方差分析与多重比较
方差分析与多重比较

第六章 方差分析第五章所介绍的t 检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在生产和科学研究中经常会遇到比较多个处理优劣的问题,即需进行多个平均数间的差异显著性检验。
这时,若仍采用t 检验法就不适宜了。
这是因为:1、检验过程烦琐 例如,一试验包含5个处理,采用t 检验法要进行25C =10次两两平均数的差异显著性检验;若有k 个处理,则要作k (k-1)/2次类似的检验。
2、无统一的试验误差,误差估计的精确性和检验的灵敏性低 对同一试验的多个处理进行比较时,应该有一个统一的试验误差的估计值。
若用t 检验法作两两比较,由于每次比较需计算一个21x x S ,故使得各次比较误差的估计不统一,同时没有充分利用资料所提供的信息而使误差估计的精确性降低,从而降低检验的灵敏性。
例如,试验有5个处理,每个处理重复6次,共有30个观测值。
进行t 检验时,每次只能利用两个处理共12个观测值估计试验误差,误差自由度为2(6-1)=10;若利用整个试验的30个观测值估计试验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。
可见,在用t 检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。
3、推断的可靠性低,检验的I 型错误率大 即使利用资料所提供的全部信息估计了试验误差,若用t 检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I 型错误的概率,降低推断的可靠性。
由于上述原因,多个平均数的差异显著性检验不宜用t 检验,须采用方差分析法。
方差分析(analysis of variance)是由英国统计学家R.A.Fisher 于1923年提出的。
这种方法是将k 个处理的观测值作为一个整体看待,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。
高级数据分析技巧Excel的方差分析与多重比较

高级数据分析技巧Excel的方差分析与多重比较在数据分析领域,方差分析是一种广泛应用的统计方法,用于比较多个样本的均值是否存在显著差异。
Excel作为常用的数据分析工具,同样可以进行方差分析并进行多重比较。
本文将介绍在Excel中进行高级数据分析的技巧,重点讲解方差分析和多重比较的方法与步骤。
1. 数据准备在进行方差分析之前,我们需要准备好相关的数据。
数据可以包括不同组别或处理条件下的多个样本的观测值。
在Excel中,可以将每一组的数据放置在不同的列或者不同的工作表中。
确保数据结构清晰,并且每个样本的数据位于相应的列或者工作表中。
2. 打开数据分析工具在Excel中,可以通过“数据”选项卡中的“数据分析”功能来打开数据分析工具。
如果没有看到“数据分析”选项,需要先启用该功能。
在Excel的菜单栏中,选择“文件”->“选项”->“加载项”,然后勾选上“数据分析工具包”,点击确定。
3. 进行方差分析选择“数据”选项卡中的“数据分析”,在弹出的对话框中找到“方差分析”选项,点击确定。
接着,在“输入范围”中选择之前准备好的数据范围,勾选上“标签”选项以表示数据包含列或者工作表的标签信息,在“α水平”中选择显著性水平(通常为0.05),然后点击确定。
4. 解读方差分析结果方差分析的结果将显示在一个新的工作表中。
在结果中,我们关注“F值”和“P值”。
F值表示方差分析的统计量,用于判断不同样本均值之间的差异是否显著;P值表示显著性水平,如果P值小于显著性水平,就可以拒绝原假设,认为不同样本均值之间存在显著差异。
5. 进行多重比较如果方差分析结果显示存在显著差异,那么我们可以进行多重比较来确定具体哪些样本之间存在差异。
Excel提供了多种进行多重比较的方法,包括Tukey方法、LSD方法等。
5.1 Tukey方法选择“数据”选项卡中的“数据分析”,在弹出的对话框中找到“方差分析: 单因素”选项,点击确定。
用SPSS进行单因素方差分析和多重比较

用SPSS进行单因素方差分析和多重比较.单因素方差分析SPSS——单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个单因素方差分析因变量由因素各水平分组的均值之间的差异是否具有统计)(或几个相互独立的平分组中哪一组与其他各组均值间具有显著性意义。
还可以对该因素的若干水过程要求因变量属于正差异进行分析,即进行均值的多重比较。
One-Way ANOVA 态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使Repeated Measu用非参数分析过程。
如果几个因变量之间彼此不独立,应该用过程。
re][例子所示。
调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-11-1图分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
)启动分析过程2”项,”项,在下拉菜单中点击“Compare Means 点击主菜单“Analyze在右拉式菜单中点击“0ne-Way ANOVA”项,系统。
打开单因素方差分析设置窗口如图1-2单因素方差分析窗口1-2 图)设置分析变量3”框中。
本选择一个或多个因子变量进入“Dependent List 因变量: 例选择“幼虫”。
Factor”框中。
本例选择“品种”选择一个因素变量进入因素变量: “)设置多项式比较4所示的对话框。
该对话框用”按钮,将打开如图单击“Contrasts1-3于设置均值的多项式比较。
”对话框图Contrasts“1-3定义多项式的步骤为:中显示1-3 均值的多项式比较是包括两个或更多个均值的比较。
例如图值的 H0:第一组均mean1-1×mean2”的值,检验的假设的是要求计算“1.1×”过程允许进倍与第二组的均值相等。
单因素方差分析的“0ne-Way ANOVA1.1次的均值多项式比较。
多项式的系数需要由读者自己根据研究的需要行高达5输入。
具体的操作步骤如下:”参数框。
Degree 选中“Polynomial”复选项,该操作激活其右面的“①”线参数框右面的向下箭头展开阶次菜单,可以选择“Linear 单击Degree②”五次多项式。
方差分析之多重比较

方差分析之多重比较目前对于均数的多重比较的方法较多,例如SPSS软件共提供18种均数的多重比较的方法。
对于均数多重比较,当资料满足正态性方差齐性时,可采用的比较方法有LSD法、Bonferroni法、Sidak法、Scheffe法、R-E-G-W F法、R-E-G-W Q法、S-N-K法、Tukey法、Tukey-b法、Duncan法、Hochberg GT2法、Gabriel法、Waller Duncan法、Dunnett法;当资料满足正态性但不符合方差齐性时,可采用Tamhane T2法、Dunnett T3、Games-Howell法、Dunnett C法。
1.常见的多重比较方法介绍1.1 LSD法原理:LSD与独立样本t检验非常相近,主要差别在于LSD法在首先满足F检验达到显著的基础上,将F检验的误差均方作为合并方差。
优点:在ANOVA中F检验显著时,LSD方法是检验效率最高的多重比较方法.缺点:①涉及过多的要比较均数对;②犯I型错误的概率较高;③这种方法只控制了每次比较犯I型错误概率,没有对总犯I型错误概率进行控制。
1.2 Bonferroni法原理:利用Bonferroni不等式来控制多次比较的总I型错误,Bonferroni不等式是指一个或多个事件发生的总概率不高于这些事件各自发生概率的加和。
通过将每次检验的α设置为总α除以检验次数,从而控制总α。
优点:用途最广,几乎可用于任何多重比较的情形,包括组间例数相等或不等、成对两两比较或综合多重比较等。
缺点:会增加犯Ⅱ型错误的概率。
1.3 Sidak法原理:基本思路与Bonferroni法接近,只是在调整仅值时采用不同的策略。
若控制单次比较犯I型错误的概率为αpc,一次比较不犯I型错误的概率为1-αpc,n次比较均不犯I型错误的概率为(1-αpc)n,则n次比较总的犯I型错误的概率为1-(1-αpc)n。
优点:调整多重比较的显著性水平,提供比Bonferroni 更严密的边界。
方差分析中的多重比较

14
由 上 述 结 果 ,可 以 作 出 统 计 结 论
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
6
Psychology Statistics
2、N-K法(q检验)
步骤:
(1)把要比较的各个平均数从小到大作等级排列;
如5个平均数从小到大顺序是XB,XC,XA,XE,XD, 则
11
Psychology Statistics
r 2 q0.05 2.89
r 3 q0.05 3.49
r 4 q0.05 3.84源自r 5 q0.05 4.10
(3)求X的标准误 SE MSw MSw
X
n
8
当r
2时,q0.05
SE X
2.891.7385.02,
当r
3时,q0.05
如果小于q0.05SEX,则两个平均数之间差异不显著。
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
8
2、N-K法(q检验)
Psychology Statistics
例8.3 为研究不同科目的教师当班主任,对学生某一学科的 学习是否有影响。把40名学生随机分派到5名教不同科 目的班主任负责的班级中,经过一段时间以后对这40名 学生进行数学考试,结果见下表。用方差分析的方法检 验5组不同班主任的学生数学成绩是否有显著差异。(其 中,A表示班主任教数学,B表示班主任教语文,C表示 班主任教生物,D表示班主任教地理,E表示班主任教物 理)。
t2 M Swn 1i n 1j2.122.44285 22.096,
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
方差分析(ANOVA)、多重比较(LSDDuncan)、q检验(student)

方差分析(ANOV A)、多重比较(LSD Duncan)、q检验(student)实际研究中,经常需要比较两组以上样本均数的差别,这时不能使用t检验方法作两两间的比较(如有人对四组均数的比较,作6次两两间的t检验),这势必增加两类错误的可能性(如原先a定为0.05,这样作多次的t检验将使最终推断时的a〉0.05)。
故对于两组以上的均数比较,必须使用方差分析的方法,当然方差分析方法亦适用于两组均数的比较。
方差分析可调用此过程可完成。
Least-significant difference(LSD):最小显著差法。
a可指定0~1之间任何显著性水平,默认值为0。
05;Bonferroni:Bonferroni修正差别检验法。
a可指定0~1之间任何显著性水平,默认值为0。
05;Duncan’s multiple range test:Duncan多范围检验。
只能指定a为0.05或0.01或0。
1,默认值为0.05;Student-Newman-Keuls:Student—Newman—Keuls检验,简称N-K检验,亦即q检验。
a 只能为0.05;(以前都以SNK法最为常用,但研究表明,当两两比较的次数极多时,该方法的假阳性非常高,最终可以达到100%.因此比较次数较多时,包括SPSS和SAS在内的权威统计软件都不再推荐使用此法。
)Tukey's honestly significant difference:Tukey显著性检验。
a只能为0.05;Tukey's b:Tukey另一种显著性检验。
a只能为0。
05;Scheffe:Scheffe差别检验法.a可指定0~1之间任何显著性水平,默认值为0.05。
根据对相关研究的检索结果,除了参照所研究领域的惯例外,一般可以参照如下标准:如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较,宜用Bonferoni(LSD)法;若需要进行的是多个平均数间的两两比较(探索性研究),且各组样本数相等,宜用Tukey法,其他情况宜用Scheffe法。
单因素的方差分析和LSR法多重比较Excel表格计算

1、划分变异原因总变异=处理间变异+区组间变异+误差变异2、列出试验结果并初步计算,求处理和T,区组和T ,和总和T。
3、分解并计算各项平方和、自由度(1)求平方和n (区组)=4k (处理)=6矫正数39609.37501257.631099.3855.46102.79(2)求各项自由度235使用说明:①使用前请详细阅读文档为娱乐学习之用,处理及区组均为10个,作中的蓝字为使用者填入,其他如工作表、格式及果给予重视,如为“不能反映处理间效应”或“一、单因素随机化完全区组设计的方差分析2=nkT C =k 2i i=11n A SS C T ∙==∑-==∑=C SS T B -n 1j 2j .k 1=--=SS SS SS SS B A T e ==1-nk T f =-=1f k A =-=1n f B --=)1)(1(n k f e n n 2ij i=1j=1x T SS C ==∑∑-3155、进行F检验64(2)求F值32.092.70(3)查F表(4)检验由表中F值和F临界值相比较得知:①否定H01,差异极显著2②接受H02,区组间差异不显著1结论:该项试验结果能极显著反映处理间的效应。
已知k=65种 , n=41.30893 3.16 4.351.3089 4.14 5.69②4 3.25 4.461.3089 4.25 5.84③5 3.31 4.551.3089 4.33 5.95④6 3.36 4.611.3089 4.40 6.03⑤0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑥二、邓肯(Duncan)多重极差法(LSR法),a有2、3……等(1)求LSR(1)H 01:α1=α2=…=αH 02;β1=β2=…=β=1-nk T f =-=1f k A =-=1n f B =--=)1)(1(n k f e ==22/e A A S S F 22e /=B B F S S =X S =0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑦0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑧细阅读统计学有关资料,按照相关要求进行完善,同时建议按照统计学示例进行验算;②本之用,处理及区组均为10个,作者不承担由使用该文档而产生的法律责任,如不赞同,请删除;③文者填入,其他如工作表、格式及公式等内容请勿非专业改动或删除;④在输入数据后请对方差分析结为“不能反映处理间效应”或“不能接受”,多重比较已无意义,请核对原始数据。
方差分析与多重比较

方差是表示变异的量,在一个多处理试验 中,可以得出一系列不同的观测值,造成它们 不同的原因是多方面的。 • 由处理不同引起的,叫处理效应(或叫 条件变异) • 由试验过程中偶然性因素的干扰和测量 误差所致,这一类误差称试验误差。
• 方差分析的最大优点是在于它可以全面分 析差异的原因。
方差分析的基本思想:
二、方差分析的基本原理
• 重复数相等的几个均数的比较
符号:
nn knk knn k k
xxiijj xxijij x为ij 表中所有观测数据之和
ii11 jij111 jii11 j1j1
n
xij 为各列(重复)之和
i 1
k
xij 为各行(处理)之和
j 1
1. 自由度的分解
设有k组样本,每样本具有n个观察值, 则总共有nk个观察值,其自由度df
ijj111 ji11 j1 j1
St2=SSt/(k-1)
(xij
nn n nkk
SxSi )t2=nk k
k
n
(((xx(xiixjiijj xx)x)22xi ))2=20.73(1x i
x)2
k
=0.731/3 1 =0.2437
i i11i ij1j111j 1
2
i 1
j1
(x x) SSeini1n1ij1jikkn11j((1ijxkn1x1ij(jiikxjj1ij(xx)i2xjx)i )2x2 )=20k.i3n10(9x i
总自由度:dfT=nk-1 组间自由度:dft=k-1 组内自由度:dfe=k(n-1)
总自由度:dfT=dft+dfe =(k-1)+k(n-1)
=k-1+kn-k=nk-1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Excel在灌溉试验数据处理中的应用
之二方差分析
张寄阳
水利部灌溉试验总站
“数据分析”功能的安装
启动Excel后查看窗口主菜单“工具”项下是否有“数据分析”菜单项。
若有表明已经安装了数据分析功能;
若没有此项,按以下步骤安装:
主菜单“工具”“加载宏”选中“分析工具库”“确定”
方差分析程序的进入
“工具”“数据分析”选择分析工具“确定”
方差分析工具的选择
单因素方差分析
无重复双因素分析
可重复双因素分析
单因素完全随机试验
单因素随机区组试验
双因素无重复试验(不存在)
双因素完全随机试验
单因素方差分析的一个实例
不同施肥法对小麦植株含氮量的影响,6个
处理×5次重复的完全随机试验
“工具”“数据分析”单因素方差分析数据输入引用的区域
处理的排列方式
“数据区域”第一行
是否为标题
显著水平
选择结果输出的位置
单击“确定”
一、单因素方差分析
方差分析结果表中各项目的含义
SS 平方和
df 自由度
MS 均方
F及F crit F值及F临界值,F crit =FINV(α,df1,df2) P-value F分布的概率,P-value=FDIST(F,df1,df2)组间处理
组内误差
显著性判断
根据P-value 判断:
P-value ≤ 0.01 极显著
0.01<P-value≤ 0.05 显著
P-value>0.05 不显著
根据F crit判断:
F ≥F crit 在α水平上显著
F < F crit 在α水平上不显著
小提示:P-value 提供的信息更详细
显著性检验结果
P-value=9.6E-18<0.01
F0.05=2.6207,F0.01= FINV(0.01,5,24)=3.8951 F=164.17> F 0.01
不同施肥法的小麦植株含氮量差异达极显著水平
样本容量误差项的均方==n MS SE 1. 计算平均数的标准误
样本容量误差项的均方
=0.104
2. 计算最小显著极差( )α
αSSR SE LSR ⨯=α
SSR 根据p 、α和误差项的df 查SSR 表;P 某两个极差之间所包含的平均数的个数,
p=2,3,4……m(处理数);
α显著水平。
αLSR
LSR 2. 计算最小显著极差( )
3. 新复极差检验
将平均数从大到小排列;
用两个平均值的差值与进行比较;
差值≥差值<αLSR αLSR αLSR 显著;
不显著
多重比较结果表示(字母标记法)
首先将全部平均数从大到小依次排列后,在最大的平均数上标上字母a;并将该平均数与以下各平均数相比,凡差异不显著的,都标上字母a,直至某一个与之差异显著的平均数则标以字母b(向下过程),再以该标有b的平均数为标准,与上方各个比它大的平均数比,凡不显著的也一律标以字母b(向上过程);再以该标有b的最大平均数为标准,与以下各未标记的平均数比,凡不显著的继续标以字母b,直至某一个与之相差显著的平均数则标以字母c.……如此重复进行下去,直至最小的一个平均数有了标记字母且与以上平均数进行了比较为止。
这样,各平均数间,凡有一个相同标记字母的即为差异不显著,凡没有相同标记字母的即为差异显著。
在实际应用时,需区分0.05水平上
显著和0.01水平上显著。
一般用小写
字母表示0.05显著水平,大写字母表
示0.01显著水平。
在研究论文或研究报告中标示方差分析结果
实例:不同生育期干旱对春小麦产量影响7处理×3重复的随机区组试验
“工具”“数据分析”无重复双因素分析
显著性检验结果
行间(处理间):P-value=6.49E-09<0.01
差异极显著
列间(重复间):P-value=0.56>0.1
差异不显著
1. 计算平均数差数的标准误
样本容量
误差项的均方⨯=⨯=-2221n MS S x x 注意LSD 法与SSR 法中计算
标准误所用公式的差别
MS=36178.47
n=3
=155.3
2. 计算最小显著差()
αLSD α
αt S LSD x x ⨯=-21)
,(误df TINV t αα=显著水平,0.05/0.01误差项的自由度
α
误df
LSD 2. 计算最小显著差()
3. LSD 检验
将平均数从大到小排列;
计算各处理与对照的差值并与进行比较;差值≥反之,
αLSD αLSD 在水平上显著
α在水平上不显著α检验结果:苗期旱处理与
对照差异在0.05水平上
显著;其他处理与对照差
异在0.01水平上显著。
在研究论文或研究报告中标示方差分析结果
实例:水肥耦合试验
3种施肥水平×3种水分水平,每种组合重复3次
注意原始数据表的设计与输入区域的选择
方差分析结果
方差分析结果表“变异源”中各项目的含义样本水分效应
列肥料效应
交互水肥交互效应
内部误差
显著性检验结果
不同水分处理:P-value=2.56E-09<0.01
差异极显著
不同施肥水平:P-value=2.96E-13<0.01
差异极显著
不同水肥组合:P-value=1.95E-08<0.01
差异极显著
水肥组合的多重比较
样本容量误差项的均方==n MS SE =0.4779(MS=0.685,n=3)
与单因素方差分析中所用方法相同
各水分处理平均数的比较
样本容量误差项的均方==n MS SE (MS=0.685,n=9)=0.276
各水分处理平均数的新复极差检验结果
各肥料处理平均数的比较
样本容量误差项的均方==n MS SE =0.276
(MS=0.685,n=9)
各肥料处理平均数的新复极差检验结果。