,电力电子器件目前也往往专指电力半导体器件。
电力半导体器件所采用的主要材料仍然是硅。
同处理信息的电子器件相比,电力电子器件的一般特征:a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;其处理电功率的能力小至毫瓦级,大至兆瓦级,大多都远大于处理信息的电子器件。
b. 电力电子器件一般都工作在开关状态;导通时(通态)阻抗很小,接近于短路,管压降接近于零,而电流由外电路决定;阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定;电力电子器件的动态特性(也就是开关特性)和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。
电力电子技术课程教学大纲

《电力电子技术》课程教学大纲课程类别:专业基础课程性质:必修英文名称:Power Electronic Technology总学时:64讲授学时:48 实验学时:16学分:3.5先修课程:电路原理、模拟电子技术、数字电子技术适用专业:自动化开课单位:信息工程学院自动化教研室一、课程简介《电力电子技术》是电气工程及其自动化专业、自动化专业本科生的一门专业基础课,是一门理论与应用相结合,实践性很强的课程。
它包括电力电子器件、电力电子变流技术以及以微电子技术和计算机为代表的控制技术三大组成部分。
本课程的目的和任务是使学生熟悉各种电力电子器件的特性和使用方法;掌握各种电力电子电路的结构、工作原理、控制方法、设计计算方法及实验技能;熟悉各种电力电子装置的应用范围及技术经济指标,培养学生的分析问题和解决问题的能力,为《运动控制》等后续课程以及从事与电气工程有关的技术工作和科学研究打下一定的基础。
二、教学内容及基本要求0 绪论(2学时)教学内容:0.1电力电子技术的定义0.2电力电子技术的发展历史(自学)0.3电力电子技术的内涵及其相关工业0.4电力电子技术所研究的基本问题0.5电力电子技术的主要内容0.6本课程的学习方法及考核方法教学要求:1.理解电力电子技术的定义,电力电子技术所研究的基本问题。
2.了解电力电子学科的发展历史、电力电子技术的内涵及其相关工业、电力电子技术的主要内容以本课程的学习方法及考核方法。
授课方式:讲授+自学第一章:电力电子器件(10 学时)教学内容:1.1电力电子器件概述1.2不可控器件——电力二极管1.3半控型器件——晶闸管1.4典型全控型器件1.5其他新型电力电子器件1.6电力电子器件的驱动1.7电力电子器件的保护1.8电力电子器件的串联和并联使用教学要求:1.掌握各种电力电子器件的基本特性、应用场合和使用方法。
2.理解各种全控型器件、半控型器件的工作原理和主要参数选择依据.3.了解典型触发、驱动和缓冲电路的组成、工作原理和特点。
电力电子器件的串联和并联使用

2. IGBT的并联连接
(1)并联时的注意事项
应考虑栅极电路、线路布线、电流不平衡和器件之间的温度不平衡等问题。
(2)并联时的接线方法
在各模块的栅极上分别接上各模块推荐值的栅极电阻RG。栅极到各模块驱动级的配线长短及引线电感要相等,否则会引起各模块电流的分配不均匀,并会造成工作过程中开关损耗的不均匀。
器件并联后,必须降低电流的额定值使用,
晶闸管并联连接时
1应尽可能选择参数比较接近的晶闸管进行并联;
2触发脉冲的前沿要陡,触发脉冲的电流要大,使并联的各晶闸管开通时间之差要小。
3在安装时使各并联支路铜线长短相同,使各支路的分布电感和导线电阻相近。布线尽可能对称,以减少磁场的影响。
在晶闸管装置需要同时采取串联和并联晶闸管时,通常采用先串后并的方法。
控制回路的接线应使用双芯线或屏蔽线。
主电路需采用低电感接线。使接线尽量靠近各模块的引出端,使用铜排或扁条线,以尽可能降低接线的电感量。
[归纳小结]
1、晶闸管的串并联注意事项。
2、双极型功率晶体管的串并联注意事项。
[布置作业]
为什么有的电力电子器件不采用串联连接?
[课后预习]
三相半波可控整流电路
湖南省技工学校
理论教学教案
教师姓名:
学
科
变频
调速
执行记录
日期
星期
检查
签字
班级
节次
课题
电力电子器件的串联和并联使用
课的
类型
复习
教
学
目
的
掌握电力电子器件的串联和并联原理与使用注意事项。
教
学
重
点
电力电子器件的串联和并联原理与使用注意事项。
1.8 电力电子器件器件的串联和并联使用

电力电子器件器件的串联和并联使用 当单个器件的电压或电流定额不能满足要求时, 需将器件串联或并联或者将装置串联或
晶闸管的串联 目的:当晶闸管额定电压小于要求时,可以串联 问题:理想串联希望器件分压相等,但因特性差异,使器件电压分配不均匀 静 态 不 均 压 :串 联 的 器 件 流 过 的 漏 电 流 相 同 ,但 因 静 态 伏 安 特 性 的 分 散 性 ,各 器 件 分 压
不等
承 受 电 压 高 的 器 件 首 先 达 到 转 折 电 压 而 导 通 ,使 另 一 个 器 件 承 担 全 部 电 压 也 导 通 ,失 去
控制作用
反向时,可能使其中一个器件先反向击穿,另一个随之击穿 静态均压措施 选用参数和特性尽量一致的器件 采 用 电 阻 均 压 , Rp 的 阻 值 应 比 器 件 阻 断 时 的 正 、 反 向 电 阻 小 得 多
I
VT1 VT2 VT1 RP R C R C
IR O UT1 UT2 U VT2 RP
a)
图 1 - 4 1 图1-41 晶闸管的串联 a) 伏安特性差异 b)
b)——由于器件动态参数和特性的差异造成的不均压 动态均压措施: 选择动态参数和特性尽量一致的器件
注 意 选 用 Ron、 UT、 Gfs 和 Ciss 尽 量 相 近 的 器 件 并 联 电路走线和布局应尽量对称 可在源极电路中串入小电感,起到均流电抗器的作用 I GBT 并 联 运 行 的 特 点 在 1/2 或 1/3 额 定 电 流 以 下 的 区 段 , 通 态 压 降 具 有 负 的 温 度 系 数 在 1/2 或 1/3 额 定 电 流 以 上 的 区 段 , 通 态 压 降 具 有 正 的 温 度 系 数 因 而 I GB T 在 并 联 使 用 时 也 具 有 电 流 的 自 动 均 衡 能 力
电力电子器件保护

a) a) 伏安特性差异
b)
b) 串联均压措施
图1-41
1.8.2
1. 概述
晶闸管的并联
1) 目的:多个器件并联来承担较大的电流 2) 问题:静态和动态特性参数差异→电流分配不均匀 2. 均流措施 • 选用特性参数尽量一致的器件 • 采用均流电抗器 • 用门极强脉冲触发也有助于动态均流 • 当需要同时串联和并联晶闸管时,通常采用先串 后并的方法联接方法
• 内因过电压 电力电子装置内部器件的开关过程引起 (1) 换相过电压 原因: 线路电感→晶闸管(或与全控型器件反并联的二极管) 在换相结束后不能立刻恢复阻断,因而有较大的反向电流 流过,当恢复了阻断能力时,该反向电流急剧减小→两端 感应出高电压。 (2) 关断过电压 原因: 全控型器件关断时,正向电流迅速降低→线路电感 →器件两端感应出的过电压。
1.7.2
过电流保护
1. 过电流形式—过载和短路 过电流原因举例 电网电压波动过大; 内部管子损坏或触发电路故障,引起两相短路;
整流电路直流侧出现短路、逆变失败引起短路;
环流过大、控制系统故障。
1.7.2
过电流保护
变压器 电流互感器 快速熔断器 变流器 直流快速断路器 负载
2. 常用保护措施
混 合 IGBT 型
(
MCT
双 极
SIT H 晶闸管
T TO RC G LT T
功率SIT 极
(
复 合 型
GT R
型
肖特基势垒二极管 型
I 电力二极管 AC
TR
• 双极型:电力二极管、晶闸管、 GTO、GTR和SITH • 复合型:IGBT和MCT
电力电子器件分类“树” 图1-42
本章小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
1. 过电压的产生及过电压保护
过电压保护措施
图1 过电压抑制措施及配置位置 F避雷器 D变压器静电屏蔽层 C静电感应过电压抑制电容 RC1阀侧浪涌过电压抑制用RC电路 RC2阀侧浪涌过电压抑制用反向阻断式RC电路 RV压敏电阻过电压抑制器 RC3阀器件换相过电压抑制用RC电路 RC4直流侧RC抑制电路 RCD阀器件关断过电压抑制用RCD电路
单,工作频率高。
电流驱动型:双极型器件中除SITH外
特点:具有电导调制效应,因而通态压降低,导通 损耗小,但工作频率较低,所需驱动功率大 , 驱动 电路较复杂。
第五讲 电力电子器件保护
16
本章小结
当前的格局:
IGBT 为 主 体 , 第 四 代 产 品 , 制 造 水 平 2.5kV /
1.8kA,兆瓦以下首选。仍在不断发展,与IGCT等 新器件激烈竞争,试图在兆瓦以上取代GTO。 GTO:兆瓦以上首选,制造水平6kV / 6kA。 光控晶闸管:功率更大场合,8kV / 3.5kA,装置 最高达300MVA,容量最大。 电力 MOSFET :长足进步,中小功率领域特别是
操作过电压:由分闸、合闸等开关操作引起 雷击过电压:由雷击引起
内因过电压:主要来自电力电子装置内部器件的开关 过程
换相过电压:晶闸管或与全控型器件反并联的二极管 在换相结束后,反向电流急剧减小,会由线路电感在 器件两端感应出过电压。 关断过电压:全控型器件关断时,正向电流迅速降低 而由线路电感在器件两端感应出的过电压。
电路走线和布局应尽量对称。 可在源极电路中串入小电感,起到均流电抗器的作用。
IGBT并联运行的特点
在1/2或1/3额定电流以下的区段,通态压降具有负温 度系数。 在以上的区段则具有正温度系数。
并联使用时也具有电流的自动均衡能力,易于并联。
第五讲 电力电子器件保护
14
本章小结
主要内容
全面介绍各种主要电力 电子器件的基本结构、 工作原理、基本特性和 主要参数等。 集中讨论电力电子器件 的驱动、保护和串、并 联使用。
IR O UT1 UT2 U VT2 RP
a)
b)
图7 晶闸管的串联
a) 伏安特性差异 b) 串联均压措施
第五讲 电力电子器件保护
12
2.晶闸管的并联
目的:多个器件并联来承担较大的电流
问题:会分别因静态和动态特性参数的差异 而电流分配不均匀。
均流措施:
挑选特性参数尽量一致的器件。 采用均流电抗器。
电子保护电路
图2 过电流保护措施及配置位置
同时采用几种过电流保护措施,提高可靠性和合理性。 电子电路作为第一保护措施,快熔仅作为短路时的部分 区段的保护,直流快速断路器整定在电子电路动作之后 实现保护,过电流继电器整定在过载时动作。
第五讲 电力电子器件保护
5
2.过电流保护
快熔对器件的保护方式:全保护和短路保护 两种
A 无缓冲电路
B
t
D O
有缓冲电路 C uCE
b)
图4 di/dt抑制电路和
图3
关断时的负载线
充放电型RCD缓冲电路及波形
a) 电路 b) 波形
8
第五讲 电力电子器件保护
3.缓冲电路
充放电型RCD缓冲电路, 适用于中等容量的场合。 其中RC缓冲电路主要用 于小容量器件,而放电 阻止型 RCD 缓冲电路用 于中或大容量器件。
11
1. 晶闸管的串联
静态均压措施:
选用参数和特性尽量一致的器件。 采用电阻均压,Rp的阻值应比器件阻断时的正、反向 电阻小得多。
动态均压措施:
选择动态参数和特性 尽量一致的器件。
用RC并联支路作动态 均压。 采用门极强脉冲触发 可以显著减小器件开 通时间的差异。
I
VT1 VT2 VT1 RP R C R C
复合缓冲电路——关断缓冲电路和开通缓冲电路的结合。
按能量的去向分类法:耗能式缓冲电路和馈能式缓冲电 路(无损吸收电路)。
通常将缓冲电路专指关断缓冲电路,将开通缓冲电路叫做 di/dt抑制电路。
第五讲 电力电子器件保护73.缓冲电路缓冲电路作用分析
无缓冲电路: 有缓冲电路:
iC
uCE iC 无缓冲电路时 di 无dt抑制电路 时 uCE iC 有缓冲电路时 O di 有dt抑制电路 时
电力电子装置可视具体情况只采用其中的几种。 其中RC3和RCD为抑制内因过电压的措施,属于缓 冲电路范畴。
第五讲 电力电子器件保护
4
2.过电流保护
过电流——过载和短路两种情况 保护措施
变压器 电流互感器 交流断路器 电流检测 过电流 继电器 短路器 动作电流 整定值 开关电路 触发电路
快速熔断器
变流器 直流快速断路器 负载
用门极强脉冲触发也有助于动态均流。
当需要同时串联和并联晶闸管时,通常采用先串 后并的方法联接。
第五讲 电力电子器件保护
13
3.电力MOSFET和IGBT并联运行的特点
电力MOSFET并联运行的特点
Ron 具有正温度系数,具有电流自动均衡的能力,容 易并联。 注意选用Ron、UT、Gfs和Ciss尽量相近的器件并联。
10
1. 晶闸管的串联
目的:当晶闸管额定电压小于要求时,可以 串联。 问题:理想串联希望器件分压相等,但因特性 差异,使器件电压分配不均匀。
静态不均压:串联的器件流过的漏电流相同,但因 静态伏安特性的分散性,各器件分压不等。 动态不均压:由于器件动态参数和特性的差异造成 的不均压。
第五讲 电力电子器件保护
低压,地位牢固。
功率模块和功率集成电路是现在电力电子发展的 一个共同趋势。
第五讲 电力电子器件保护
17
电力电子器件类型归纳
单极型:电力MOSFET和 SIT 图8 电力电子器件分类“树”
双极型:电力二极管、晶闸 管、GTO、GTR和SITH
复合型:IGBT和MCT
第五讲 电力电子器件保护
15
本章小结
电压驱动型:单极型器件和复合型器件,双 极型器件中的SITH
特点:输入阻抗高,所需驱动功率小,驱动电路简
图5 di/dt抑制电路和 充放电型RCD缓冲电路及波形
a) 电路
图6 另外两种常用的缓冲电路
a)
b)
RC吸收电路
放电阻止型RCD吸收电路
第五讲 电力电子器件保护
9
2电力电子器件器件的串联和并联使用 1.晶闸管的串联 2.晶闸管的并联 3.电力MOSFET和IGBT并联运行的特点
第五讲 电力电子器件保护
全保护:过载、短路均由快熔进行保护,适用于 小功率装置或器件裕度较大的场合。 短路保护:快熔只在短路电流较大的区域起保护 作用。
对重要的且易发生短路的晶闸管设备,或全 控型器件,需采用电子电路进行过电流保护。 常在全控型器件的驱动电路中设置过电流保 护环节,响应最快 。
第五讲 电力电子器件保护
6
3.缓冲电路
第六讲 电力电子器件的保护 和串并联使用
曲阜师范大学 电气信息与自动化工程学院
1
一、电力电子器件器件的保护
1. 过电压的产生及过电压保护
2.过电流保护
3.缓冲电路
第五讲 电力电子器件保护
2
1. 过电压的产生及过电压保护
电力电子装置可能的过电压——外因过电压和内因 过电压
外因过电压:主要来自雷击和系统操作过程等外因
缓冲电路(Snubber Circuit) : 又称吸收电路, 抑制器件的内因过电压、du/dt、过电流和di/dt, 减小器件的开关损耗。
关断缓冲电路( du/dt 抑制电路) —— 吸收器件的关断过 电压和换相过电压,抑制du/dt,减小关断损耗。
开通缓冲电路( di/dt 抑制电路) —— 抑制器件开通时的 电流过冲和di/dt,减小器件的开通损耗。