事业单位考试行测答题技巧:植树问题常见题型归类
植树问题公式巧记及解题技巧

植树问题公式巧记及解题技巧一、分类1、直线型(线形)①两端都要植棵树=段数+1②两端都不植棵树=段数-1③只有一端植棵树=段数2、封闭型(环形)棵树=段数以上所有结论都可通过简单的“三段图”很容易地推导出来,鉴于手机上画图不方便,此处略去。
植树问题的核心量是段数(人教版教材叫间隔数,本人习惯叫段数),它是连接棵树与全长的中间量,只有找准了段数,才能正确解答植树问题。
除了典型的植树问题外,还有一些类植树问题:锯木头、爬楼梯、敲时钟等。
二、例题1、湖泊周长6000米,边上每隔15米栽一棵杨树,在相邻两棵杨树之间每隔5米栽一棵柳树。
杨树和柳树各栽了多少棵?杨树棵树:环形,棵树=段数6000÷15=400(棵)柳树棵树:只要算出相邻两棵杨树之间的柳树棵树,再乘上400段,就是柳树棵树。
每一小段的段数15÷5,两端都不植,所以再减一。
(15÷5-1)×400=800(棵)2、两棵树相隔115米,在中间等距增加22棵树后,第16棵与第1棵相隔多少米?先求段数,总段数22+2-1,第16棵与第1棵段数16-1,至此问题就很简单了!已知23段115米,求15段多少米?115÷(22+2-1)=5(米)5×(16-1)=75(米)小结:细心的读者可能会发现,虽然我强调先求段数,在分析中也是先求段数,但列式中却并未单独求段数,为什么呢?主要是为了避免单位问题!植树问题中段数的单位可以写“段”,可以写“个”,可以写“棵”,也可以不写,都能说的通,但难免有些老师只认一种或几种,所以一般列式时尽量避免。
3、把一根木头锯成5段需要8分钟,锯成12段需要多长时间?锯木头问题比较特殊,其它植树问题(包括类植树问题)都是先求段数,锯木头问题则是先求次数。
5段锯4次,12段锯11次,问题就变成4次8分钟,11次几分钟?8÷(5-1)=2(分钟)2×(12-1)=22(分钟)三、总结①分清种类(线形、环形);②理清细节(一旁、两旁);③先求段数(锯木头先求次数)。
公务员考试行测数学运算之植树问题

公务员考试行测数学运算之植树问题植树问题主要有三大题型:1.单边线型植树公式:棵数=总长÷间隔+1;2.单边环型植树公式:棵数=总长÷间隔;3.单边楼间植树公式:棵数=总长÷间隔-1;注意:默认的植树方式是单边植树且两个端点都可以植树;双边植树在单边植树的基础上乘以2即可。
公式具体应用如下:例1:长度为250米的马路上每隔5米植树一棵,则该条路上共有树木几棵?( )A.50棵B.51棵C.52棵D.53棵【解析】B。
此题为单边植树问题,直接套用公式棵树=总长÷间隔+1=250÷5+1=51。
正确答案为B。
例2:一块三角地带,在三个边上植树,三个边的长度分别为156米、186米、234米,树与树之间的距离均为6米,三个角上都必须栽一棵树,问共需植树多少棵?A.93B.95C.96D.99【解析】C。
此题属于典型的环形植树,三角地带的三边组成一个三角形,构成一条闭合线,由于156米、186米、234米都是6的倍数,则一共植树(156+186+234)÷6=96棵。
例3:在一条新修的道路两侧各安装了33座路灯,每侧相邻路灯之间的距离相同。
为提高照明亮度,有关部门决定在该道路两侧共加装16座路灯,要使加路灯后相邻路灯之间的距离也相同,最多有( )座原来的路灯不需要挪动。
A.9B.10C.18D.20【解析】C。
根据题意可知先前道路每边安装了33座路灯,所以道路总长s=32n(n为路灯的间隔),后每边加了8座灯,可知每边安装了41 座路灯,所以道路的总长s=40m(m为后来的路灯间隔),由此可知道路总长既是32,又是40的倍数,故总长s=160米,n=5,m=4,则每边不需移动的灯应该是20的整数倍,有0米,20米,40米,60米,80米,100米,120米,140米和160米位置上的灯不用移动,总共9座。
则两边总共有18座灯不用移动。
故本题的正确答案为C。
2020泉州事业单位行测数量关系技巧:浅谈植树问题

2020泉州事业单位行测数量关系技巧:浅谈植树问题泉州中公事业单位为各位考生带来更多泉州事业单位咨询,更多精彩内容尽在泉州事业单位招聘考试网!中公事业单位为帮助各位考生顺利通过事业单位招聘考试!今天为大家带来数量关系:浅谈植树问题。
植树问题属于数量考试中的一种题型,在考试中虽不常出现,但是一旦出现,只要把握它的特征及易错点,即可轻松得分。
一、什么是植树问题“植树问题”是指沿着一定的线路,将总线路分成若干相等的间距进行植树的一类问题。
当然题目中不一定每次出现都是植树,也可能会出现插旗、站人等类似的情况。
如:在3米长的线路上,每隔1米种一棵树,可以种几棵?这是标准的植树问题,可能有些同学直接认为是3÷1=3棵,这是植树问题中很多同学容易犯的一种错误。
此类错误的原因,主要是没有考虑到线路的两端是如何种的以及线路的是直的还是环形的。
因此,我们需要对植树问题进行分类了解。
二、植树问题的常见类型1.直线两端植树:树的棵数=植树距离÷两树间距+12.直线一端植树:树的棵数=植树距离÷两树间距3.直线两端都不植树:树的棵数=植树距离÷两树间距-14.封闭曲线植树:树的棵数=植树距离÷两树间距三、题目练习例1.一条河道长24米,从头到尾每隔3米种植一棵柳树,一共要种植多少棵柳树?A.7B.8C.9D.10.【答案】C。
解析:这道题目中,根据已知条件从头到尾都要植树,属于两端植树问题,则植树的棵树=植树距离÷两树间距+1,即24÷3+1=9棵,选择C选项。
例2.沿着100米的直线河道栽树,一端栽一端不栽,每隔2米栽一棵,总共可以栽多少棵?A.49B.50C.51D.52【答案】B。
解析:这道题目中,在直线上一端栽一端不栽的方式种树,属于植树问题中的第二种情况,因此植树的棵树=植树距离÷两树间距,即100÷2=50棵,选择B选项。
天下无双的公考必考题数量关系植树方阵类问题

天下无双的公考必考题数量关系植树方阵类问题必考神题把每类必考题总结出来,学会一道题就能会一类题,这才是学霸的不传之秘,高效备考的方法。
01植树方阵类公式:1.单边直线型:棵树=总长÷间隔+12.单边楼间型:棵树=总长÷间隔-13.环形植树公式:棵树=总长÷间隔方阵问题3个结论:N阶方阵总人数N某N最外层人数4N-4相邻两圈相差8人【例1】为了把2023年北京奥运办成绿色奥运,全国各地都在加强环保,植树造林。
单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗()。
A.8500棵B.12500棵C.12596棵D.13000棵【例2】一块三角地,在三个边上植树,三个边的长度分别为156米、186米、234米,树与树之间的距离均为6米,三个角上都必须栽一棵树,问共需植树多少棵?A.90棵B.93棵C.96棵D.99棵【例3】条道路的一侧种植了25棵杨树,其中道路两端各种有一棵,且所有相邻的树距离相等。
现在需要增种10棵树,且通过移动一部分树(不含首尾两棵)使所有相邻的树距离相等,则这25棵树中有多少棵不需要移动位置()。
A.3B.4C.5D.6【例4】若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生()人。
A.625B.841C.1024D.1369【参考答案】DCAB已有资料如何获得所有资料加入星球:考进体制内或。
公务员考试植树问题

在公务员考试中,植树问题难度不大,只要利用对应的公式便可以很容易得出答案。
因此,中公教育专家结合近几年公务员考试中的真题,帮考生总结出植树问题所用到的公式以及如何应用。
一、植树问题的类型与对应公式例如:在一周长为100米的湖边种树,如果每隔5米种一棵,共要种多少棵树?这样在一条“路”上等距离植树就是植树问题。
在植树问题中,“路”被分为等距离的几段,段数=总路长÷间距,总路长=间距×段数。
根据植树路线的不同以及路的两端是否植树,段数与植树的棵数的关系式也不同,下面就从不封闭路线的植树和封闭路线植树来一一说明。
(1)不封闭植树:指在不封闭的直线或曲线上植树,根据端点是否植树,还可细分为以下三种情况:①两端都植树如上图,两个端点都植树,树有6棵,段数为5段,即有植树的棵数=段数+1,结合段数=总路长÷间距,则:棵数=总路长÷间距+1,总路长=(棵数-1)×间距。
②两端都不植树如上图,两个端点都不植树,可知植树的棵数=段数-1,结合段数=总路长÷间距,则:棵数=总路长÷间距-1,总路长=(棵树+1)×间距。
③只有一端植树如上图,只有一个端点植树,可知植树的棵数=段数,结合段数=总路长÷间距,则:棵数=总路长÷间距,总路长=棵数×间距。
(2)封闭植树:指在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
所以棵数=总路长÷间距,总路长=棵数×间距。
为方便记忆,将植树问题的公式归纳如下表:二、植树问题解题流程例题1:圆形溜冰场的一周全长150米。
如果我们沿着这一圈每隔15米安装一盏路灯,一共需要安装几盏路灯?A.11B.10C.9D.8中公解析:此题答案为B。
圆形溜冰场一周,说明是封闭植树型。
〔判断类型〕棵数即路灯盏数=总路长÷间距=150÷15=10。
行测数量关系之植树问题

数量关系之植树问题-2020年国家公务员考试行测答题技巧今天要为大家带来的是国考中的一类问题——植树问题。
这类题目总体来看,大家非常容易因为粗心而犯错误,本文按照三个不同的层次,分享一下这类题目。
植树问题研究的关键就是种树距离,两树间距,树的棵树这三者之间的关系。
一、常规植树问题普通植树问题的关键在于不要忘记考虑端点,把2米的线段分成1米的在中间位置点一个点即可,但线段本身有两个端点。
同理的,把3米的线段分成1米一段的共能分成3段,仅需要2个点,线段本身有2个端点:【例1】包含端点:某市计划在100米长的道路两边每隔10米种植一棵树,一共需要多少棵树苗?A.10B.11C.20D.22答案:D解析:每隔10米种植一棵树,我们可以想象,在10米的线段两端各有一个端点,共两个端点,如果是20米的线段中点把它分成两个10米,还有两个端点2+1=3,在100米的道路上100÷10=10共有10个10米长的空隙,因此需要树苗的个数为10-1+2=11棵,由于两边都有种树,11×2=22棵。
含端点直线的植树公式为:种树棵树=植树距离÷两树间距+1【例2】不含端点:为照明需要,某市计划在相隔2000米的两个老路灯中间每隔40米新增一盏路灯,一共需要准备多少盏新路灯?A.48B.49C.50D.51答案:B解析:2000米中共包含40米的个数为:2000÷40=50段,也就是说在这段路程中一共有50个空隙,要把线段分成50段,我们需要点的个数为50-1=49个,因此需要新增设路灯49盏。
不含端点直线的植树公式为:种树棵树=植树距离÷两树间距-1【例3】变形:张大爷早晨以不变的速度沿着均匀种植柳树的河边散步,他从第一棵树走到第61棵树用了24分钟,他又向前走了10分钟决定回家,这时他走到第几棵树的位置了?A.84B.85C.86D.87答案:C解析:从第1棵树到第61棵树中间一共有60个空隙,走过60个空隙张大爷用时24分钟,因此走过1个空隙需要24÷60=0.4分钟,10分钟走过空隙的个数为:10÷0.4=25个,因此张大爷此时走到了第61+25=86棵树的位置。
浙江事业单位行测答题技巧:植树问题常见题型归类

官方微信:【zjsydwks】浙江事业单位行测答题技巧:植树问题常见题型归类在行测数学运算中常会遇到有关植树问题的应用题,下面中公教育专家将对其常见题型及解法进行详细的介绍。
一、什么是植树问题植树问题是一类在一定的线路上,根据总距离、间隔长和树木株数进行植树的问题。
由于植树的线路不同,植树的情况也不同。
二、常见题型植树问题常用图示法进行求解。
所谓图示法,就是树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间线的段数之间的关系问题。
常见题型有:1.非封闭线路上的植树问题⑴在非封闭线路的两端植树⑵在非封闭线路的一端植树,另一端不植树⑶在非封闭线路的两端都不植树2.封闭线路(如圆、正方形、长方形、闭合曲线等)上的植树问题例1:有一条公路长1000米,在公路的一侧每隔5米栽一棵垂柳,可种植多少棵垂柳?官方微信:【zjsydwks】解:该题为非封闭线路的两端植树问题,因此例2:两座楼房之间相距56米,每隔4米栽雪松一棵,一直行能栽多少棵?解:该题为非封闭线路的两端不植树问题,因此例3:某一淡水湖的周长1350米,在湖边每隔9米种柳树一株,可栽柳树多少株?解:该题为封闭线路上的植树问题,因此三、真题再现为了把2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林。
某单位计划在通往两个比赛场馆的两条路(不相交)的两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗:A.8500棵B.12500棵C.12596棵D.13000棵【答案】D。
解析:该题为非封闭线路的两端植树问题,因此,可根据距离相等列方程。
设共有树苗X棵,有(x+2754-4)×4=(x-396-4)×5 ,解得X=13000 ,故选D。
对于植树问题,首先得弄清楚属于上述常见题型的哪一种,然后根据结论列式计算。
国考行测高分秘笈之:植树问题

国考行测高分秘笈之:植树问题在近几年的的公务员考试中,植树问题屡屡出现,故对于植树问题,华图公务员考试研究中心提醒你,一定要认真对待,这种题目虽然常考,但是题目难度并不是很大,只要能够掌握最不利植树问题的相关公式,熟练运用我们的解题方法,那么这种问题肯定能够轻松应对。
一、浅识植树问题植树问题属于边端计数问题,而边端计数问题是一种特殊的计数问题,它是建立在几何基础之上,同时需要注意加减1的问题,那么来看一下植树问题的模型公式:植树问题包含单边植树与双边植树两种模型:单边线型植树公式:棵数=总长÷间隔+1;总长=(棵数-1)×间隔单边环型植树公式:棵数=总长÷间隔;总长= 棵数×间隔单边楼间植树(锯木、爬楼)公式:棵数=总长÷间隔-1;总长=(棵数+1)×间隔双边植树公式=单边植树的颗数×2二、真题解析1.某单位购买一批树苗计划在一段路两旁植树。
若每隔5米种1棵树,可以覆盖整个路段,但这批树苗剩20棵。
若每隔4个种1棵树且路尾最后两棵树之间的距离为3米,则这批树苗刚好可覆盖整个路段。
这段路长为( )。
(2012年河南省考)A. 195米B. 205米C. 375米D. 395米【华图解析】双边植树问题:并且是线型植树问题 先计算出单边植树的个数,在此基础上乘以2,就可以计算出双边植树的个数。
设路长为x ,则20+2(5x +1)=2(143+-x )+2,解出来x=195 2.一果农想将一块平整的正方形土地分割为四块小土地,并将果树均匀整齐地种植在土地的所有边界上,且在每块土地的四个角上都种上一棵果树,该果农未经细算就购买了60颗果树,如果仍按上述想法种植,那他至少多买了多少棵果树?(2010河南省考)A.0B.3C.6D.15【华图解析】植树问题:本题是求至少多买了多少棵果树,根据题意知道,将我们的正方形土地分割为四块小土地, 相当于将这块土地分成了12段,设每一段上种的果树为x ,总共有9个端点,则共要植树12x+9=60,由于种的果树的颗数必须为整数,则x=4,最后会多出来3棵果树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
事业单位考试行测答题技巧:植树问题常见题型归类
在行测数学运算中常会遇到有关植树问题的应用题,下面中公教育张淑琴老师将对其常见题型及解法进行详细的介绍。
一、什么是植树问题
植树问题是一类在一定的线路上,根据总距离、间隔长和树木株数进行植树的问题。
由于植树的线路不同,植树的情况也不同。
二、常见题型
植树问题常用图示法进行求解。
所谓图示法,就是树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间线的段数之间的关系问题。
常见题型有:
1.非封闭线路上的植树问题
⑴在非封闭线路的两端植树
⑵在非封闭线路的一端植树,另一端不植树
⑶在非封闭线路的两端都不植树
2.封闭线路(如圆、正方形、长方形、闭合曲线等)上的植树问题
例1:有一条公路长1000米,在公路的一侧每隔5米栽一棵垂柳,可种植多少棵垂柳?
解:该题为非封闭线路的两端植树问题,因此
例2:两座楼房之间相距56米,每隔4米栽雪松一棵,一直行能栽多少棵?
解:该题为非封闭线路的两端不植树问题,因此
例3:某一淡水湖的周长1350米,在湖边每隔9米种柳树一株,可栽柳树多少株?
解:该题为封闭线路上的植树问题,因此
三、真题再现
为了把2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林。
某单位计划在通往两个比赛场馆的两条路(不相交)的两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗:
A.8500棵
B.12500棵
C.12596棵
D.13000棵
【答案】D。
解析:该题为非封闭线路的两端植树问题,因此,可根据距离相等列方程。
设共有树苗 X棵,有(x+2754-4)×4=(x-396-4)×5 ,解得X=13000 ,故选D。
对于植树问题,首先得弄清楚属于上述常见题型的哪一种,然后根据结论列式计算。
即使大家记不住结论,也可以临场用图示法快速得出规律,从而列式计算。
推荐阅读:
事业单位考试题库:/beikao/。