电致伸缩 17_070125103029
电致伸缩材料的研究进展

电致伸缩材料的研究进展张涵琦【摘要】电致伸缩材料因其优异的性能在智能机器人、航空航天、光学系统、微电子和生物传感领域具有重要的作用.目前,研究较多的电致伸缩材料有弛豫铁电体、介电弹性体和导电聚合物等三类.本研究概述了上述三类材料的最新研究进展,指出其各自优势及存在的不足,并根据存在的问题提出展望,以期加快该类材料的发展与应用.【期刊名称】《化工中间体》【年(卷),期】2018(000)012【总页数】2页(P4-5)【关键词】电致伸缩材料;介电弹性体;弛豫铁电体;导电聚合物;智能驱动器【作者】张涵琦【作者单位】郑州外国语新枫杨学校河南 450000【正文语种】中文【中图分类】T1.引言电致伸缩材料因其出色的物理、化学和机械性能在机器人、人工肌肉、自动调焦等领域有广泛的潜在应用。
这类材料能够在通电的条件下产生形变,其应变量与电场强度的二次项成正比,并将电能转化为机械能,从而实现能量的转换。
电致伸缩材料在电刺激下产生形变的方式多样,主要有以下几类:(1)通过正负离子的移动来产生形变的;(2)通过材料本身的电偶和效应的改变实现应变;(3)凭借分子内作用力的变化或化学键的变化而变化。
电致伸缩材料具有良好的光学、力学和机械等性能,与此同时它还对电、机、热、声、光具有很高的敏感性,因此在诸多电力转换领域有潜在的用途。
但是,目前研究的电致伸缩材料主要存在有弹性系数低、介电常数小、使用寿命短、易失效、材料易被击穿等问题,因此极大的限制了该类材料的广泛应用。
本文综述了三类常见的电致伸缩材料,总结了最新的研究进展,并根据存在的问题提出了展望。
2.研究内容目前,研究较多的电致伸缩材料主要有以下三类,分别是:弛豫铁电体,介电弹性体和导电聚合物。
下面分别做详细的介绍。
(1)弛豫铁电体弛豫铁电体是一种有多个能在电场中发生可变的自发极化的并呈现出短程有序,长程无序的电致伸缩材料。
弛豫铁电体分为聚合物与氧化物陶瓷两大类,其中弛豫铁电聚合物具有刚性与截面应力较高,工作密度高(约为肌肉的25倍)等优点,而弛豫铁电体氧化物陶瓷具有无剩余极化和无老化特性等优点,成为近些年研究的热点。
电致和磁致伸缩材料的功能

电致和磁致伸缩材料的功能1 电致材料1.1 电致伸缩效应电致伸缩效应是一种机电祸合效应它是指当外电场作用于电介质上时, 所产生的应变正比于电场强度或极化强度的平方的现象由于电致伸缩效应引起的应变与外加电场的方向无关, 所以一般固体电介质都能产生电致伸缩效应。
1.2 电致伸缩材料电致伸缩效应在一切固体电介质中都有, 但其大小不同因为应变正比于介电常数的平方, 所以铁电体在其相变温度附近应该有较大的应变从应用上看, 要求加一个不太强的电场, 能够产生足够大的应变, 而且应变与电场的关系没有滞后, 重复性好, 同时还要求温度效应小为此, 应该选择介电常数大并属于扩散相变的材料此外还要求平均居里温度在室温以下, 接近室温, 扩散区较长目前, 大部分铁电体及一些非铁电体如石英、碱卤晶体等材料的电致伸缩系数都已经测量到了,已经发现电致伸缩效应显著的材料有:铌镁酸铅一钦酸铅固溶体(PMN-PT),铌镁酸铅一钦酸铅一铌锌酸钡固溶体(PMN-PT-BNZ),掺钡的错钦酸铅(Ba2PZT),掺翻的锆酸铅(La2PZT)。
1.3 电致伸缩材料的发展方向一、多元化压电陶瓷按其所组成的固溶体的化合物成分构成可分为一元系压电陶瓷, 如钛酸钡(BaTiO3)、钛酸铅(PbTiO3)和偏铌酸铅(Pb(NbO3)2)等;二元系压电陶瓷, 如目前使用最多的锆钛酸铅(xPbZrO3-(1- x )PbTiO3或Pb(Zr x Ti1-x O3)),这是目前使用最为广泛的PZT 系列压电陶瓷;三元系及多元系压电陶瓷,通常是在具有钙钛矿型结构的PZT二元系中再加入第三种或第四种化学通式为ABO3型化合物而形成三元系或多元系固溶体,以获得所需要的宽性能调节范围, 得到不同性能参数的压电陶瓷,以满足不同的市场需求。
与PZT 压电陶瓷相比,三元系或多元系压电陶瓷的烧结性能良好,不但烧成温度范围宽,而且PbO 挥发也少,陶瓷的工艺重现性好,易获得气孔率少的致密陶瓷体,可获得具有高机械强度和电气性能, 及在某些方面有显著特点的压电陶瓷。
聚氨酯弹性体电致伸缩特性

第 3 第 3期 8卷 20 0 8年 5月
东南大 学学 报 ( 自然科 学版 )
J UR L OF S T E T U VE ST ( aua cec dt n O NA OU H AS NI R IY N trl i eE io ) S n i
VO . 8 No 3 13 . M a 2 08 y 0
聚 氨 酯 弹 性体 电致伸 缩 特 性
吴 剑锋 李建 清 宋 爱 国 林 保 平 丛 羽齐 黄 伟 生
( 东南大学仪器科学 与工程 学院 , 南京 20 9 ) 106 ( 东南 大学化学化工学院 , 南京 2 0 9 ) 10 6
摘 要 :为 了提 高材料 的电致伸 缩特 性 , 通过 原 位 共 聚合 法 在 聚 氨 酯 弹性体 ( U 中掺 入 了不 同 P E)
质 量 比例 的纳 米钛 酸钡 . 采用 L R测试 仪 、 氏硬 度 计 和 电容 法 电致 伸 缩特 性 测试 装 置 研 究 了 C 邵 纳米 钛 酸钡掺 杂对 P E 的影响. U 试验 结果 表 明 : 随着掺 杂 比例 的提 高 ,U 的介 电 系数和 硬度 增 PE
t e e e to ti t e sr i ft e PUE,wh l h lc r src i tan o h v i mor op n l d pr s h lcr srci e sr i .PUE e e d i g wil e e st e ee to titv ta n wi h t 6% c ntn h wsa g e se te e tosrc i e s an.T e c a g a se e c e c lto d l o e ts o r a t s lc r titv t i h h e tn f r n e p r o a n mo e r r r i
电致伸缩材料

电致伸缩材料电致伸缩材料是一种能够在外加电场作用下发生形变的智能材料,具有广泛的应用前景。
它可以在电场的作用下实现形变,具有快速响应、高效能转换、轻质化等优点,因此在柔性电子、智能结构、生物医学器械等领域具有重要的应用价值。
本文将介绍电致伸缩材料的原理、特点及应用前景。
电致伸缩材料的原理是基于电场作用下的形变效应。
通常情况下,电致伸缩材料由两种或两种以上的材料组成,当外加电场作用时,材料内部会发生电荷分布的变化,从而引起材料的形变。
这种形变可以是线性的伸长或收缩,也可以是非线性的扭转或弯曲,具体形变效应取决于材料的结构和电场的作用方式。
电致伸缩材料具有快速响应的特点,当外加电场施加或撤离时,材料能够迅速实现形变,响应速度快,具有良好的实时性。
同时,电致伸缩材料的能量转换效率高,能够将电能转化为机械能,实现能量的有效利用。
此外,由于电致伸缩材料通常采用轻质化材料制备而成,因此具有良好的轻质化特性,适用于轻量化设计的需求。
电致伸缩材料在柔性电子领域具有广泛的应用前景。
例如,可将其应用于柔性电子设备的致动器和传感器中,实现设备的柔性化和智能化。
另外,在智能结构领域,电致伸缩材料可用于智能材料的制备,实现结构的形变和控制。
而在生物医学器械领域,电致伸缩材料也能够用于人工肌肉和人工器官的制备,为医疗健康领域带来新的发展机遇。
综上所述,电致伸缩材料作为一种智能材料,具有快速响应、高效能转换、轻质化等优点,具有广泛的应用前景。
在未来的发展中,电致伸缩材料将在柔性电子、智能结构、生物医学器械等领域发挥重要作用,为相关领域的发展带来新的机遇和挑战。
希望本文的介绍能够为读者对电致伸缩材料有更深入的了解,并为相关领域的研究和应用提供一定的参考价值。
电致与磁致伸缩材料驱动的微型冲压机

【 4 】窦云 霞. 钟康 民, 内回流面 积差动 液压 行程放大 装置 [ J 】 .
液压与气动, 2 0 0 8 . 1 2 , 7 4 — 7 5 .
岛I {盘● {岛‘ j岛‘ {&‘
翕‘
.{矗‘ 妇
. {&‘ {盎I {&● {&‘ {出‘ {出‘
‘ 一
S i △ — S
—
Si D2
—
( 3 )
— —
S r— d
o
式 中S 为 输 入 活塞 的横截 面 积 ,S 。 为输 出活 塞 的有效作用面积S 。 = S ,S 为 冲压 杆 的横 截 面 积 。 例 如 , 已 知 一 种 伸 缩 材 料 的 伸 缩 系 数 九 为 1 0 0 0 p p m, 伸缩 材料 的原 始 长度 为2 0 0 mm,驱 动
节 少 ,能源 的 利 用效 率 高 。4 )能 提 供小 能 量较 高
通 过 行 程 放 大 装 置 最 终 的 输 出 位 移
h 2
ห้องสมุดไป่ตู้△ , =△ ,
‘
‘
=2 0 mm 。通 过 本 例 可 以 看 出本 文 所
设 计 的 冲 压 机 构 ,能 够 将 伸 缩 材 料 形 变 产 生 的 不 易 察 觉 的微 量位 移0 . 2 mm,进 行行 程放 大 后输 出为
、 I
运 动位 移 A Z o , 完成 冲 压 工作 。其 行 程 放大 倍 数 的 计 算 如 公式 ( 3 ) 所示。
/ , t
o
一
匐 化
放 大为 显著位 移 ,实现 冲压 杆的 冲压过程 。 与 传 统 机 械 式 、 气 动 式 、 液 压 式 冲 压 机 相 比 ,它具 有 以下 优 点 :1 )整体 结 构 紧凑 简 洁 ,实 现 了微 小 型 化 。与 传 统 驱 动 装 置 相 比 , 电致 与磁 致 伸 缩 材 料 驱 动 由于 不 需 使 用 电 动 机 、泵 、 气缸 等 部 件 , 因 此 体 积 较 小 ; 同时 改 进 后 增加 回 流孔 的液 压 行程 放 大 装置 ,采 用一 体 式 的缸 体 ,与 图 3 所 示 的 传 统 行 程 放 大 装 置 的 尺 寸 非 一 致 的缸 体 相
压电材料和电致伸缩总结

•
xi
aiEdT
sE,T ij
X
j
dmTi Em
(7.16)
• •
•
这就Dd是Sm弹性pcTm电XEd,X介Td质Td的mTai线XiE X性i i 状 mTp态n,mXX方EEmn程。( (方77程..11中87) )的系数
为线性响应系数,它们是电介质物性参量。上标标
明响应过程中保持不变的量。由式(7.10)-(7.15)可
• 1881年,Lippman应用热力学原理预言逆压电 效应(converse piezoelectric effect),即电场可 引起与之成正比的应变。这一预言被居里兄弟 用实验所证实。
压电材料的实用化
• 压电材料实用化是进一步研究压电效应推动力。 实用化方面早期有两个奠基性的工作:
• 第一,1916年朗之万发明了用石英晶体制作的 水声发射器和接收器,并用于探测水下的物体。
• 1947年发现BaTiO3陶瓷强直流电场作用后也具有 压电性,结束压电材料局限于单晶的局面。这一 阶段成果在Mason的经典著作《压电晶体及其在 超声中的应用》有全面的论述。
• 后来陆续出现了新型压电晶体和以PZT为主性能 优异压电陶瓷,并出版了关于压电陶瓷的专著。
• IRE(以及后来的IEEE)制订和发布一系列关于压 电晶体的标准,推动测量方法的规范化和现代化。
• 虽然电致伸缩效应通常很弱,但在某些铁电体中 稍高于居里点时却相当强,而且铁电相压电常量 与电致伸缩系数有关,因此,研究电致伸缩也有 实用和理论两方面的意义。
§ 7.1 压电效应
7.1.1 线性状态方程和线性响应系数 • 处理电介质平衡性质的基本理论是线性
理论。该理论成立的条件是系统的状态 相对其初始态的偏离较小,在特征函数 对独立变量的展开式中可忽略二次以上 的高次项,而在热力学量对独立变量的 展开式中可以只取线性项。
电致伸缩相关资料

电致伸缩相关资料电致伸缩原理任何电介质在外电场E的作用下都会出现应力,这种应力的大小与E的二次项成线性关系,这种效应被称为电致伸缩(electrostriction)效应,这一比例于电场二次项的应力将使电介质产生相应的应变,称为电致伸缩应变。
性质电致伸缩应变是由电场中电介质的极化所引起,发生在所有的电介质中,其特征是应变的正负与外电场方向无关。
电致伸缩效应的优点在于它的电场--应变关系非常稳定,不会随时间以及电场的反复循环而发生变化。
一般认为,引起电场—应变关系的因素有两个电致伸缩效应,由它引起的应变可以理解为因极化度的改变而相应发生的应变应力,由它引起的应变与物质的介电性能和弹性有关。
发展现状目前研究较多的电致伸缩材料主要有两种:电致伸缩陶瓷和聚氨酯。
电致伸缩陶瓷:自 1980 年以来美国宾夕法尼亚大学的 L. E. Cross 和日本东京工业大学的内野研二等人合作研究陆续发表了几篇 PMN-PT 体系的电致伸缩效应的论文,认为这种新的 PMN 体系陶瓷材料具有较大的电致伸缩效应,可作为一种优良的换能器材料,为此不仅获得了美国海军的大量自助而且也使电致伸缩效应获得到了广泛关注。
大量的研究表明,弛豫铁电体具有良好的电致伸缩性能,而且其滞后,回零性和重复性好,因此其在微位移器等诸多方面有着广阔的应用前景。
但是对电致伸缩材料的研究一开始只是停留在含铅体系上,经过各方的研究探索开发了诸多具有良好综合性能的电致伸缩材料,而从近几年国际上环保意识的增强,开始对有毒含铅材料进行限制,无铅弛豫电致伸缩材料逐渐开始成为人们的研究重点。
比如钛酸钡钙基无铅铁电陶瓷(哈尔滨工业大学,李彩霞,《钛酸钡钙基无铅铁电陶瓷的压电性和多铁性研究》,2014)。
E. Burcsu曾报道钛酸钡单晶的电致伸缩性能,在20k V/cm 的电场下能获得的最大应变为 0.8%。
研究开发性能较好的无铅电致伸缩材料不仅具有一定的理论意义,而且对于工程应用来说也具有不可估量的实用价值。
磁致伸缩式电子水尺(太原尚水测控科技)PPT课件

02
产品介绍
产品特点
高精度测量
采用磁致伸缩技术,实 现水位测量的高精度和
高稳定性。
远程数据传输
通过无线通讯模块,实 时将测量数据传输至远
程监控中心。
抗干扰能力强
针对复杂环境下的电磁 干扰,采用特殊材料和 电路设计,确保测量准
确性。
安装简便
结构紧凑,易于安装和 维护,降低运营成本。
市场前景
随着技术的不断进步和应用领域的拓展,磁致伸缩式电子 水尺的市场前景广阔。未来市场需求将继续保持增长,同 时产品性能和功能也将不断升级和完善。
太原尚水测控科技在市场上的发展潜力较大,通过不断提 升产品品质和服务质量,有望在市场竞争中取得更大的优 势和市场份额。
05
案例分享
成功案例一
01
客户名称:某水利部门
项目背景
该污水处理厂需要一种高效的水位监 测设备,用于监测污水池的水位。
解决方案
采用磁致伸缩式电子水尺,能够实时 监测污水池的水位,并自动控制水泵 的运行。
实施效果
该设备提高了污水处理的效率,减少 了人工巡检的频率,降低了运营成本。
成功案例三
客户名称:某灌溉工程
解决方案:采用磁致伸缩式电子水尺,能够实时监测灌 溉渠道的水位,并自动控制灌溉泵的启停。
抗干扰能力强等优点。
产品应用领域
广泛应用于水利、环保、农业、气 象等领域,为水资源管理、防洪抗 旱、农田灌溉、气象观测等提供重 要的数据支持。
产品优势
产品精度高、稳定性好、寿命长, 可满足不同领域客户的需求,并且 提供完善的售后服务和技术支持。
市场总结
市场需求
随着国家对水资源管理和环境保 护的重视程度不断提高,磁致伸 缩式电子水尺市场需求不断增长 ,市场前景广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
wangcl@ 9
E 'm f (P)
假设极化强度与电场可以表示为:
1 1 E3 A2 P3 A4 P33 2 4 )
则薄长片的焓H(T1,P3)为,
1 P 2 1 1 2 2 H(T1 , P3 ) s11T1 Q13T1 P3 ( A 2 P3 A 4 P34 ) 2 2 4
wangcl@ 8
H 相应的热力学关系为:S1 T 1 P1
H E3 P 3 T1
其中焓H为 H U Ti Si E m Pm
i 1 m 1
6
3
对于薄长片的焓H(T1,P3)为,
wangcl@ 5
因为铁电体中的机电转换过程进行的很快, 它来不及与外界交换热量,所以可认为机 电转换过程是一个绝热过程。这就是说铁 电体中各种常数的测量,都是在绝热条件 下进行的。
wangcl@
6
再结合边界条件,通常选熵,应力T和极 化强度P为独立变量(或以、T、E为独立 变量)比较方便,相应的热力学函数为焓 H。 这就是为什么讨论铁电体中的机电行为时, 所用的热力学函数是焓H(、T、P),而 不是自由能F(、T、P)的原因。
如果选(S,P)为独立变量,则薄长片的 电致伸缩方程为:
P T3 c33 S3 q 33P32
S E 3 2q 33S3P3 33 (P)P3
其中:c33P是极化强度P为常数(或零)时 的弹性刚度常数,q33为电致伸缩系数。
S 33 ( P )
S 1 / 为夹住(持)等效极化率倒数 33 (P)
wangcl@
3
压电效应可以用压电方程来描写,同样, 铁电体的电致伸缩效应也可以用电致伸缩 方程来描写。 其次经过极化后的铁电体,体内存在剩余 极化强度(这个剩余极化强度的作用相当 于在铁电体上作用一个直流偏压)。
wangcl@
4
在外加小信号场的作用下,出现压电效应。 这表明在外加小信号场的情况下,可以由 电致伸缩方程导出铁电体的压电方程。 本节主要讨论如何通过铁电体的热力学函 数表示式,导出铁电体的电致伸缩方程, 以及如何在小信号情况下,由电致伸缩方 程导出铁电体的压电方程。
wangcl@
7
铁电体的电致伸缩方程
薄长片的电致伸缩方程。设薄长片的长度 沿x方向,厚度沿z方向,电极面与z轴垂直。 相应的热力学函数焓的微分表示式为:
dH d S1dT 1 P3dE3
对于绝热过程,存在d=0,上式简化为
dH S1dT 1 P3dE3
H U T1 S1 E3 P3
wangcl@ 10
薄长片的电致伸缩方程
H P 2 S1 s T Q P 11 1 13 3 T 1 P3 H E3 P 3 T1 3 5 2Q13T1 P3 A 2 P3 A 4 P3 A 6 P3
T 33 (P)P3 A 2 P3 A 4 P33 A 6 P35 令:
T (P) A 2 A 4 P32 A 6 P34 其中 : 33
T (P) 为应力自由等效极化率的倒数 1 / 33
wangcl@
11
薄长片的电致伸缩方程
wangcl@ 1
压电效应
电致BaTiO3类型的铁电晶体或铁电陶瓷,在居 里点温度以上处于非铁电相,是各向同性 体,不存在压电效应。但存在电致伸缩效 应。在居里点温度以下,如果未经极化处 理,则是一个多畴体,体内总极化强度为 零;还是各向同性体,不存在压电效应, 但存在电致伸缩效应。
wangcl@ 14
T3 c S q P
P 33 3
S E 3 2q 33S3P3 33 (P)P3
2 33 3
从上式可以看出,如果选(S,P)为独立变 量,则铁电体的应力由两部分组成。其一是 由于弹性应变而产生的应力;另一是由于介 质极化而产生的电致伸缩应力。在薄长片情 况,电致伸缩效力与极化强度的平方成正比, 比例系数就是电致伸缩系数q33。
Piezoelectric and electrostriction
压电效应:是表示物体的应变与电场强度 (或极化强度)之间存在线性关系,或者说 是表示物体的应变与电场强度(或极化强度) 之间存在正比关系。 电致伸缩效应:表示是表示物体的应变与电 场强度(或极化强度)之间存在的非线性关 系,或者近似认为应变与电场强度的平方 (或极化强度的平方)成正比关系。
wangcl@ 15
铁电体的电致伸缩方程
铁电体的热力学函数的微分表示形式为,
dH Si dTi Pm dEm
i 1 m 1 6 3
从电致伸缩方程可以看出:铁电体的应变由 两部分组成。其一是由于弹性应力而产生的 应变,另一是由于介质极化而产生的电致伸 缩应变。 在薄长片情况,电致伸缩效应与极化强度的 平方成正比,比例系数就是电致伸缩系数 Q13。 wangcl@ 13
Clamped susceptibility
S1 s T Q P
P 11 1
T E 3 33 (P)P3 2Q13T1P3
2 13 3
其中s11P是极化强度P为常数(或零)时的 弹性柔顺常数,Q13是电致伸缩系数。
wangcl@
12
P S1 s11 T1 Q13P32
T E 3 33 (P)P3 2Q13T1P3