利用数学模型解题——大角夹半角

合集下载

夹半角模型及应用

夹半角模型及应用

夹半角模型及应用
方法与技巧:
夹半角问题是通过旋转对除半角外剩余的角进行拼凑,从而产生一组旋转全等和一组轴对称全等来解决。

在实际解题过程中,添加辅助线的方式与截长补短相同。

强化练习:
模型1:90°角夹45°角
1、如图:正方形ABCD 中,E 是BC 边上一点,以A 为顶点作∠EAF=45°,交CD 于点F . 求证:①EF = BE+DF ②AE 平分∠BEF
2、如图:正方形ABCD 中,E 是BC 边上一点,以A 为顶点作∠EAF=45°,交CD 于点F . 求证:①EF = BE-DF ②∠AFD+∠AFE=180°
F
A
C
B
D E
45
F
E
D
C B A
模型2: 120°角夹60°角
3、如图:四边形ABCD 中,BC=CD ,∠BCD=120°,E 、F 分别是AB ,AD 上的点,∠ECF=∠A=60°. 求证:①BE+DF=EF ②点C 在∠BAD 的平分线上
模型3: 2a °角夹a °角
4、如图,在四边形ABCD 中, AB =AD ,∠B+∠D=180°, E 、F 分别是边BC 、CD 上的点,且2∠EAF =∠BAD, 求证: ①BE+DF=EF ②CE 平分∠BEF
F
E D
C
B
A。

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)【范本模板】

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)【范本模板】

几何图形之半角模型主题半角模型教学内容教学目标1。

掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2。

掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题.4。

通过四边形的从属关系渗透集合思想。

5.通过理解四种四边形内在联系,培养学生辩证观点。

知识结构正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等.③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角.典型例题精讲例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD-DM=22-2=2(2—1), ∴AG=BM=2(2—1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+. 可得:222110(10)4x x =++. 故6x =.216256ABCD S ==.例3。

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型主题半角模型教学内容教学目标1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2。

掌握正方形的性质定理1和性质定理2。

3。

正确运用正方形的性质解题。

4。

通过四边形的从属关系渗透集合思想。

5.通过理解四种四边形内在联系,培养学生辩证观点。

知识结构正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结).正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全.小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行.②正方形四边相等.③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

典型例题精讲例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD-DM=22-2=2(2—1), ∴AG=BM=2(2-1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+. 可得:222110(10)4x x =++. 故6x =.216256ABCD S ==.例3。

利用数学模型解题——大角夹半角(共7张PPT)

利用数学模型解题——大角夹半角(共7张PPT)
学习目标:
1. 理解图形中大角与半角的含义
2. 通过思考,交流讨论总结找出模型特征, 固化思路,快速作答
学法指导:
1、自主学习例1,总结出此类型题的图形 特征并找出解决办法
2、尝试应用你在例1中积累的经验,解决 问题
一、学习过程:
自主学习(抽象模型)
例1、如图①,正方形ABCD中,E、F分别是BC、CD上的点,且有 ∠EAF=45°,求证:BE+DF=EF
M’谢谢!Fra bibliotek思路分析: 1、求两条线段的和等于一条线段,通常我们会
怎样思考?
2、 ∠BAE与∠DAF,你能把它们拼在一起么
?拼图后有没有全等三角形?
A


×
3、你能体会图中的大角与半角的含义么? 你还能找到图形的哪些特点?
F’
模型特征:
1 、组成大角的两条线段相等。 2、大角与半角具有公共顶点。
方法小结:
1、旋转某个图形使大角的等线段重合在一起。
(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,G F=6,BM= ,求AG,MN的长 32
M’
M
N
三、达标测评(固化思路,轻松求解)
• 如图,△ABC是边长为3的等边三角形,△BDC是等腰三 角形,且∠BDC=120°.以D为顶点作一个60°角,使
二特、征合 并作找探出究解其:决(办模法两型应边用)分别交AB于点M,交AC于点N,连接MN,求
△AMN的周长 特征并找出解决办法
2、尝试应用你在例1中积累的经验,解决 (3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,G ,DH之间的数量关系,并说明理由. 2、利用全等三角形进行求解。 (1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC, 是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A (3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,G 逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND 1、求两条线段的和等于一条线段,通常我们会怎样思考? 2、大角与半角具有公共顶点。 3、你能体会图中的大角与半角的含义么?你还能找到图形的哪些特点? 特征并找出解决办法 三、达标测评(固化思路,轻松求解)

第8讲 夹半角模型(word版)

第8讲 夹半角模型(word版)

数学故事古典密码术大家经常见到的藏头诗实际是一种加密术,它通过坐标变换的方式隐藏了秘密,这个例子虽然很简单,但它反映出了加密术的本质--变换坐标系。

加密术最早应用于古代战争,当时是靠士兵随身携带的信件来传递情报,但总是免不了被敌方俘虏,从而使情报落入敌手,这对作战部队而言可是生死悠关的大事。

传说当时的凯撒大帝有一个能加密的办法,就在写命令前做一个对应表:明码:A B C D E F....W X Y Z密码:D E F G H I....Z A B C如果他想写BABY,就用EDEB来表示。

当大将收到了EDEB这个密码后,向前推3个字母,就得到了明文。

这个对应表的移位数是3,当然别的数也可以,作战前由凯撒定好后通知大将们。

这种加密方式其实就是把坐标系横移了3格,这种方法非常简单,但同时也很容易被敌方猜到,敌人从1到25推25次,得到25组新编码,必有一种编码是真实的情报内容,把这组编码区别出来非常容易,因为其它24组都是毫无意义的字母组合,只有这一组是有意义的句子,找个识字的人就可以看得出来。

凯撒该怎么办呢?有个聪明人帮他出了个主意,对应表不按字母顺序写,而是搞个乱乎的。

例如A对Q,B对F,随便配对,只要保证26个明密码对里,每个都出现一次就行了。

每次出征前,凯撒都会临时搞个非常乱乎的明密码对应表,然后发给大将。

这招很不错,敌人即使截获了密文,由于不知道明密码对应表,也很难破译出来,这其实也是坐标系的一种变换,这种方法被后人称为“单表系统”。

很多年过去了,有人发现了这种加密方法的漏洞,因为英文字母的出现次数是不同的,例如E出现的次数最多,甚至可以搞出个频次表来,如果一件密文中R出现的次数最多,那这个R会不会就是E呢?这个猜想很合理,即使代表的不是E,那它代表的也应是明文中出现次数较多的字母。

按照这种思路试试吧,My God,密码解开了。

现在又轮到加密方纠结了,他们想,破解方是在拿明密文中字母出现的频次做文章,如果我们能把频次的区别消除掉,他们不就没办法了吗?道理虽然很好,但怎样才能消除这种频次的差别呢,毕竟明文中字母的频次就是不一样,这本身没法改变啊。

大角夹半角

大角夹半角

第三讲大角夹半角1、已知:正方形ABCD中,∠MAN=45°,绕点A顺时针旋转,它的两边分别交CBDC、(或它们的延长线)于点M、N。

当∠MAN=45°绕点A旋转到B M=DN时(如图1),易证BM+DN=MN。

(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN、和MN 之间有怎样的数量关系?写出猜想,并加以证明。

(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想。

12、已知四边形ABCD 中,A B A D ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)于E F ,.当MBN ∠绕B 点旋转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系?请写出你的猜想,不需证明.(图1) A B CDE FM N(图2)A B CDE FM N(图3)A BCDE F MN如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E 、F 分别是BC 、CD 上的点.且∠EAF =60°.探究图中线段BE 、EF 、FD 之间的数量关系. 小王同学探究此问题的方法是,延长FD 到点G ,使DG =BE .连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 EF =BE +DF ;探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E 、F 分别是BC 、CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由; 实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?11. 如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则A MN ∆的周长为 ;在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E,点F分别为OA,OB的中点。

最新中考数学必备专题目中考模型解题目系列之大角夹半角模型

最新中考数学必备专题目中考模型解题目系列之大角夹半角模型

中考数学必备专题目中考模型解题目系列之大角夹半角模型
【中考数学必备专题】中考模型解题系列之大
角夹半角模型
一、解答题(共1道,每道100分)
1.(2010重庆改编)等边的两边AB、AC所在直线上分别有两点M、N,D为外一点,且,,BD=DC.探究:当M、N 分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系.
(I)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是_____________;此时___________;
(II)如图2,点M、N在边AB、AC上,且当DM DN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;
(III)如图3,当M、N分别在边AB、CA的延长线上时,若AN=,则
Q=_________(用、L表示).。

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型主题半角模型教学内容教学目标1。

掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2.掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题。

4.通过四边形的从属关系渗透集合思想.5。

通过理解四种四边形内在联系,培养学生辩证观点.知识结构正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角.说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等.③正方形四个角都是直角.④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

典型例题精讲例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD,垂足为M . 由题意可知∠ADG=GDM, 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD —DM=22—2=2(2—1), ∴AG=BM=2(2—1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+. 可得:222110(10)4x x =++. 故6x =.216256ABCD S ==.例 3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,•垂足为M ,AM AB =,则有EF BE DF =+,为什么?【解析】:要说明EF=BE+DF,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME,△ADF ≌△AMF 即可. 理由:连结AE 、AF .由AB=AM ,AB ⊥BC ,AM ⊥EF,AE 公用, ∴△ABE ≌△AME . ∴BE=ME .同理可得,△ADF ≌△AMF .∴DF=MF .∴EF=ME+MF=BE+DF .例4.如下图E 、F 分别在正方形ABCD 的边BC 、CD 上,且45EAF ︒∠=,试说明EF BE DF =+. 【解析】:将△ADF 旋转到△ABC ,则△ADF ≌△ABG∴AF=AG ,∠ADF=∠BAG,DF=BG∵∠EAF=45°且四边形是正方形, ∴∠ADF ﹢∠BAE=45° ∴∠GAB ﹢∠BAE=45° 即∠GAE=45°∴△AEF ≌△AEG (SAS ) ∴EF=EG=EB ﹢BG=EB ﹢DF例5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、旋转某个图形使大角的等线段重合在一起。 2、利用全等三角形进行求解。
二、合作探究:(模型应用)
(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC, CD边上,高AG与正方形的边长相等,求∠EAF的度数. (2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N 是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A 逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND ,DH之间的数量关系,并说明理由. (3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,G F=6,BM= 3 2 ,求AG,MN的长
M’
M
N
三、达标测评(固化思路,轻松求解)
• 如图,△ABC是边长为3的等边三角形,△BDC是等 腰三角形,且∠BDC=120°.以D为顶点作一个 60°角,使其两边分别交AB于点M,交AC于点N, 连接MN,求△AMN的周长
M’
利用数学模型解题—大角夹半角
郸城一高附中 杨静
学习目标:
1. 理解图形中大角与半角的含义
2. 通过思考,交流讨论总结找出模型特征, 固化思路,快速作答
学法指导:
1、自主学习例1,总结出此类型题的图形 特征并找出解决办法 2、尝试应用你在例1中积累的经验,解决 问题
一、学习过程:
自主学习(抽象模型) 例1、如图①,正方形ABCD中,E、F分别是BC、CD上的点, 且有∠EAF=45°,求证:BE+DF=EF
思路分析: 1、求两条线段的和等于一条线段, 通常我们会怎样思考? 2、 ∠BAE与∠DAF,你能把它们拼在 一起么?拼图后有没有全等三角形?
A
● ● ×ຫໍສະໝຸດ 3、你能体会图中的大角与半角的含 义么?你还能找到图形的哪些特点?
F’
模型特征:
1 、组成大角的两条线段相等。 2、大角与半角具有公共顶点。
方法小结:
相关文档
最新文档