多晶硅铸锭炉操作与生产流程

合集下载

多晶硅铸锭炉操作与生产流程

多晶硅铸锭炉操作与生产流程

多晶硅铸锭炉操作与生产流程1.原料准备原料是多晶硅的硅块或硅片。

准备的原料要求纯度高,无杂质。

为了提高生产效率,原料通常以小块装入托盘,方便连续供给。

2.炉体预热炉体预热是为了将炉体温度提升到适宜的熔解温度。

通常炉体内设置有电炉加热器和保温层,通过电热加热将炉体温度升高。

3.熔化和铸炉炉体预热至适宜的温度后,将原料加入炉体中进行熔化。

通常使用电炉或辐射加热方式进行熔化。

熔化后,需要将熔融硅液进行搅拌和均匀化处理,以消除内部的应力和局部温度差异。

然后,将熔融硅液进行铸炉,通过向下拉拔和旋转的方式,将熔融硅液逐渐冷却并形成铸锭。

在铸炉过程中,需要对炉温进行控制,以确保铸锭的质量。

4.冷却和卸锭完成铸炉后,需要将铸锭进行冷却。

冷却方式通常有自然冷却和快速冷却两种选择,根据产品需求进行选择。

冷却后,铸锭需要进行卸锭处理。

卸锭时需要注意操作,确保铸锭的完整和质量。

通常使用机械卸锭设备进行卸锭。

以上就是多晶硅铸锭炉的操作流程。

下面将介绍多晶硅铸锭炉的生产流程。

1.原料准备在生产流程中,需要对原料进行准备和筛选,确保原料的纯度和质量。

2.熔化和铸炉将原料加入炉体中,通过炉体的加热和熔化,得到熔融硅液。

然后进行熔融硅液的搅拌和均匀化处理,进行铸炉制程。

3.冷却和卸锭铸炉后,对铸锭进行冷却处理。

冷却方式根据产品要求进行选择,可以选择自然冷却或快速冷却。

冷却后,使用机械卸锭设备进行卸锭完整性和质量。

4.切片和加工经过卸锭的多晶硅铸锭,需要进一步进行切片和加工,得到所需的硅片和单晶硅。

5.检测和质量控制以上就是多晶硅铸锭炉的操作和生产流程。

该过程需要严格控制各个环节的参数和操作,以确保最终产品的质量和性能。

简述多晶硅生产铸锭工段的工艺流程

简述多晶硅生产铸锭工段的工艺流程

简述多晶硅生产铸锭工段的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!简述多晶硅生产中的铸锭工艺流程多晶硅是太阳能电池片制造的重要原材料,其生产过程中的铸锭工段是决定硅片质量和效率的关键步骤。

多晶铸锭生产工艺文件

多晶铸锭生产工艺文件

多晶硅锭的生产流程1.生产工艺流程(1)制造工艺流程图(2)工艺流程简述坩埚喷涂:其目的是为了在铸锭的过程中,防止坩埚的杂质混入硅料。

喷涂的Si3N4粉起到一个隔离杂质和防止粘埚的作用。

坩埚烧结:此过程是为了使喷涂在坩埚内表面的Si3N4粉牢固附着在坩埚上。

多晶炉铸锭:将盛好硅料的坩埚放入多晶炉中,经高温熔化定向凝固铸锭。

(3)反应副产物生产过程中产生含Si3N4粉尘的空气,过滤除尘后排放大气;铸锭过程中排放的少量氩气,直接排放入大气;铸锭后产生的石英坩埚碎片作为废物处理。

多晶铸锭操作流程1目的为了保证正确操作多晶硅铸锭炉,使铸锭过程规范、有效地进行,并确保铸锭成功。

2适用范围多晶铸锭车间3规范性引用文件无4职责生产部负责铸锭的整个过程。

工厂工程部负责整个外围设施条件,以保证多晶炉正常运行的环境条件要求。

5 术语和定义坩埚喷涂:在坩埚的内表面均匀喷涂Si3N4粉溶液,以防止在铸锭时坩埚和硅锭烧结在一起。

其目的是为了在铸锭过程中,防止坩埚内的杂质扩散入硅锭。

喷涂Si3N4粉起到了一个隔离杂质和防止粘埚的作用。

涂层烧结:此过程是为了使喷涂在坩埚内表面的Si3N4涂层牢固地附着在坩埚上。

多晶炉铸锭:将硅料放入坩埚,并一起放入多晶炉中,硅料经高温熔化、定向凝固成为硅锭。

定向凝固:在梯度热场中,液体朝一个方向凝固,固液界面近似于平面的凝固过程。

6 多晶炉工艺过程准备石英坩埚检查石英坩埚表面,不能有裂纹,内部不能有超过2mm的划痕、凹坑、突起。

6.1.1 用压缩空气和去离子水清洁坩埚的内表面。

6.1.2 坩埚喷涂:取250g的Si3N4粉末,用滤网筛滤。

然后取1000ml的去离子水,将Si3N4粉末溶解到去离子水中,用气动搅拌泵搅拌均匀。

喷涂时喷枪要距离坩埚内壁30cm左右,只喷涂坩埚底部和侧壁3/4的地方,要均匀不要使液体凝聚。

喷涂过程中要检测坩埚内表面的温度,应为80±5℃,不断用去油的压缩空气吹去掉落的颗粒。

多晶铸锭生产周期解释

多晶铸锭生产周期解释

DSS多晶炉生长期间的操作顺序DDS多晶炉生产硅锭主要分加热、熔化、长晶和退火等四个步骤,这几个步骤之下又分好几个阶段,以下是几个步骤的说明和作用。

第一步加热和单晶的加热化料不一样的是,多晶加热的概念就是在尽可能短的时间内将石墨块和硅料加热到尽可能高的温度。

●因为当温度低于1000℃时,温度控制就不能稳定地控制温度,所以不能用来控制炉子的温度,必须在在功率控制模式下进行加热。

●在真空中完成长晶期间的所有阶段,这样可以烘焙石墨块和隔热层吸收的水分且从硅料表面蒸发出去。

●利用功率控制模式加热石墨块内部件(包括加热器,坩埚板,DS-Block和隔热层的内表面)—将热量传送给熔体,使熔化温度达到1175℃(TC1热电偶测量此转换温度)。

功率控制模式下的硅料仍然是黑色的,它的温度一定低于500℃且隔热层外表面也很冷,所以不会很容易地排出吸收的水分。

●当TC1热电偶达到转换到主参数表里“温度控制”时温度后便开始执行温度控制,程序将结束加热,开始融化过程。

第二步熔化仍然在真空中完成熔化循环的第一个阶段以烘干水分。

保持恒定温度(1175℃)长达1.5个小时使硅料温度与石墨块温度相同且排出水分,油和油脂。

●然后,在几个较短的阶段里将压力增加到规定值,继续熔化和生长。

再经过几个阶段以防激活压力偏差报警。

在此期间,温度按一定斜率发生微变,这样可以尽可能缩短整个循环时间。

●温度按一定斜率上升到最后的熔化温度1540℃且在规定的时间内一直保持这个温度,使硅料完全熔化。

●在随后的两个阶段后开始熔化,首先在温度按一定斜率上升阶段结束时做一些更改,再设定功率值。

上述操作历时2个小时,在熔化阶段结束时,缓慢地线形降低功率值。

DS-Bolck温度也很稳定,已经达到了“平稳状态”(在这种状态下,温度变化极小)。

●在下一个阶段里,利用熔化结束功能激活熔化结束子程序。

这个子程序在功率曲线图中寻找一个比主参数表中规定的熔化结束时功率变化率报警值大的变化值。

多晶硅铸锭炉操作一般知识

多晶硅铸锭炉操作一般知识

多晶硅铸锭炉操作一般知识多晶铸锭目的:在一定的时间内,定向生长出一定尺寸的多晶晶锭。

操作过程:装炉-运行铸锭炉-出炉。

装炉:1,装炉前准备事项(1)检测多晶炉正常(顶板与加热板间电阻2K欧,溢流线电阻2-3欧);(2)炉腔清理完毕(a下炉腔内壁附着物;b DS-block表面颗粒;c DS-block下隔热板及石棉垫表面颗粒);(3)溢流线未被石棉垫覆盖。

2,装炉时注意事项(1)叉车平稳进出,绝不可撞击炉内器件;(2)装好料的坩埚放在DS-block中央(3)四块隔热条准确放在坩埚底板与DS-block之间。

运行铸锭炉1,运行前准备事项(1)清洁上下炉体缝合面,在O型圈表面均匀抹上真空油脂;(2)真空泵油位正常(1/3H-2/3H);(3)红、黄、蓝指示灯正常,蜂鸣器正常;(4)配方名称准确,参数准确(进出水压力50-65psi,压差35psi,进出水温度24+—1℃);(5)报警(Alarms)界面无异常(指示条全为绿色);(6)隔热笼零位置准确;(7)准备好运行记录本。

自动运行前内容:a关闭下炉腔;b启动真空泵,点击“AUTO”熔化结束判断a,系统已经报警(功率斜率变化率值<-0.01;TC2温度斜率变化率值>0.03);b,高温计明显下降;c,观察无漂浮硅料(15-20秒);d,设定功率与实际功率曲线明显下降,TC2温度曲线明显上升。

中心长晶结束判断a,系统已经报警(高温计斜率值>6)b,高温计曲线明显上升c,观察无液态硅边角长晶结束判断a,设定功率曲线不再上升;b,功率斜率平均值曲线不再上升;c,对应阶段时间运行完成。

出炉(1)打开下炉腔前事项a,overview(浏览)界面TC1温度低于要求的出锭温度;b,炉腔压强高于980mbar;(2)打开下炉腔a,戴好高温手套,将坩埚底板下的四条隔热条放在指定位置;b,叉车平稳进入。

正常多晶锭产品主要性能参数:1,一级品:P型,电阻率0.7-2Ωcm,少子寿命>2us;1,二级品:P型,电阻率2-4Ωcm,少子寿命>1us;铸锭炉安全操作规程(1)硅锭出炉后,局部温度过高可能导致自动爆炸飞溅碎片伤及人身,所以必须远离刚出炉的硅锭。

多晶硅铸锭工艺流程

多晶硅铸锭工艺流程

多晶硅铸锭工艺流程首先是炉外气氛净化的工艺步骤。

炉外气氛净化是为了防止多晶硅制备过程中受到杂质的污染。

该步骤通常包括热氢气体的预净化、氢气和氩气混合气体的净化和净化后流经硅原料的高纯气流净化等过程,以确保多晶硅的高纯度。

接下来是硅熔炼的工艺步骤。

硅熔炼是将高纯度硅原料进行熔融,形成硅液的过程。

一般采用的炉型有电阻炉和感应炉。

原料硅经过预热后在熔炼炉中加热至熔点以上,形成熔融的硅液。

为了保证硅液的纯度,熔炼中要注意控制氧气含量以避免氧化,同时定期检测硅液中的杂质含量。

第三个步骤是硅液稀释。

硅液稀释是为了减少硅液的纯度,使其适用于铸锭成型。

主要通过向硅液中加入高纯度的硅原料稀释剂,将硅液的纯度降低到所需的水平。

稀释剂加入的量需要根据目标硅液纯度和成本来进行调整。

接下来是浇注成铸锭的工艺步骤。

稀释后的硅液通过铸锭机浇注进铸锭模具中,形成硅铸锭。

为了确保铸锭质量,需要控制浇注速度、温度和铸锭旋转速度等参数。

同时还要注意避免气泡和杂质的污染。

然后是退火的工艺步骤。

铸锭成型后需要进行退火处理,以消除内部应力和杂质的影响,提高硅材料的电学性能。

退火条件通常包括温度、气氛和时长的控制。

通过退火处理,硅铸锭的结晶结构得到优化,提高了电池和集成电路的性能。

最后是切割的工艺步骤。

硅铸锭经过退火处理后,需要进行切割成硅片。

切割通常采用线切割或磁力切割技术。

切割后的硅片可以用于制备太阳能电池或集成电路等应用。

综上所述,多晶硅铸锭工艺流程包括炉外气氛净化、硅熔炼、硅液稀释、浇注成铸锭、退火和切割等步骤。

每一步骤都需要严格控制工艺参数,以确保多晶硅的高纯度和铸锭的质量。

这些工艺步骤是制备高质量多晶硅铸锭的关键。

多晶硅铸锭炉操作与生产流程

多晶硅铸锭炉操作与生产流程

多晶硅铸锭炉操作与生产流程多晶硅铸锭是制备太阳能电池元件的重要材料之一、多晶硅铸锭炉的操作与生产流程包括原料准备、炉料制备、炉料充填、炉体封闭、炉体预热、炉体烧结、炉体冷却、铸锭取出等多个环节。

下面将逐一介绍这些环节的具体过程。

首先是原料准备。

多晶硅铸锭的主要原材料是硅石(SiO2)和木炭(C)。

硅石作为含硅的原料,在反应过程中能与木炭发生反应生成多晶硅。

为了保证炉料中硅石和木炭的质量均匀性和纯度,需要进行粉碎、筛分和干燥等处理。

接着是炉料制备。

将经过处理的硅石和木炭按一定比例混合,形成炉料。

炉料的混合比例对最终多晶硅铸锭的质量有很大影响,需要经过工艺参数的优化。

炉料充填是将炉料填充进铸锭炉中的过程。

首先,在铸锭炉的底部放置一层中性炉底材料,然后将炉料均匀地放置在中性炉底材料上,并用振动装置进行压实,以确保炉料充填的均匀性和致密性。

炉体封闭是指将铸锭炉密封起来,以防止炉内温度损失和杂质的进入。

封闭可以通过炉盖或壳体的安装等方式进行。

炉体预热是在充填好炉料并封闭炉体后,将铸锭炉进行加热。

预热的目的是将炉料中的水分和其他杂质蒸发和氧化,为炉体烧结做准备。

炉体烧结是将铸锭炉内的炉料进行高温加热,使硅石和木炭发生化学反应生成多晶硅。

炉体烧结的过程中需要控制炉内的气氛,以保证反应能够正常进行,并通过周期性的气氛调整来降低氧气、水分和其他杂质的含量。

炉体冷却是将烧结好的多晶硅铸锭炉进行冷却。

冷却过程需要控制冷却速度,以避免产生过多的晶界缺陷。

冷却的同时,还需要进行炉体内部的清理,以去除可能存在的杂质。

最后是铸锭取出。

在冷却完成后,将多晶硅铸锭从炉体中取出。

取出后,需要对铸锭进行切割和抛光等处理,得到适合太阳能电池元件制备的晶体硅片。

以上就是多晶硅铸锭炉的操作与生产流程的具体介绍。

通过上述环节的有序进行,能够得到质量稳定、纯度高的多晶硅铸锭,为后续的太阳能电池元件制备提供可靠的材料基础。

多晶硅铸锭炉生产工艺控制技术

多晶硅铸锭炉生产工艺控制技术

多晶硅铸锭炉是太阳能光伏产业中,最为重要的设备之一。

它通过使用化学方法得到的高纯度硅熔融,调整成为适合太阳能电池的化学组成,采用定向长晶凝固技术将溶体制成硅锭。

这样,就可切片供太阳能电池使用。

多晶硅铸锭炉采用的生长方法主要为热交换法与布里曼法结合的方式。

这种类型的结晶炉,在加热过程中保温层和底部的隔热层闭合严密,保证加热时内部热量不会大量外泄,保证了加热的有效性及加热的均温j生。

开始结晶时,充入保护气,装有熔融硅料的坩埚不动,将保温层缓慢向上移动,坩埚底部的热量通过保温层与隔热层之间的空隙发散出去,通过气体与炉壁的热量置换,逐渐降低坩埚底托的温度。

在此过程中,结晶好的晶体逐步离开加热区,而熔融的硅液仍然处在加热区内。

这样在结晶过程中液固界面形成比较稳定的温度梯度,有利于晶体的生长。

其特点是液相温度梯度dT/dX 接近常数,生长速度可调。

通过多晶硅铸锭法所获得的多晶硅可直接获得方形材料,并能制出大型硅锭;电能消耗低,并能用较低纯度的硅作投炉料;全自动铸锭炉生产周期大约50 h可生产200 kg以上的硅锭,晶粒的尺寸达到厘米级;采用该工艺在多晶硅片上做出电池转换效率超过14%。

多晶硅铸锭炉融合了当今先进的工艺技术、控制技术、设备设计及制造技术,使它不仅具有完善的性能,而且具有稳定性好、可靠性高,适合长时间、大批量太阳能级多晶硅的生产。

1、多晶硅铸锭炉的主要工艺特点太阳能级多晶硅的生产。

根据以上的多晶硅铸锭炉定向生长凝固技术原理,并结合我国当前实际需要,我们特别制定了以下的工艺流程。

多晶硅主要工艺参数如下。

第一步:预热(1)预热真空度:大约1.05 mPa;(2)预热温度:室温一1 200 oC;(3)预热时间:大约15 h;(4)预热保温要求:完全保温。

第二步:熔化(1)熔化真空度:大约44.1 Pa;(2)熔化温度:1 200℃~1 550℃;(3)熔化时间:大约5 h;(4)熔化保温要求:完全保温;(5)开始充保护气。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源柜包括电源开关,功率控制器等。
控制柜系统包括工控机,SNAP智能处理器,加热器的电源 系统,真空系统控制单元,检测单元,运动控制单元,系统 供电单元。
•9
1)工控机 整个控制系统以工控机操作为上位机,上位机完成控制
工艺的设置,控制过程中的监控,各种反馈信息(如:温度 、
水流量、隔热区位置等)出现异常报警显示,统计和记录整 个硅结晶过程的各种参量的变化情况并生成图表。
多晶硅铸锭炉操作与生 产流程
2020年7月7日星期二
培训内容
►主要用途和特性 ►设备的组成和工作原理 ►结晶炉操作界面 ►硅锭生产流程 ►注意事项
•2
主要用途和特性
1 用途:
JJL-240型多晶铸锭炉将不规则的硅原料,装 炉后重熔,实现稳步定向凝固,生产出高质量,标 准规格的多晶硅硅碇。
2 特性:
•6
3 真空与供气系统
真空系统是由机械泵、罗茨泵、安全阀等其他附件组成 ,当炉内压力抽到0.005毫帕时才可以运行。当真空抽到40 毫帕以下时, 罗茨泵自动开始细抽。炉内工作压力需维持 600毫帕时, 是靠机械泵抽气作用。
氩气进入的量是由质流控制器控制,抽气量是由连接 真空泵的比例调节阀调整。空气压力控制阀用于关闭氩气进 气系统及炉体与真空系统分开。
•13
结晶炉操作界面
操作界面的组成
操作界面是有报警、监控、自动控 制、工艺、手动控制、趋势图六大窗 口组成。
•14
报警窗口
最常见的主要报警有: 加热器断开报警、丢失主电源报警、主电源缺项报 警、隔热笼提升故障报警、TC1热电偶故障报警、 高温计不在原点上报警、UPS错误报警、冷却水流 量报警等。
•7
4 冷却系统
炉体上部进气冷却循环水分八路,F1,F2,F3三组对 应六个电极,F4进气法兰,F5上炉体,F6下炉体上部,F7 下炉体下部,F8真空泵。
炉内的温度通过循环水散出,升温后的水通过外冷却 塔进行冷热交换,并用水泵送回内循环。
•8
5 电源供应与控制系统
电源供应与控制系统主要由电源柜和控制柜组成。
制。
•10
5)检测单元 检测单元包括温度、水流量、隔热笼位置等检测。检测
器件有热电偶,红外测温仪,流量计以及位置反馈编码器 组成。 6)运动单元控制
运动单元控制下炉体的升降运动、隔热区的提升等动作 。 7)系统供电单元
系统电源单元包括总电源开关,控制柜内配电保护,以 及UPS等构成。
•11
工作原理
•5
2 加热隔热系统
隔热笼在上炉体内,由上下两层不锈钢架组成。 四 周衬有碳纤维隔热材料,主要起保温、隔热作用。
六个铜电极从炉体上方穿入 ,并提供交流电给石墨电 极 , 电极通过石墨螺栓与加热片(呈四方形)连接。四 角用转接片连接,上部被隔热材料覆盖,周围是隔热笼。
在下炉体内,用三支石墨柱支撑着一个用双层隔热材 料组成的平台,在隔热笼下降时形成一个密闭腔。在此平 台上,悬空支撑着一散热交换台,用于放置坩埚。
3 具体过程:将经过SiN喷涂处理后的坩埚装入硅原料, 并放置在热交换台上。关闭炉体抽真空,然后通过调整 可控制硅的控制单元的变压器输出的低电压高电流,电 流加到石墨加热器,并通过SNAP智能控制器 ,自动温 度控制,加热若干小时以后完全熔化硅料。当硅料完全 熔化后,根据工艺要求,缓慢提升隔热笼位置,暴露出 热交换台,使一部分热量散发到炉壁,通过冷却水把炉 壁热量带走,交换台温度的下降会传到坩埚底部,使硅 溶液形成垂直的温度梯度,此温度梯度会使硅溶液下方 凝固结晶至上方。当所有的硅液都凝固后,硅锭再经过 退火、通入氩气、控制冷却方式等步骤以避免硅锭出现 内应力,以及减少硅锭产生的晶体缺陷(主要是点、线 、面缺陷),从而提高硅锭质量性能。(硅的导电性、 可切割性。)
•16
自动控制窗口
自动控制窗口主要包含自动运行的一些功能。操作 者可以选择正常启动或定时启动来开始一次自动加 工。 只要按下自动运行按钮,系统就会开始自动运行; 自动运行开始运行时,旁边会出现一个绿色圆图标,
指示当前正在自动运行状态。
•17
工艺窗口
工艺文件在整个系统中具体很重要的意义, 任何一次自动循环都是按照工世文件的设定 进行的,工艺文件的更改可以直接影响生产 出来的硅锭质量。工艺文件总共分四页,操 作者可以按翻页按扭在各页面之间切换。在 一般情况下不建议不懂工艺的人员随便修改 工艺。
1 多晶硅铸锭炉的工作顺序分:加热, 熔化 , 结晶,退火,冷却,急冷等六个步骤。
加热:七个步骤(4-5小时) 熔化:十二个步骤(12-13小时) 结晶:七个步骤(24-25小时) 退火:三个步骤(3小时) 冷却:五个步骤(10-12小时)
•12
2 通过工控机设置完成各种工艺参数和预定参数后, 送 达SNAP智能控制器。
2)SNPA智能处理器 是控制系统的下位机单元,是核心单元,完成对温度
的控制,真空度及充入氩气的压力控制,隔热笼的提升控制 ,结晶的速度,水流量的检测,并送达上位机。
3)加热器电源系统 包括大容量的降压变压器以及可控硅的控制单元。
4)真空系统控制单元 包括对真空泵的控制,真空度的检测,以及气体流量控
在58小时之内生产出275kg的多晶硅硅锭。 在整个结晶过程中,只有一个部件运动 , 简 化设备的操作性和复杂性。
•3
设备的组成和工作原理
设备的组成: 钢结构部件、炉体部件、加热隔热
系统、 真空与供气系统、 冷却系统、 电源供应及控制系统。
•4
1 炉体部件
炉体的组成主要由顶盖、上炉体和下炉体 组成,它们由双层不锈钢焊接形成。层与层 之间留有一定间隙,便于冷却水通过。
•18Biblioteka 动控制窗口在手动界面上,允许操作者对各个阀门以及电源接 触器进行操作,更改加热控制方式、功率设定、温
度设定等。此窗口还包含隔热笼操作、下炉体运行 控制、慢速抽真空、维护操作等子窗口。
•15
监控窗口
在监控窗口中可以看到系统运行时的状态,包括当 前的模式,步骤,剩余时间以及当前正在使用的工艺
文件名。 在屏幕上还显示进气阀的设定值和实测值,出气阀 的设定值和实测值,炉内压力的设定值和实测值,8 路水流量的实测值,隔热笼的目标位置和实际位置,
瞬时电流、电压、功率、通断百分比,控制方式以 及各自的设定值和实测值等。
相关文档
最新文档