1-电力电子器件及其应用解析

合集下载

电力电子器件及其应用

电力电子器件及其应用

宽禁带半导体材料的应用
总结词
宽禁带半导体材料(如硅碳化物和氮化 镓)在电力电子器件中的应用越来越广 泛。
VS
详细描述
宽禁带半导体材料具有高临界场强和高电 子饱和速度等优点,使得电力电子器件能 够承受更高的工作电压和更大的工作电流 ,同时减小器件的体积和重量,提高系统 的能效和可靠性。
电力电子系统集成化与模块化
压保护、过电流保护和过热保护等。
驱动电路与控制电路设计
总结词
驱动电路和控制电路是电力电子系统中的重要组成部 分,其设计的好坏直接影响到整个系统的性能。
详细描述
驱动电路负责提供足够的驱动信号,使电力电子器件 能够正常工作。在设计驱动电路时,需要考虑信号的 幅度、相位、波形等参数,以确保器件能够得到合适 的驱动信号。控制电路则负责对整个电力电子系统进 行控制和调节,以确保系统能够按照预设的方式运行 。控制电路的设计需要充分考虑系统的动态特性和稳 态特性,并能够根据实际情况进行实时调节。
要点一
总结词
要点二
详细描述
在选择电力电子器件时,电压和电流容量是关键参数。
需要根据电路的工作电压和电流来选择合适的器件,以确 保器件能够安全、有效地运行。选择电压和电流容量过小 的器件可能导致器件过载,影响其性能和寿命;而选择电 压和电流容量过大的器件则可能造成浪费,增加成本。
工作频率与散热设计
总结词
总结词
电力电子系统正朝着集成化和模块化的方向 发展。
详细描述
集成化和模块化可以提高电力电子系统的可 靠性和可维护性,减小系统的体积和重量, 降低制造成本。同时,集成化和模块化还有 利于实现电力电子系统的标准化和系列化, 方便不同系统之间的互连和互操作。
电力电子在分布式发电和微电网中的应用

电力电子技术--第一章

电力电子技术--第一章

28
1.3.1 晶闸管的结构及工作原理
二、晶闸管的工作原理
由于通过门极我们可以控制晶 闸管的开通;而通过门极我们不 能控制晶闸管的关断,因此,晶 闸管才被我们称为半控型器件。
按照等效电路和晶体管
的工作原理,我们可列出如下方 程:
IC1=α1IA+ICO1 (1-1)
IC2=α2IK+ICO2 (1-2)
件,一般都要安装散热器。
4
1.1.1 电力电子器件的概念和特征
电力电子 器件的损耗
通态损耗 断态损耗 开关损耗 驱动损耗
开通损耗 关断损耗
5
1.1.2 电力电子器件组成的应用系统
电力电子器件在实际应用中,一般是 由控制电路、驱动电路、检测电路和以电 力电子器件为核心的主电路构成的一个完 整的系统。
16
1.2.2 电力二极管的基本特性与参数
二、 动态特性 (开关特性)
电力二极管的电压-电流特性
是随时间变化的
延迟时间:td= t1- t0, 电流下降时间:tf= t2- t1 反向恢复时间:trr= td+ tf 恢复特性的软度:下降 时间与延迟时间 的比值 tf /td,或称恢复系数,用 Sr表示。
4、反向漏电流IRR
指器件对应于反向重复峰值电压时的反向电流。
5、最高工作温度TJM
指器件中PN结不至于损坏的前提下所能承受的最高
平均温度。TJM通常在125~175℃范围内。
22
1.3 半控型器件-晶闸管
1.3.1 晶闸管的结构及工作原理
一、晶闸管的结构 二、晶闸管的工作原理
1.3.2 晶闸管的基本特性与主要参数
30
1.3.1 晶闸管的结构及工作原理
➢晶闸管导通的必要条件是:

电力电子器件的发展与应用

电力电子器件的发展与应用

电力电子器件的发展与应用摘要:电力电子器件又称为功率半导体器件,主要用于电力设备的电能变换和控制电路方面大功率的电子器件,其类型非常的多样,在各个领域中都有着广泛的应用,是弱电与强电、信息与电子、传统产业与现代产业完美结合的媒介。

本文主要针对电力电子器件及其应用现状和发展趋势进行分析、关键词:电力电子器件;应用现状;发展趋势随着科学技术的不断进步,电力电子器件装置当今得到了广泛的应用,主要涉及到交通运输业、先进装备制造业、航天航空和坦克飞机等现代化装备中。

得益于电子技术的应用优势,全球电子产品产业得到了快速的发展,给全球的经济、文化、军事等各领域带来了实质性的影响。

电子技术可以划分为两类:一种是电子信息技术,电力电子元件在电子信息技术上的应用可以实现信息的传送、储存和控制等目的;第二种就是保证电能正常安全的进行传输,同时将能源和信息有效的结合起来。

在社会的不断发展中,各行各业对于优质优量的电能都是迫切需要的,而随着一次次电力电子技术的改革,电力电子器件的应用范围也更加广泛,成为了工业生产中不可或缺的重要元件。

电力电子技术的发展为人类的环保和生活都做出了重要的贡献,成为了将弱电与强电、信息与电子、传统产业与现代产业完美结合的媒介。

所以电力电子器件的研究成为了电力电子行业的重要课题。

1.电力电子器件的应用与发展历程上世纪50年代开始,全球第一支晶闸管诞生,这就标志着现代电气传动中的电力电子技术登上历史的舞台,基于晶闸管研发的可控硅整流装置成为了电气传动行业的一次变革,开启了以电力电子技术控制和变换电能的变流器时代,至此电力电子技术产生。

到70年代时晶闸管已经研发出来可以承受高压大电流的产品,这一代的半控型器材被称之为第一代电力电子器件。

但是晶闸管的缺点就是不能自关断,随着电力电子理论和工艺的不断进步,随后研发出了GTR.GTO和MOSFET等自关断的全控型,这一类产品被称之为第二代电力电子器件。

之后出现了第三代电力电子器件,主要以绝缘栅双极晶体管为代表,第三代电力电子器件具有频率快、反映速度快和能耗较低的特点。

电力系统中的电力电子器件及其应用

电力系统中的电力电子器件及其应用

电力系统中的电力电子器件及其应用在当今高度依赖电力的社会中,电力系统的稳定运行和高效发展至关重要。

电力电子器件作为电力系统中的关键组成部分,正发挥着日益重要的作用。

它们的出现和应用,为电力系统的优化、控制和能源转换带来了革命性的变化。

电力电子器件是一种能够对电能进行高效控制和转换的半导体器件。

常见的电力电子器件包括二极管、晶闸管、晶体管(如 MOSFET 和IGBT)等。

这些器件具有不同的特性和性能,适用于各种不同的电力系统应用场景。

二极管是最简单的电力电子器件之一,它只允许电流单向通过。

在电力系统中,二极管常用于整流电路,将交流电转换为直流电。

例如,在电源适配器中,二极管将交流市电整流为直流电,为电子设备提供稳定的电源。

晶闸管则是一种具有可控导通特性的器件。

通过施加合适的触发信号,可以控制晶闸管的导通和关断。

晶闸管在电力系统中的应用非常广泛,如用于高压直流输电系统中的换流器、无功补偿装置等。

通过控制晶闸管的导通角,可以实现对交流电压和电流的调节,从而达到控制无功功率和提高电能质量的目的。

MOSFET(金属氧化物半导体场效应晶体管)和 IGBT(绝缘栅双极型晶体管)是现代电力电子系统中常用的晶体管器件。

它们具有开关速度快、导通电阻小、驱动功率低等优点。

MOSFET 适用于高频、小功率的应用场景,如开关电源、电动汽车充电器等。

IGBT 则在中大功率的电力变换领域表现出色,如变频器、新能源发电系统中的逆变器等。

在电力系统中,电力电子器件的应用范围十分广泛。

首先,在发电环节,可再生能源的开发和利用离不开电力电子技术。

例如,太阳能光伏发电系统中,通过电力电子逆变器将太阳能电池板产生的直流电转换为交流电并并入电网。

风力发电系统中,电力电子变流器用于控制风机转速,实现最大功率跟踪,同时将风机发出的交流电转换为符合电网要求的电能。

在输电环节,高压直流输电技术凭借其输电距离远、输电容量大、损耗低等优势,成为了远距离大容量输电的重要手段。

电力电子器件原理

电力电子器件原理

THANKS FOR WATCHING
感谢您的观看
轨道交通
在城市轨道交通中,电力电子器 件用于实现牵引供电和信号控制 。
在磁悬浮列车中,电力电子器件 可以实现高效的电机控制和能量 回收。
在高速铁路中,电力电子器件用 于实现列车牵引和供电系统的控 制。
在轨道交通的自动化和智能化方 面,电力电子器件也发挥着重要 的作用。
05 电力电子器件的未来发展
智能化与网络化的趋势
智能化
随着人工智能技术的发展,电力电子器件的智能化成为一种趋势。智能化能够提高电力电子系统的自适应性、可 靠性和容错性,实现更加高效和智能的能源管理。
网络化
通过互联网和物联网技术,将电力电子器件与智能终端、云计算等相互连接,实现远程监控、数据采集和智能控 制等功能。网络化的电力电子器件能够提高能源利用效率和可再生能源的接入能力,促进能源的可持续发展。
热特性
最大结温
指电力电子器件在工作过程中所允许的最高结温, 超过此温度将导致器件性能下降或损坏。
热阻
指电力电子器件在工作过程中因温度升高而产生 的热量传导阻力。
散热设计
为确保电力电子器件的正常工作,需要采取有效 的散热措施,如散热片、风冷或液冷等。
安全工作区
安全工作区
指在规定的电源电压和负载电流范围内,电力电子器件能够安全、可靠地工作 而不会发生损坏或性能下降的区域。
新材料与新工艺的应用
新材料
随着科技的发展,新型材料如碳化硅(SiC)、氮化镓(GaN) 等在电力电子器件中的应用越来越广泛。这些新材料具有更高 的热导率、禁带宽度和击穿场强等特点,能够提高电力电子器 件的效率和可靠性。
新工艺
新型工艺技术如薄膜工艺、微纳加工技术等在电力电子器件 制造中逐渐得到应用。这些新工艺能够减小器件尺寸、降低 制造成本和提高集成度,为电力电子器件的发展提供了新的 可能性。

电气元件介绍及应用实例

电气元件介绍及应用实例

电气元件介绍及应用实例电气元件指的是在电子电路中起到特定功能的元件,主要分为被动元件(如电阻、电容、电感)和有源元件(如二极管、晶体管、集成电路等)。

这些元件在各种电子电路中起到重要的作用,下面将分别介绍各种电气元件的基本原理、特点和应用实例。

1. 电阻(resistor)电阻是最常见的被动元件之一,它的主要作用是限制电流通过的量。

电阻根据材料和结构不同,可以分为固定电阻和变阻器。

固定电阻一般有金属膜电阻、炭膜电阻等。

变阻器可以通过调节电阻值来调整电路中的电流和电压。

电阻的应用实例:(1) 当需要将电源电压限制在一定范围内时,可以使用电阻加在电路中;(2) 在放大电路中,为了调整电流和电压分配的关系,可以使用电阻来改变电路的增益;(3) 在传感器电路中,常常需要电阻来调整传感器的灵敏度。

2. 电容(capacitor)电容是具有存储电荷和释放电荷能力的元件,它由两个导体板之间的绝缘层(一般是电介质)组成。

电容的主要特点是可以暂时存储电能,并且对不同频率的电信号有不同的阻抗。

电容的应用实例:(1) 在直流电源中,电容常被用作滤波器,以减小电压的波动;(2) 在交流电源中,电容常被用作耦合电容,用于传递交流信号;(3) 在振荡电路中,电容通常用来控制振荡频率。

3. 电感(inductor)电感是一种储存磁能的元件,它由导线或线圈组成。

电感的主要特点是抵抗电流的改变,当电流改变时,电感会产生电磁感应,从而产生自感电动势。

电感的应用实例:(1) 在电源中,电感常被用作滤波器,以去除高频噪声;(2) 在调谐电路中,电感可以用来选择特定频率的信号;(3) 在电源变换器中,电感常被用来稳定电压和电流。

4. 二极管(diode)二极管是一种具有单向导电性的有源元件,它包括一个PN结。

当正向偏置时,二极管允许电流流过;而当反向偏置时,二极管将阻止电流流过。

二极管的应用实例:(1) 在整流电路中,二极管可以将交流电转换为直流电;(2) 在电源保护电路中,二极管可以防止误反接电源导致器件损坏;(3) 在信号调理电路中,二极管可以用作开关或者信号限幅器。

电力电子器件及其应用PPT课件

电力电子器件及其应用PPT课件
• 危害
IGBT发生擎住效应后漏极电流增大,造成过高的功耗,最后导致器件损坏。
• 如何防止
• 不使漏极电流超过 ,防止静态擎住效应; • 还可用加大栅极电阻的办法,延长IGBT的关断时间。防止动态擎住效应。
第20页/共47页
第二节绝缘栅双极晶体管(IGBT)
• 擎住效应
• 正向偏置安全工作区 IGBT开通时的正向偏置安全工作区FBSOA由电流、电压和功耗三条边界极限包围而成
第9页/共47页
第一节 可关断晶闸管(GTO)
• GTO关断过程的机理图
图3-10(a)关断时空穴从门极抽出 (b) 耗尽层的形成 • 其结果是从N2发射极没有电子向P2区注入,在P2基区及N2基区中的
过剩载流子一直复合到消失为止,如J3结能维持反偏状态,GTO就被 关断。由此可见,关断GTO的前提是门控电路要有足够大的关断电流, 以便从门极排出足够大的门极关断电荷,同时其关断功率又不能超过 允许值。
第19页/共47页
第• 擎二住节效应绝缘栅双极晶体管(IGBT)
• 概念
由于IGBT结构上难以避免的原因,它的等效电路图实际上如图3-14(c)所示,内部 存在一只NPN型寄生晶体管,当漏极电流大于规定的临界值时,该寄生晶体管因有 过高的正偏置被触发导通,使PNP管也饱和导通,结果IGBT的栅极失去控制作用, 这就是所谓擎住效应。
• 阳极电压上升率
• 静态电压上升率是指GTOdv还/ d没t 有导通时所能承受的最大断态电压上升率。
• 动态电压上升率是指GTO关断过程中的阳极电压上升率。
• 阳极电流上升率
di / dt
第8页/共47页
第一节 可关断晶闸管(GTO)
• 可关断晶闸管(GTO)的门控电路

新型电力电子元器件研究及应用

新型电力电子元器件研究及应用

新型电力电子元器件研究及应用随着电力电子技术的不断发展,电子器件的种类和功能也得到了极大的拓展。

新型电力电子元器件不仅仅包括经典的半导体器件,还涵盖了各种新型器件,如功率集成芯片、SiC器件、GaN器件等。

这些新型器件的出现,让电力电子系统性能得到了显著提升,同时也推动了电力电子领域的技术进步。

1. 功率集成芯片的应用功率集成芯片(PIC)是一种具有高度集成化的、尺寸小、功率密度大的电力电子元器件。

相比传统的电力电子系统,采用PIC可以大幅提升系统的功率密度和效率。

同时,PIC的制造成本也相对较低,便于批量制造和应用。

目前,PIC已经在电机驱动、DC-DC转换、太阳能逆变、LED 驱动等领域得到了广泛应用。

以电机驱动为例,现代电机驱动系统一般由三个模块组成:控制模块、功率模块和传感器模块。

而采用PIC后,三个模块可以通过一个芯片实现,大大减小了系统体积、提高了效率、降低了故障率。

这种集成技术的应用有利于实现小型化、智能化、高效能的电力电子系统。

2. SiC器件的发展SiC(碳化硅)是一种WBG(宽禁带半导体)材料,相比传统的Si(硅)材料,具有更高的导通电流密度、更高的崩溃电场和更高的耐热温度。

因此,基于SiC的电力电子元器件具有更小的尺寸、更低的开关损耗和更高的开关频率。

目前,SiC器件已经广泛应用于电动汽车、高速列车、船舶、飞机等场合。

以电动汽车为例,传统的Si器件无法满足高速充电、快速加速等要求。

而采用SiC器件后,可以实现高达350kW的超级充电功率,保障了快速充电需求。

同时,SiC器件的应用还可以提高电动汽车驱动电机的效率,延长电池寿命,降低系统成本。

3. GaN器件的发展GaN(氮化镓)也是一种WBG材料,与SiC类似,具有更高的导通电流密度、更高的崩溃电场和更高的极限工作温度。

与SiC 不同的是,GaN器件的制造成本更低,适用于低压高频领域。

因此,基于GaN的电力电子元器件成为了高频应用的首选。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+ uo –
⃝ L eL ⃝
R
在电感性负载中 ,当晶闸管刚触发导通时,电 感元件上产生阻碍电流变化的感应电势(极性如图), 电流不能跃变,将由零逐渐上升(见波形)。
当电压u过零后,由于电感反电动势的存在,晶闸 管在一段时间内仍 维持导通,失去单向导电作用。
21
电工基础教学部
目录
电工电子技术
(2)工作波形(未加续流二极管)
电工基础教学部
目录
电工电子技术
8.1.2 伏安特性及主要参数 1. 伏安特性 ( I f (U )曲线)
I 正向平均电流 维持电流
UBR URRM
IF
+ _
IG2 > IG1 > IG0 IG2 IG1 IG0 U
UFRM UBO U
IH o
反向转折电压
_
+
正向转折电压
正向特性
12
反向特性 电工基础教学部
14
电工基础教学部
目录
电工电子技术
(5)反向重复峰值电压URRM: 控制极开路时,允许重复作用在晶闸管元 件上的反 向峰值电压。一般取 URRM = 80% UBR 普通晶闸管 URRM为100V—3000V
(6)控制极触发电压和电流UG、IG: 室温下,阳极电压为直流6V时,使晶闸管完 全导 通所必须的最小控制极直流电压、电流 。 一般UG为1到5V,IG为几十到几百毫安。
iG
EG
iB 2
β 2 iG
T2 EA
+ _
iC 2 2 iG iB1 i C 1 β 1 iC 2 1 2 iG iB 2
在极短时间内使 两个三极管均饱和导 通,此过程称触发导 通。
10
i B 2 iG
K EA > 0、EG > 0
电工基础教学部
目录
电工电子技术
u
O
ug
t1
2
t2
t
uO
O
O O
t
t
uT

t
22
电工基础教学部
目录
电工电子技术
(3)电感性负载(加续流二极管)
T +
+ + uT – u io –
io
L
D
+ uo –
u> 0时: D反向截止,不影响整流电路工作。 u < 0时 : D正向导通,晶闸管承受反向电压关断,电感元件L 释放能量形成的电流经D构成回路(续流),负载电压 uo波形与电阻性负载相同(见波形图)。
电工电子技术
第 8章 电力电子器件及其应用
太原理工大学电工基础教学部
1
电工基础教学部
目录
电工电子技术
第8章 电力电子器件及其应用
8.1 晶闸管 8.2 可控硅整流电路
8.3 单结晶闸管触发电路 8.4 晶闸管的保护
2
电工基础教学部
目录
电工电子技术
第8章 电力电子器件及其应用
本章要求:
1.了解晶闸管的基本结构、工作原理、特 性和主要参数。 2. 理解可控整流电路的工作原理、掌握电 压平均值与控制角的关系。 3. 了解单结晶体管及其触发电路的工作原 理。
28
π
电工基础教学部
目录
电工电子技术
两种常用可控整流电路
(1)
+
T
D1 D2 RL D3 D4
+
u
u0
-
-
1. 该电路只用一只晶闸管,且其上 电路 无反向电压。 特点 2. 晶闸管和负载上的电流相同。
29
电工基础教学部
目录
电工电子技术
(2)
+
T1 T2
D1 D2
+
R
u
uO
电路 特点
L
-
1. 该电路接入电感性负载时,D1、D2 便起 续流二极管作用。 2. 由于T1的阳极和T2的阴极相连,两管控 制极必须加独立的触发信号。
由图可求得
RB1 U B 1 U BB RB1 RB 2 RB1 U BB U BB RBB
等效电路
– 分压比(0.5~ 0.9) UE < UBB+UD = UP 时
PN结反偏,IE很小; RB2 UBB + U U 时 E P E RP + A PN结正向导通, IE迅速 _ + _ 增加。 RB1 UE _ UP – 峰点电压 B1 UD – PN结正向导通压降 测量单结晶体管的实验电路
工作原理
A
形成正反馈过程
β1β2 iG
T1 G
R
iG
E
G
iB 2
β2 iG
T2
EA
+ _
iC 2 2 iG iB1 i C 1 β 1 iC 2 1 2 iG iB 2
晶闸管导通后,去掉 EG , 依靠正反馈,仍可 维持导通状态。
11
i B 2 iG
K EA > 0、EG > 0
13
电工基础教学部
目录
电工电子技术
(2) 维持电流 IH: 在规定的环境和控制极断路时,晶闸管维持导 通状态所必须的最小电流。 一般IH为几十~ 一百多毫安。 (3) 通态平均电压(管压降) UF: 在规定的条件下,通过正弦半波平均电流时, 晶闸管阳、阴极间的电压平均值。 一般为1V左右。
(4) 正向重复峰值电压(晶闸管耐压值)UFRM: 控制极开路且正向阻断情况下,允许重复加在晶闸管 两端的正向峰值电压。一般取UFRM = 80% UB0 。 普通晶闸管 UFRM 为100V — 3000V
4
优点:
电工基础教学部
目录
电工电子技术
8.1 晶闸管
8.1.1 基本结构及工作原理
1.基本结构和符号
A 阳极
P1
A
G K
外形
四 层 半 导 体
三 个
PN GG 控制极
N1 P2 N2 结构
K 阴极

符号
5
电工基础教学部
目录
电工电子技术
常用晶闸管的图片
螺栓型晶闸管
晶闸管模块
平板型晶闸管外形及结构
6
7
电工基础教学部
目录
电工电子技术
3.晶闸管导通和关断条件 ①晶闸管导通的条件: 晶闸管阳极与阴极之间加正向电压(UAK>0)。 同时 晶闸管控制极与阴极之间加正向触发电压或正 向触发脉冲。 晶闸管导通后,控制极便失去作用。 依靠正反 馈,晶闸管仍可维持导通状态。 ②晶闸管关断的条件: 晶闸管阳极电流小于维持电流(IA<IH) ,或将 阳极电源断开或者在晶闸管的阳极和阴极间加反相 电压(UAK<0) 。
30
电工基础教学部
目录
电工电子技术
8.3 单结晶体管触发电路
8.3.1 单结晶体管
1. 结构与符号
B2 第二基极 发射极E PN结 N型硅片 B2 E B1
P
N
B1 示意图
欧姆接触 接触电阻 第一基极
符号
31
电工基础教学部
目录
电工电子技术
2. 工作原理
+ _
RP E + UE _ B2 + UBB _ B1 + _
ug
O O
t1
2
t
t
u > 0时: 0 ~ t1, ug 0 , 晶闸管不导通。
t1 :加触发信号,晶闸管承受正向电压导通
uo u , uT 0 。
u < 0 时: 可控硅承受反向电压不导通 uo 0 , uT u 。 即:晶闸管反向阻断
18
uo 0, uT u 。
23

R
电工基础教学部
目录
电工电子技术
工作波形(加续流二极管)
u
O
ug

2
t t
uO iL
O
uT
O
t

目录

电工基础教学部
t
24
电工电子技术
8.2.2 单相半控桥式整流电路
1. 电路 2. 工作原理 (1)电压u 为正半周时
T1和D2承受正向 电压。 T1控制极加触 发电压, 则T1和D2导 通,电流的通路为 a T1 RL D2 b a T1
晶闸管 如KP200-18F 表示额定正向平均电流为200A,额定电压为 1800V,管压降为0.9V的普通晶闸管。
16
P--普通晶闸管 K--快速晶闸管 S --双向晶闸管
电工基础教学部
目录
电工电子技术
8.2 可控整流电路
8.2.1 单相半波可控整流
1. 电阻性负载
(1) 电路分析 + u – T + uT – io + RL uo –
a
+ –
b u
T1
T2
RL
D1
D2
+ + uo – –
此时,T1和D2均承受反向电压而截止。
26
电工基础教学部
目录
电工电子技术
3. 工作波形
u

2
O
t t t t
27
ug
uO
O
uT1
O
电工基础教学部
目录
电工电子技术
4. 输出电压及电流的平均值
1 U O u d t πα
π
1 U ο 2U sin t d(t ) πα 1 cosα 0.9U 2 U U 1 cosα IO 0.9 Rο RL 2
相关文档
最新文档